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We consider force-induced unzipping transition for a heterogeneous DNA model with a correlated base
sequence. Both finite-range and long-range correlated situations are considered. It is shown that finite-range
correlations increase stability of DNA with respect to the external unzipping force. Due to long-range corre-
lations the number of unzipped base pairs displays two widely different scenarios depending on the details of
the base sequence: either there is no unzipping phase transition at all, or the transition is realized via a sequence
of jumps with magnitude comparable to the size of the system. Both scenarios are different from the behavior
of the average number of unzipped base pairs(non-self-averaging). The results can be relevant for explaining
the biological purpose of correlated structures in DNA.
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I. INTRODUCTION

Structural transformations of DNA under changing of ex-
ternal conditions are of importance for molecular biology[1]
and biophysics[2]. They take place in transcription of ge-
netic information from DNA and in duplication of DNA dur-
ing cell division [1]. The common scenario of these pro-
cesses is unwinding of the double-stranded structure of DNA
under influence of external forces. Recall that DNA consists
of two strands with one winded around the other. These two
strands interact via hydrogen bonds due to which the double-
helix structure is formed. The individual strand is con-
structed by covalent bonds whose strength is thus much
larger than the interstrand coupling. Each strand is a polymer
based on nucleotides. A nucleotide is a deoxyribose sugar
molecule bearing on one side purine or pyrimidine group
(the base) and on the other a phosphate group. The purines
can be of two types: adenine(A) and guanine(G), whereas
pyrimidines are cytosine(C) and thymine(T) [an additional
purine uracil(U) is found in RNA]. A, G, C, and T groups
differentiate the nucleotides and constitute the genetic code
carried by a DNA molecule. The bounds between neighbor-
ing nucleotides within one strand are formed via the corre-
sponding phosphate groups. Hydrogen bonds between oppo-
site strands are formed either by A-T bases or by G-C bases.
Since the bases A, G, C, and T are hydrophobic, they are
located at the core of the double helix. In contrast, the sugar
molecules and the phosphate groups are hydrophilic and they
are located in the outside part of the DNA molecule. Thus in
a regular DNA molecule the letters of the genetic code are
hidden from the molecular environment. This appears as a
problem for the polymerase enzymes whose role is to read

the genetic code. The polymerase may function if only they
unzip the needed part of the DNA molecule, so that the bases
are exposed to the environment. This is the main reason why
DNA unzipping, in particular, under an external force is im-
portant for functioning of all living organisms. Force-
induced unzipping has been actively investigated only re-
cently [3-7] motivated by the new generation of
micromanipulation experiments[7,8].

It is expected that features of the unzipping process de-
pend on the base sequence of DNA, because AT and GC base
pairs do have different formation energies. It is more difficult
to break a single GC base pair, since it is made of three
hydrogen bonds, while a single AT base pair is made of two
hydrogen bonds only. Thus, the formation energy difference
between AT and GC base pairs is of the order of one hydro-
gen bond energy, that is, 0.1–0.2 eV. This is comparable
with the average formation energy itself. We note in addition
that for a given DNA molecule the overall concentrations of
AT and GC base pairs are approximately equal[1]. This is
especially true for higher organisms, e.g., the concentration
of GC base pairs for primates is between 49% and 51%[1].

The above energy difference may not be relevant for cer-
tain bulk properties of DNA. Therefore, the latter is fre-
quently modeled assuming a homogeneous base sequence.
However, in natural conditions the energy supplied for un-
zipping can be comparable to the average formation energy,
and then the heterogeneous character of the base sequence
becomes relevant. One of the first steps in this direction was
made in Ref.[6], where it was shown that short-range het-
erogeneity does influence the unzipping process in the region
where the energy supplied by an external unzipping force is
comparable to the average formation energy of a DNA base
pair.

Our main purpose is to make the next step towards real
DNAs and to analyze force-induced unzipping for a DNA
model, where the structural features of the base sequence are
taken into account. One of the known features of DNA is that
its base sequence displays substantial correlations which, in
particular, can be of long-range characters[9–12]: two base
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pairs separated from each other by thousands of pairs appear
to be statistically correlated. Initial studies reported long-
range correlations for noncoding regions of DNA(introns).
For higher organisms, e.g., humans, these regions constitute
more than 90% of DNA[1]. It was believed for some time
that coding regions, which carry the majority of genetic in-
formation, can have only short-range correlations. However,
more recent results indicate on the existence of weak long-
range correlations in coding regions as well[11] (this point
was controversial for a while, but the general consensus on
its validity emerged gradually). Moreover, systematic
changes were found in the structure of correlations depend-
ing on the evolutionary category of the DNA carrier[10]. In
spite of ubiquity of long-range correlations, their biological
reason remains largely unexplored. Some attempts in this
direction were made in Ref.[13], where it was studied why
long-range correlations are absent in certain biologically ac-
tive proteins.

Our basic purpose in the present paper will be to deter-
mine how statistical correlations, in particular long-range
correlations, influence on the unzipping process. Due to the
biological relevance of unzipping, indications of such influ-
ences can provide useful information for explaining the pres-
ence of long-range correlations in DNA.

This paper is organized as follows. The basic model we
work with is described in Sec. II. The situation with finite-
range correlated base sequence is investigated in Sec. III A.
The next three sections study various aspects of the long-
range correlated situation. We conclude with a summary of
our results. Several technical points are outlined in appen-
dixes.

II. THE MODEL

There are three basic mechanisms which determine the
physics of the unzipping process: An external force tending
to unbind the double-helix structure of a DNA molecule,
thermal noise generated by an equilibrium environment into
which the molecule is embedded, and finally structural fea-
tures of the molecule itself. Among various structural fea-
tures which may be of relevance, the most important ones are
connected with the base sequence of the molecule.

We shall work with a model which takes into account
these three physical ingredients in the most minimal way. It
was recently proposed in Ref.[6] for studying DNA unzip-
ping.

(i) A DNA molecule is lying along thex axis between the
pointsx=a andx=L.

(ii ) Among all degrees of freedom of the molecule we
consider only base pairs; they are located at pointsxi,
a,xi ,L, i =1, . . . ,M. Indeed, for that range of external
force where the molecule is close to be unbound completely,
those degrees of freedom which are related to hydrogen
bonds have much shorter characteristic times as compared to
other degrees of freedom. The latter ones can therefore be
considered as adiabatically frozen, and excluded from the
effective description we are developing.

(iii ) Any base pair can be in one of two states: bound or
disconnected(broken). We choose the overall energy scale in

such a way that the latter case contributes to the Hamiltonian
a binding energyfsxid, whereas the former case brings noth-
ing. As we stressed in the Introduction, different types of
base pairs do have different binding energies: even when
considering the ideal situation, where there are no “wrong
base pairs” such as AC and GT, the “correct” base pairs AT
and GC are different with respect to energy needed to unbind
them. Thusfsxid is a random quantity with an averagekfl:

fsxid = kfl + hsxid. s1d

(iv) An external force is acting on the left endx=a of the
molecule pulling apart the two strands. Thus, if a bondxi is
broken, all the base pairsxj with j , i are broken as well.
Each broken bond brings additionally to the Hamiltonian a
term −F, whereF is proportional to the acting force.

(v) Summarizing all of these, one comes to the Hamil-
tonian

Hsxd = − Fx + o
i=1

x

fsxid = skfl − Fdx+o
i=1

x

hsxid, s2d

wherex is the number of broken base pairs.
In the thermodynamical limit, whereL ,M @1, one applies

the continuum description withx being a real number,
a,x,L, and ends up with the following Hamiltonian:

Hsxd = sx − adf +E
a

x

dshssd, s3d

where f =kfl−F andb=1/T is the inverse temperatureskB

=1d.
(vi) For characteristic time scales of unzipping experi-

ments we can certainly neglect any changes of the base se-
quence for a single DNA molecule. Thus, once it is modeled
via the random noiseh, it is legitimate to assume that this
noise is frozen, i.e., its single realization corresponds to a
single molecule. It is assumed that the DNA molecule is
embedded into a thermal bath with temperatureT, and had
sufficient time to reach equilibrium. Thus, the partition func-
tion and the free energy corresponding to the Hamiltonian
(3) read

Z =E
a

L

dx e−bHsxd, F = − T ln Z. s4d

These quantities are still random together withh. Average
results of many experiments with various realizations ofh
can be described with help of the average free energykFl.
Our order parameter is the number of broken base pairsX.
Along with its average it is defined fort=0 as

X = ] fF, kXl = ] fkFl. s5d

A. Finite-range and long-range correlated situations

It remains to specify the properties of the noiseh. Within
the adopted description we assume it is a Gaussian stationary
process with an autocorrelation function

Kst − t8d = khstdhst8dl, Kstd = Ks− td. s6d
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Two major classes can now be distinguished depending
on the behavior ofKstd for larget. The finite-range correlated
situation is defined by requiring that the integral

D =E
0

`

ds Kssd s7d

determining the total intensity of the noise is finite. There are
three particular cases of the finite-range correlated situation.
The white-noise case

Kstd = Ddstd s8d

describes completely uncorrelated noise. The physical situa-
tion given by Eqs.(3) and(8) is well known, and was used to
describe interfaces, random walks in a disordered media, and
population dynamics[14]. It was recently applied for the
unzipping transition in DNA[6]. Similar models were con-
sidered in Refs.[5,15].

The second case corresponds to the noise having some
finite—though possibly large—correlation lengtht. The sim-
plest and most widely used model for this case is provided
by Ornstein-Uhlenbeck(OU) noise

Kstd =
D

t
e−utu/t, s9d

whereD is the total intensity of the noise andt is the corre-
lation time; t→0 corresponds to the white noise. The third
case is whenKstd has a power-law dependence for larget,
but still decays sufficiently quickly so that the integral in Eq.
(7) is finite: Kstd~ utu−d with d.1.

The second major class is the long-range correlated situ-
ation, where the integral in Eq.(7) is infinite, that is, when
Kstd for sufficiently larget behaves according to a power law
[10]:

Kstd ; khstdhs0dl = sutu−a, s10d

where

0 , a , 1 s11d

is the exponent characterizing the long-range correlation, and
where s is the (local) intensity. Note thatKstd has to be
regular and finite for smallt [12], as one would expect from
physical reasons.

The OU noise(9), as the typical representative of the
finite-range correlated situation, and the long-range corre-
lated noise(10) are relevant for modeling correlations in
base sequence of DNA[9–12,16]. Note, however, that the
real noise distributions in DNA can be much more compli-
cated[10,11]. In particular, this concerns the Gaussian prop-
erty we assume(see in this context Sec. V A, where we study
a model of a non-Gaussian noise to show that its predictions
in the thermodynamic limit do not differ from those given by
the corresponding Gaussian noise). For the long-range corre-
lated situation there can exist several characteristic expo-
nents for different ranges oft. Nevertheless, Eqs.(9) and
(10) are certainly the minimal models of noise which are
sufficiently simple and which allow to study both finite- and
long-range correlations.

B. Reduction to Langevin equation

The basic method of solving the present model will be to
reduce it to the physics of a Brownian particle whose dynam-
ics is described by a stochastic differential equation. In Eq.
(4) one fixesL, and viewsa as a parameter varying from the
highest possible valueL, whereZ=0, to the lowest possible
value which we define to bea=0. The quantityt=−a will
thus monotonically increase and can be interpreted as a time
variable. DifferentiatingZ in Eq. (4) overa and changing the
variable ast=−a, one gets

dZ

dt
= 1 −bfZ − bhstdZ, − L , t , 0, s12d

where we usedhstd=hs−td, as follows from the Gaussian
stationary property of the noise. This is a Langevin equation
with a multiplicative noise. From Eq.(12) one can obtain a
stochastic equation forF=−T ln Z:

dF

dt
+ V8sFd = hstd, VsFd = T2ebF − fF. s13d

This is the basic stochastic equation we will work with.

III. FINITE-RANGE CORRELATED NOISE

A. Ornstein-Uhlenbeck noise

Our main purpose here is to study the process of unzip-
ping in the presence of the finite-range correlated noise given
by Eq. (9). We wish to understand how the magnitude oft
influences unzipping.

Note that the OU noise(9) can itself be modeled via a
white noise:

tḣ = − h + ÎDjstd, s14d

wherejstd is a Gaussian noise withd-correlated spectrum:

kjstdjst8dl = 2dst − t8d. s15d

Indeed, Eq.(9) is recovered directly from Eqs.(14) and(15),
since their exact solution is

khstdhst8dl = e−st+t8d/tSkh2s0dl −
D

t
D +

D

t
e−ut−t8u/t. s16d

We get back from here to Eq.(9) under an additional consis-
tency conditionkh2s0dl=D /t. Moreover,hstd is a Gaussian
random process, becausejstd is Gaussian and Eq.(14) is
linear [17].

To handle Eq.(13) one differentiates it overt and uses
Eqs.(14) and(15). Changing the variable ass= t /Ît one gets
[18]

d2F

ds2 + gsFd
dF

ds
= − V8sFd +

ÎD

t1/4jssd, s17d

where

gsFd = t−1/2 + V9sFdt1/2. s18d

Equation(17) has the same form as a Langevin equation for
a particle with unit mass in the potentialVsFd and subjected
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to a white noise and aF-dependent friction with a coefficient
gsFd. Note that the potentialVsFd is confining only forf .0:
VsFd→` for F→ ±`.

We can rewrite Eq.(17) introducing an additional variable

F̃ssd=dFssd /ds, which in the above language of the Brown-
ian motion corresponds to the velocity:

dF

ds
= F̃, s19d

dF̃

ds
= − gsFdF̃ − V8sFd +

ÎD

t1/4jssd. s20d

As jstd is a Gaussian white noise, one uses the standard
tools, see, e.g., Ref.[17], and writes down from Eqs.(19)
and (20) a Fokker-Planck-Klein-Kramers equation for the
common probability distribution:

PsF,F̃,sd = kd„F − Fssd…d„F̃ − F̃ssd…l, s21d

whereFssd andF̃ssd are particular noise-dependent solutions
of Eqs. (19) and (20), and where the average is taken over
the white noisejstd given by Eq.(15):

] PsF,F̃,sd
] s

= − F̃
] PsF,F̃,sd

] F
+ gsFd

] fF̃PsF,F̃,sdg

] F̃

+ V8sFd
] PsF,F̃,sd

] F̃
+

D

t1/2

] PsF,F̃,sd

] F̃2
.

s22d

Our interest is in the large-s limit of this equation(thermo-
dynamic limit), and we want to have the reduced probability
distributionPsF ,sd of F only:

PsF,sd = kd„F − Fssd…l =E dF̃PsF,F̃,sd. s23d

To this end let us introduce

QnsF,sd =E dF̃F̃nPsF,F̃,sd, n = 0,1,2,3 . . . , s24d

whereQ0ssd=PsF ,sd. From Eq.(22) one gets an infinite set
of coupled equations forQnsF ,sd:

] Q0sF,sd
] s

= −
] Q1sF,sd

] F
, s25d

] Q1sF,sd
] s

= −
] Q2sF,sd

] F
− gsFdQ1sF,sd − V8sFdQ0sF,sd,

s26d

] Q2sF,sd
] s

= −
] Q3sF,sd

] F
− 2V8sFdQ1sF,sd − 2gsFdQ2sF,sd

+
2D

t1/2Q0sF,sd, s27d

. . . s28d

When deriving Eqs.(25) and (26) we used integration by
parts, and the following standard boundary conditions:

PsF,F̃,sd → 0 if F → ± ` or if F̃ → ± `.

s29d

These conditions are physically meaningful if the potential
VsFd is confining, and thus the motion of the corresponding
Brownian particle takes place in a finite domain. According
to the above discussion on the confining character of the
potentialVsFd=T2ebF− fF, the boundary conditions(29) are
reliable only for f .0.

Recall that the “time variable”t moves between −uLu and
0. For large lengths, i.e., forL@1 (thermodynamic limit) and
as the consequencet~s→0, any solution of Eq.(22) relaxes

towards the unique stationary distributionPstsF ,F̃d. A rather
general proof of this fact is presented in Ref.[17].

We shall now use Eqs.(25) and (26) to get explicitly the
stationary distribution functionPstsFd of F. Putting to zero
the left-hand side(LHS) of Eq. (25) one gets thatQ1,stsFd
does not depend onF. Taking into account the boundary
condition (29) one concludes that it is equal to zero:

Q1,stsFd = 0. s30d

Putting to zero the LHS of Eq.(26) and using Eq.(30) we
get

] Q2,stsFd
] F

= − V8sFdQ0,stsFd. s31d

It remains to determineQ2,stsFd putting to zero the LHS of
Eq. (27). One can conjecture that the stationary state

PstsF ,F̃d is symmetric with respect toF̃→−F̃, and then
Q3,stsFd=0 in the same way as forQ1,stsFd in Eq. (30). Al-
ternatively, one can assume thatgsFd andD are sufficiently
large so that the term]Q3,stsFd /]F can be simply dropped in
the right-hand side(RHS) of Eq. (27). If V9sFd is of order 1,
then a largegsFd is realized both for large and smallt [18].
Thus we conclude from Eq.(27):

gsFdQ2,stsFd =
D

t1/2Q0,stsFd. s32d

In view of Eqs.(31) and (32) one has a single differential
equation

D
Ît

]

] F
SQ0,stsFd

gsFd
D = − V8sFdQ0,stsFd, s33d

and gets forQ0,stsFd; PstsFd,

PstsFd ~ gsFdexpF−
t

2D
fV8sFdg2 −

1

D
VsFdG ,
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PstsFd = Ns1 + tebFdexpF fF

D
−

TsT − tfdebF

D
−

tT2

2D
e2bFG ,

s34d

whereN is the normalization factor. The white-noise,t→0,
limit of PstsFd was obtained in Refs.[6,14].

According to Eqs.(5) and (34) the average free energy
reads

kFl = T

E
0

`

du lnsudSt +
1

u
DumexpFSmt −

T2

D
Du −

tT2

2D
u2G

E
0

`

duSt +
1

u
DumexpFSmt −

T2

D
Du −

tT2

2D
u2G ,

s35d

where

m =
Tf

D
. s36d

Note that both integrals in Eq.(35) can be expressed
through the Gamma functionGsxd and the confluent hyper-
geometric(Kummer) function 1F1sa,b;zd, since

E
0

`

du uceau2−bu =
1

2
a−1−c/2GS1 +

c

2
DFb1F1S1 +

c

2
,
3

2
,
b2

4a
D

+ Îa1F1S1 + c

2
,
1

2
,
b2

4a
DG . s37d

Similar formulas can be written fore0
`du ucsln udneau2−bu for

n=1,2. These representations facilitate numerical calcula-
tions.

The average number of broken base pairskXl can be cal-
culated from Eqs.(5) and(34). Note that for the white-noise
situationt→0 a simple formula is obtained:

kXl =
T2

D

dcsmd
dm

, s38d

wherecsmd=Gsmd /G8smd. For m→0, kXl does not depend
on temperature and ont and becomes very large:

kXl = Df−2, s39d

for f →0. When the external force reaches its critical value,
the average number of broken base pairs diverges in the ther-
modynamic limit.

To study the influence oft on this unzipping phase tran-
sition, one should keep in mind the realistic situation, where
DNA molecules belonging to different evolutionary classes
have different correlation properties of their base sequences
[10]. At the same time the concentration(fraction) of AT and
GC base pairs is known to be(approximately) equal for suf-
ficiently long DNA molecules in natural conditions[1,19].
Therefore, in comparing two situations having different cor-
relation characteristics, it is legitimate to keep fixed the in-
tensity of the noise defined by Eq.(7) —this corresponds to
fixed concentration of various base pairs — and to study how
the average number of broken base pairskXl depends ont

for some fixed value off. This dependence is displayed in
Fig. 1 following Eqs.(5) and(35). It is seen that the behavior
of kXl for very small f depends ont rather weakly. Indeed,
as follows from Eq.(34), for f →0 the relevant domain ofF
contributing intokFl is F,−D / f. As it does not depend on
t, we get back Eq.(39). However, a nontrivial dependence
on t does exist for moderately small values off, where as
seen in Fig. 1,kXl is a decreasing function oft for a fixed f:
longer correlations present in the base sequence increase the
stability of the DNA molecule, since larger external forcesF
needed to achieve the same average amount of broken base
pairs. This is our main qualitative conclusion on how a finite
correlation length influences the unzipping process.

B. Arbitrary finite-range correlated noise at low temperatures

In the preceding section we reduced the nonlinear equa-
tion (13) with the finite-range correlated noise(9) to a
Fokker-Planck equation, and solved the latter exactly in the
thermodynamic limit. The essential feature that made this
analytical solution possible is that the OU noise has a single
and well-defined characteristic time and due to this allows
representations(14) and (15).

In general it is impossible to solve Eq.(13) for an arbi-
trary Gaussian noise, and, in particular, for the situation
given by Eq.(10): there is no exact Fokker-Planck equation
for this case. There is, however, a particular case which al-
lows analytical treatment. For very low temperatures,T→0,
one can approximately substituteVsFd in Eq. (13) by −fF for
F,0 and by an infinite potential wall standing atF=0.
Thus, all valuesF.0 become prohibited. For this particular
form of potential one can get a Fokker-Planck equation for

PsF,td = kdsF − Ffh,tgdl s40d

with anarbitrary Gaussian noise in the RHS of Eq.(13). The
derivation goes as follows. Write Eq.(13) as

dF

dt
= f + hstd, s41d

where the stochastic variableF is restricted to be negative
due to the above infinite wall. DifferentiatingPsF ,td in Eq.
(40) over t one gets

FIG. 1. kXl for Ornstein-Uhlenbeck noise withD=10, T=1.
From right to left:t=0, t=10, t=100. It is seen that, for a fixedf,
kXl decreases upon increasingt.
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] PsF,td
] t

= − f
] PsF,td

] F
−

]

] F
khstddsF − Ffh,tgdl. s42d

It remains to handle the last term in this equation. One uses
Novikov’s theorem[20]

khstddsF − Ffh,tgdl = −
]

] F
E

−L

t

ds Kst − sd

3KdsF − Ffh,tgd
dFftg
dhssdL , s43d

whered /dhssd is the variational derivative anddFftg /dhssd
is obtained from Eq.(41):

d

dt

dFftg
dhssd

= dst − sd,
dFftg
dhssd

= ust − sd, s44d

whereust−sd is the step function. Combining Eqs.(42)–(44)
we get finally

] PsF,td
] t

= − f
] PsF,td

] F
+ Dt

]2PsF,td
] F2 , s45d

Dt =E
0

t+L

ds Kssd. s46d

Equation (45) should additionally be supplemented by a
boundary condition which reflects the presence of the infinite
wall at F=0. Equation(45) can be written as the continuity
equation

] PsF,td
] t

+
] JsF,td

] F
= 0, JsF,td = f − mt

] PsF,td
] F

,

s47d

whereJsF ,td is the probability current. The infinite wall at
F=0 is now implemented by requiring

E
−`

0

dF PsF,td = 1, s48d

Js0,td = 0, s49d

for all t. Conditions(48) and (49) are imposed on any solu-
tion of Eq. (45).

In the thermodynamic limitL→` andt=0 one gets from
the stationarity condition]PsF ,td /]t=0

PsFd =
f

D
expF fF

D
G for F , 0 s50d

=0 for F ù 0, s51d

where the total intensity, as given by Eq.(7), is finite for the
considered short-range correlated situation. Note that in the
thermodynamical limit conditions(48) and (49) are satisfied
automatically as seen from Eqs.(50) and(51). It is now seen
from Eq. (5) that

kXl = Df−2, s52d

which has the samef dependence as the white-noise case for
small f; see Eq.(39). We conclude that, not unexpectedly, for
low temperatures the behavior ofX is determined only by the
total intensity of the noise. All other details ofKstd do not
matter. It remains to stress that the present analysis certainly
does not apply to the long-range correlated situation(10),
since the total intensityD diverges in the thermodynamical
limit.

In closing this section, let us note that Eq.(52) can be
applied to finite-range correlated noise that fort!L has the
same autocorrelation function as Eq.(10). As an example
take

Kfrstd = sutu−a for utu ø l s53d

=0 for utu . l , s54d

wherel is some parameter that isfinite in the thermodynami-
cal limit L→`. Therefore, the noise given by Eq.(53) is
obviously finite-range correlated. Equation(52) now reads

kXl =
s

1 − a
l1−af−2. s55d

If one chooses to takel ,kXl thenkXl, f−2/a as predicted in
Ref. [6]. However, there is no anya priori reason for this
choice, and at any rate this result refers to the finite-range
correlated noiseKfr. The real long-range correlated situation,
wherel ,L, is still not described by it.

IV. LONG-RANGE CORRELATED SITUATION:
THE FROZEN NOISE LIMIT

The present and the following section are devoted to the
long-range correlated situation, where according to Eq.(10)
the autocorrelation functionKstd of the noise has a power-
law behavior with the single characteristic exponent
1.a.0.

To start with, let us consider the case witha→0. The
noise is now completely frozen:hssd in Eq. (3) does not
depend ons. This situation is less physical as compared to
that with a.0. However, it is exactly solvable, and one can
hope it catches at least some features of the realistic situation
wherea is larger than zero, but certainly smaller than 1. This
intuitive expectation will be confirmed later on.

The problem witha=0 is easily solved from Eq.(3).
Moreover, the exact solution can be obtained for an arbitrary
value ofL:

X

L
= gfbLsf + hdg, s56d

gfxg ;
1

x
−

1

ex − 1
. s57d

It is seen that in the thermodynamical limitL→`, gfbLsf
+hdg behaves as roughly the step functiongfbLsf +hdg.us
−h− fd: for any single realization of the noise there is a sharp
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phase transition with a jump at the realization-dependent
point f =−h. Exactly at this pointf =−h one hasgs0d=1/2
and kXl=L /2.

Let us now study the behavior ofkXl. Since the noise is
completely frozen, the calculation ofkXl reduces to the av-
eraging over a Gaussian variable with dispersions. We have

kXl
L

= kgfbLsf + hdgl ; E dh

Î2ps
expF−

h2

2s
GgfbLsf + hdg

=E dj

Î2psb2
expF−

sj − bfd2

2sb2 GgfLjg, s58d

where we changed the integration variable asj=bsh+ fd. In
the thermodynamical limitL→`, we shall obtain forkXl /L
the main term of orderOsL0d, and the first correction to it
which will appear to be of orderOs1/Ld. To this end, let us
divide the integration in the RHS of Eq.(58) into three
pieces:

E =E
−`

−2/L

+E
−2/L

2/L

+E
2/L

`

. s59d

For each piece we shall use the following approximate ex-
pressions obtained from Eq.(57):

gfLjg =
1

Lj
for Lj * 2, s60d

gfLjg =
1

2
for − 2 & Lj & 2, s61d

gfLjg = 1 +
1

Lj
for Lj & − 2. s62d

To obtain Eqs.(60) and (62) we neglected terms of order
Ose−bLuf ud. For Eq.(61) which corresponds to the second in-
tegration piece in Eq.(59), we have taken the value ofgfLjg
at j=0. The boundary points ofLj were chosen such as to
ensure a continuous matching. However, neither the precise
value ofgfLjg within the second piece of integration in Eq.
(59) nor the precise values of the points separating this piece
from the remaining ones are important, since as we show
below the contribution coming from this second piece as
well as the contributions from the boundary points of the two
other integration pieces produce factors of orderOs1/L2d at
best.

The same concerns factors of orderOse−bLuf ud that were
neglected in Eqs.(60)–(62). Combining Eqs.(60)–(62) with
Eq. (58) one gets

kXl
L

=E
−`

−2/L dj

Î2psb2
expF−

sj − bfd2

2sb2 GS1 +
1

Lj
D

+
1

2
E

−2/L

2/L dj

Î2psb2
expF−

sj − bfd2

2sb2 G
+E

2/L

` dj

Î2psb2
expF−

sj − bfd2

2sb2 G 1

Lj
, s63d

=E
−`

0 dj

Î2psb2
expF−

sj − bfd2

2sb2 G +
1

L
E

0

` dj

jÎ2psb2

3SexpF−
sj − bfd2

2sb2 G − expF−
sj + bfd2

2sb2 GD s64d

−
1

L
E

0

2/L dj

jÎ2psb2SexpF−
sj − bfd2

2sb2 G − expF−
sj + bfd2

2sb2 GD
s65d

+
1

2
E

0

2/L dj

Î2psb2SexpF−
sj − bfd2

2sb2 G − expF−
sj + bfd2

2sb2 GD .

s66d

One notes that both Eqs.(65) and(66) are of orderOs1/L2d.
This can be verified by directly expanding integrals in Eqs.
(65) and (66) for small 2 /L. Skipping these terms, one gets

kXl
L

=E
bf

` dj

Î2psb2
expF−

j2

2sb2G +
1

L
E

0

` dj

jÎ2psb2

3SexpF−
sj − bfd2

2sb2 G − expF−
sj + bfd2

2sb2 GD
=E

bf

` dj

Î2psb2
expF−

j2

2sb2G +
1

sb2L
expF−

f2

2s
G

3E
0

bf

dj expF j2

2sb2G . s67d

When obtaining the last term in the RHS of Eq.(67), we
used a tabulated identity for the error function.

For f not very large as compared toÎs, the first term in
the LHS of Eq.(67) is dominating:kXl /L is of order 1/2. In
particular, it is exactly equal to 1/2 forf =0 as can be de-
duced directly from Eq.(58). The dependence ofkXl on f
becomes thus very weak forf →0. The second, subdominant
term becomes non-negligible forf @Îs, where using
asymptotic identities(see Appendix B)

E
a

` dj

Î2p
e−j2/2 =

e−a2/2

aÎ2p
S1 −

1

a2 + ¯D, a @ 1, s68d

E
0

a

dj ej2/2 =E
0

a

dj ej2/2 =
ea2/2

a
S1 +

1

a2D + . . . , a @ 1,

s69d

one gets from Eq.(67) noting a= f /Îs

kXl =
1

bf
S1 +

s

f2 +
Îs

Î2p
Lb expF−

f2

2s
GD . s70d

Note that forf @Îs, kXl has — within the leading order —
the same 1/f dependence as it will be in the completely
homogeneous situation without noisess=0d. In the consid-
ered regime, the noise only renormalizes this behavior modi-
fying the subdominant terms.
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As compared toX/L which has a jump at a realization-
dependent pointf =h, kXl /L is seen to behave smoothly. It
displays a crossover between smallkXl /L for a large f and
kXl=L /2 for f =0: the sharp transition disappears; see Fig. 2.
This indicates that the situation for the totally correlated
noise is essentially non-self-averaging: in the thermodynami-
cal limit the averaged order parameterkXl does not repro-
duce the behavior ofX for a typical realization. Recall that
for disordered systems all observables such as free energy,
order parameters, correlation functions, etc., depend on the
realization of the disorder, i.e., they are random quantities. It
is of the immediate interest to know their most probable
(typical) values, since they will be met in experiments. If for
a given quantity its typical value in the thermodynamic limit
coincides with its average, one speaks on self-averaging; see,
e.g., Refs.[21,22]. In practice this means that it is sufficient
to study averages as they are representative in the single
sample measurements. It is known on the general ground that
in the proper thermodynamic limit, that is, when the linear
sizeL of the system is much larger than any other character-
istic length and provided the distribution of the disorder is
finite-range correlated, quantities that scale with the volume
of the studied random system — these are extensive quanti-
ties such as free energy, order parameter, but not the statisti-
cal sum — are expected to display self-averaging[21,22].
This result is based on the law of large numbers. However,
this need not be true if the distribution of the disorder is
long-range correlated, since now the correlation length of the
disorder has the same order of magnitude as the linear size,
and the arguments based on the law of large numbers do not
apply. The above situation is just of this sort.

A. Dispersion as a measure of non-self-averaging

It is desirable to have more quantitative indications of the
above indicated non-self-averaging effect. To characterize
fluctuations ofX from one realization to another, it is natural
to employ the corresponding dispersionkX2l−kXl2 which
tells us how the quantitykXl fluctuates from one realization
to another. Then the statement of self-averaging will read

kX2l − kXl2

kXl2 → 0 for L → `. s71d

In contrast, ifskX2l−kXl2d / kXl2 remains finite forL→`, we
have non-self-averaging.

The quantitykX2l can be calculated in the same way as in
Eqs. (63) and (67). We shall bring the result only forf not
very large as compared toÎs, that is, whenkX2l~L2:

kX2l
L2 =E

Bf

` dj

Î2psb2
expF−

j2

2sb2G +
2

L
lnSL

2
DexpF−

f2

2s
G

Î2pb2s

+ OS1

L
D . s72d

Substituting this into Eq. (71), we see that skX2l
−kXl2d / kXl2 remains finite in the thermodynamical limit:

kX2l − kXl2

kXl2 =

E
bf

` dj

Î2psb2
expF−

j2

2sb2G
SE

bf

` dj

Î2psb2
expF−

j2

2sb2GD2 − 1.

s73d

In particular, forf →0

kX2l − kXl2

kXl2 → 1, s74d

indicating essential non-self-averaging.
In closing this section, let us repeat that the character of

the thermodynamical for the considered casea=0 is differ-
ent from that of the finite-range correlation situation, where
— for L→` — the behavior ofkXl becomes independent of
L at least in the physical range of other parameters(e.g.,
1. f .0, T.0, etc.). For thea=0 case, as seen from Eqs.
(67) and (70), there is an explicit dependence onL in the
whole range of physical range of the involved parameters.
According to Eq.(70), if L is kept large but finite, then this
dependence is very weak for external forces far form their
critical value f =0, that is, forf @Îs. There are no reasons
for taking this explicit dependence onL as something un-
physical. In contrast, the actual size of physically relevant
examples of DNA is never more thanL,104–106; see Ref.
[1]. This is certainly much smaller than the number 1023

which in the standard statistical physics is taken as the typi-
cal size. Therefore, it is rather natural to study the physics of
unzipping for a large but fixedL.

For the considered frozen situation, we could solve the
problem analytically for a given realization. However, for
a.0 this is not possible, and one has to rely on numerical
methods. This is what we intend to do in the following sec-
tion.

V. NUMERICAL RESULTS

As we have seen in the preceding section, there are rea-
sons to expect that for the long-range correlated situation,
especially for sufficiently small indexa, the typical — that
is, frequently met among many independent realizations of
the noise — behavior ofXsfd in the thermodynamic limit is
not described adequately by the average quantitykXl (non-
self-averaging). We note in this context that the correlator

FIG. 2. Xsfd /L for a particular realization(solid curve) and
kXsfdl /L (dotted curve) vs f; T=s=1, andL=104.
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skX2l−kXl2d / kXl2 studied in Sec. V can indicate on non-self-
averaging, but by itself does not provide any direct informa-
tion on typical realizations. It is perhaps needless to stress
that once we expect the effect of non-self-averaging, the at-
tention should be shifted towards typical realizations, since
they do have a direct physical meaning for single-molecule
experiments.

In the present section we study numerically the behavior
of the number of broken base pairsX as a function off both
for the long-range correlated situation and for the uncorre-
lated noise. For the discrete version of the model the parti-
tion function reads

Z = o
k=1

L

expF− bS fk + o
i=1

k

hiDG , s75d

where for the long-range correlated situationhi are Gaussian
random variables with the autocorrelation function given by
Eq. (10). Note that for the purposes of numerical computa-
tions the behavior ofKstd in Eq. (10) was regularized at short
distances so as to avoid superfluous short-range singularities;
see Appendix A for details. The generation ofhi, i
=1, . . . ,L is described in Appendix A following optimized
recipes proposed in Ref.[23]. For numerical computations
we have chosenT=1 andL=104 or L=53104.

As L is now explicitly finite, one should be careful with
the selection of the thermodynamical domain, since due to
the very statement of the problem the limitL→` is taken
beforef →0. As a plausible estimate of this domain, one can
use a conditionfÎL@1. We confirmed it in several ways,
reproducing predictions which were made in the thermody-
namical limit L→`.

A. Uncorrelated noise

Let us start with the uncorrelated-noise case, wherehi’s
are independent Gaussian variables with zero average,khil
=0, and variancehi

2=D=1 (white noise), and whereX is
given by Eqs.(5) and(75). For comparison we also studied a
case, wherehi are independent random variables assuming
valueshi = ±1 with equal probability(dichotomic noise).

The results are illustrated by Figs. 3 and 4, where we
display kXl and X for several typical realizations. It is seen
that kXl and X do not coincide exactly, as it is in general
expected due to the finite magnitude ofL if not by any other
reason. However, in the considered thermodynamical domain
of f the behavior of various typical realizations qualitatively
resembles each other, and, therefore, resembles that of
kXsfdl. In particular, for all typical realizationsXsfd grows
for f →0. In that sensef =0 is a special point for both typical
X and kXl. It should be mentioned that forf ø0.05 we have
seen realizations containing relatively sudden jumps at
realization-dependent values off. This differs from the be-
havior of kXl and is in agreement with the results of Ref.[6].
However, such small values off are not in the thermody-
namical domain. Acknowledging reservations connected
with the numerical character of our study, we, nevertheless,
conclude that the uncorrelated-noise situation is self-
averaging at least for not very small,fÎL@1, values off.

It is seen from Fig. 4 that the white and dichotomic noise
produce very similar results. This is to be expected for the
considered large values ofL (law of large numbers). Figure 5
shows that the power lawkXl~ f−2 for the white-noise case is
recovered by direct averaging over various realizations. In-
deed, it is seen from this figure that one recovers

kXl ~ f−1.84, s76d

after averaging over 103 realizations in the domain
0.05, f ,0.25. This result is stable upon increasing the
number of realizations, e.g., from 103 to 23103.

B. Long-range correlated noise

1. Typical realizations

The situation for the long-range correlated noise fora
=0.5, T=s=1 is illustrated by Figs. 6–9. The first point to

FIG. 3. (Color online) Solid curves:Xsfd for several realizations
of the white uncorrelated noise. Dotted curve:kXsfdl obtained by
averaging over 103 realizations.T=D=1, L=53104.

FIG. 4. (Color online) Solid curves:Xsfd for several realizations
of the dichotomic uncorrelated noise(hi = ±1 with equal probabil-
ity). Dotted curve:kXsfdl obtained by averaging over 103 realiza-
tions.T=1, L=53104.
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note is that now there are typical realizations with radically
different properties. The first type of realizations is presented
by Figs. 6 and 7:Xsfd increases by several sudden jumps
followed by flat regions. It is seen thatXu f=0 is either equal to
its maximal possible valueL or is close to it. Points where
Xsfd has jumps vary from one realization to another. How-
ever, the overall number of jumps when varyingf between
zero and one is typically two or three.

In contrast to this, Figs. 8 and 9 present a strictly different
situation: It is characterized by very smooth behavior ofXsfd
for f ù0. In particular,Xu f=0 is much smaller thanL (typi-
cally by few orders of magnitude). Xsfd is still a monotonic
function of f, but the pointf =0 — where the energy supplied
by the external unzipping force is equal to theaveragebind-
ing energy of a base pair — is by no means special.

To estimate the frequency by which each scenario is met
among all possible realizations, we have taken the following
criteria for deciding whether a given realization belongs to

one of the above classes: forL=53104 we prescribe the
given realization to the first class ifXsf =0d.4.83104,
while it is prescribed to the second class ifXsf =0d,102.
These criteria appeared to be sufficiently adequate, as they
are consistent with the fact of presence(for the first class) of
absence(for the second class) of sudden jumps forXsfd.

In this way the frequencies of each class were estimated
in a sample of 103 realizations. It appeared forL=53104

andT=s=2a=1 that the first scenario is met in,84% of all
cases(839 in 103 realizations), while the second scenario is
present in,12% of all cases(118 in 103 realizations). These
fractions are stable upon increasing the size of the sample on
which the above estimations were carried out. Interestingly
enough, realizations whereXsfd as a function off fall into
neither of the above two classes amount only to,4% of all
possible cases.

It is relevant to note that the fractions of the two classes
show tendency to move towards each other upon decreasing
the size of the system. For instance, the fractions of the first
and the second class amount to 18% and 76%, respectively,
for L=104 sT=s=2a=1d. These fractions were estimated by
criteria Xsf =0d.0.83104 and Xsf =0d,102, respectively.

FIG. 8. (Color online) Realizations ofXsfd from the second
class of typicality.T=s=2a=1, L=104.

FIG. 5. (Color online) The dependence of −lnkXsfdl on ln f for
various values ofL and for T=D=1. The quantitykXsfdl was ob-
tained by direct averaging over 103 realizations. Solid line indicates
linear fitting −lnkXsfdl=A+1.841 79 lnf for L=53104, whereA is
a constant. The emergence of the power law(76) is thus displayed
explicitly.

FIG. 6. (Color online) Realizations ofXsfd from the first class of
typicality. T=s=2a=1, L=104.

FIG. 7. (Color online) Realizations ofXsfd from the first class of
typicality. T=s=2a=1, L=53104.
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Recall in this context that the chosen values forL are sen-
sible, since the typical DNA samples used in experiment
haveL,104–105; see, e.g., Refs.[1,2] and also the follow-
ing section.

Since there are typical realizations which are so much
different from each other, we conclude that this long-range
situation is essentially non-self-averaging in the whole physi-
cal domain 0, f ,1 and, in particular, in the thermodynami-
cal domain off. This fact distinguishes between the uncor-
related(white noise) and long-range correlated situations. It
should be noted that due to the law of large numbers any
non-self-averaging present in the whole domain 0, f ,1 is
certainly impossible for the uncorrelated(or weakly corre-
lated) noise [21,22]. For the long-range correlated case the
very law of large numbers does not apply, and the above
effect becomes possible.

Our discussion of the frozen noise presented in Sec. IV
allows to provide a qualitative explanation for features of the
above two classes of typical realizations. One notes that a
sizable portion of long-range correlated noise realizations
can be seen as several pieces of the frozen noise with differ-
enth’s put next to each other. Now recall from Eq.(56) that
every sufficiently long piece of that type has a single first-
order phase transition with a jump proportional to its length.

The same reasoning can be applied for the understanding
of the existence of the second class, whereXsfd is a smooth
function of f andXsf =0d!L. Here one should note that —
within the above qualitative image of a long-range correlated
random sequence — there are realizations of the noise where
all h’s are positive, and thus all jumps ofXsfd can occur only
for negativef ,0, that is, beyond the domain of our interest.

2. Inferring phase transitions

Let us finally discuss on whether we can infer phase tran-
sitions by studying the typical realizations. First of all, it is
obvious that once we do not have self-averaging, phase tran-
sitions should be studied on typical scenarios of behavior for
X and not on the behavior of its averagekXl. There is another
aspect which is certainly more subtle: phase transitions are

typically defined in the thermodynamical limit and one needs
special tools of finite-size scaling for their identification in
results of numerical computations which are necessarily
done on finite systems. The idea of the finite-size scaling is
thus to extrapolate these results to the thermodynamical
limit. However, there is another, somewhat different line of
thought [24] which identifies the proper thermodynamical
quantities (such as entropy, free energy, order parameter,
etc.) directly for finite systems, and then searches in the
space of parameters some points having a special character
for these quantities. This approach well recommended itself
for studying phase transitions in atomic and nuclear physics,
and in systems with long-range interactions(e.g., a gas of
self-gravitating particles). For the present study of DNA
there is a related aspect that should be taken into account: in
natural conditions the number of base pairs is large,but fi-
nite. HereL is of order of 104–105, see, e.g., Refs.[1,2], as
we have mentioned already. It is, therefore, clear that the
considered finite size aspect of DNA is something generic,
and not only connected with natural limitations of numerical
methods.

Let us now return to the situation presented in Figs. 7–9.
We are going to use the analogy with the case of the totally
correlated noise described in Sec. IV. It was seen already that
this analogy helped us to draw useful qualitative conclusions
on the numerical data. For the totally correlated noise the
point of the phase transition is unambiguously identified with
the realization-dependent valuef =−h. At this point the order
parameterX has a jump of orderL; see Eqs.(56) and(57). It
may be useful to repeat that the most unusual aspect of this
phase transition is that its point is strictly realization depen-
dent. The same philosophy can now be applied to Figs. 6 and
7: there are realization-dependent values off, whereX has
jumps of order ofL /2 (recall that for the figures we have
takenL=104 or L=53104). It is seen as well that there can
be several such phase transitions for a single system(single
realization of noise). The latter fact can by itself appear to be
rather surprising. However, it is known that some disordered
[22], or deterministic but strongly frustrated[25], systems
can experience several phase transitions; there can even exist
quasicontinuous domains of criticality[25]. With the same
logic one sees that the typical realizations presented in Figs.
8 and 9 do not have phase transitions in the domain 0, f ,1
at least for the considered values ofL.

C. The behavior of ŠX‹

As we already noted, once the effect of non-self-
averaging is present, the basic physical quantities are the
typical realizations, since it is these features that are directly
observed in experiments. It is, however, still of relevance to
know the behavior of the average number of unzipped bonds
kXl, since it illustrates what are the precise differences as
compared to typical realizations.

Here we report on two features ofkXl as a function off.
The first one is how doeskXl depend onf for small values of
f. In particular, is there any power-law dependence similar to
kXsfdl~ f−2 present in the uncorrelated-noise situation, and
verified by us numerically in Sec. V A? Note that for the

FIG. 9. (Color online) Realizations ofXsfd from the second
class of typicality.T=s=2a=1, L=53104.
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long-range correlated situation with the indexa such a
power law

kXl ~ f−2/a s77d

was recently predicted for smallf; see Ref.[6]. The most
adequate way to look for the power laws is to plot −lnkXl as
a function of ln f, then a power law should display itself via
a straight line. Figure 10 displays such a plot obtained for
various values ofa and L=53104. The quantitykXl was
calculated by direct averaging over 103 realizations and the
results were checked for stability upon increasing(by two
times) the number of realizations. As seen, this figure shows
very weak dependence of −lnkXl on ln f. There are no con-
vincing indications of a power law. In particular, when de-
creasinga the dependence of −lnkXl on ln f does become
weaker, in obvious contrast with the prediction made by Eq.
(77). For a→0 this behavior coincides with those of the
exact solution discussed in Sec. IV.

It should be noted that −lnkXl is a perfectly smooth func-
tion of ln f: all jumps and flat regions present for the first
class of typical realizations — which involves the majority
of realizations — became washed out when averaging over
103 realizations. This gives another indication that the point
of jumps in the above class are completely random and vary
from one realization to another.

Once we realized that in a rather wide interval off ’s —
typically ln f ,−0.5, as seen in Fig. 10 — the dependence of
kXl on f is weak, we have studied the behavior ofkXsf
=0dl as a function ofL and a. As shown by Figs. 11–13
numerical results fit well into the following scaling equation:

kXsf → 0dl ~ SL

2
D1+dsad

. s78d

The values ofdsad for severala’s are shown by Fig. 14. For
a<0, we getd=0.01 which is in a good agreement with
exact valuedsa=0d=0 obtained in Sec. IV.

Two important features of result(78) are to be mentioned.
First, as seen from Figs. 11–13 the value ofkXlsf =0d ad-
equately characterizes the whole domain of smallf, since the
dependence ofkXl on f is weak. Second, as seen from Fig.
14, the functiondsad increases witha, but saturates fora
ù0.5 atd=0.08. It appears that the same result(78) with the
index d=0.08 holds for the uncorrelated noise, but there its
region of validity is restricted(for L=53104, T=D=1) by
very small f ,0.01 values off, in contrast to the long-range
situation. Thus, as far as the small-f characteristics are con-
cerned the result(78) seems to be universal, and it is likely
that dsad can have the same status as critical indices in the
usual theory of phase transitions.

We conclude by repeating two main qualitative features of
the average numberkXsfdl of unzipped bonds as revealed by
our numerical analysis: in the long-range situation and for
small forcesf, the behavior ofkXsfdl as a function off does
not display any power law, and is governed by its value at
f =0. The latter one satisfies to power law(78) as a function
of L.

FIG. 10. (Color online) −lnkXl vs ln f for the long-range corre-
lated noise with variousa’s andL=53104, T=s=1. The quantity
kXsfdl was obtained by direct averaging over 103 realizations.

FIG. 11. (Color online) −lnfkXlsL /2d−1−dsadg vs ln f for various
L’s and T=s=1, a=0.25,d=0.0625. The quantitykXsfdl was ob-
tained by direct averaging over 103 realizations.

FIG. 12. (Color online) The same as in Fig. 11 but witha
=0.5 andd=0.075.
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VI. SUMMARY AND CONCLUSION

In the present paper we have studied how statistical cor-
relations present in the base sequence of a DNA molecule
influence the process of unzipping. There were two related
motivations for our study. On the one hand, the existence of
these correlations — that can have both finite-range and
long-range character — is by now a well-established fact
[9–12]. It is, therefore, legitimate to study how they influ-
ence on the DNA physics. On the other hand, general quali-
tative predictions drawn on the above influence can be used
for explaining the reason of rich correlated structures found
in the base sequence of DNA. Recall that various segments
of a DNA molecule can have different — finite-range or
long-range[11,12] — correlation structures. Moreover, DNA
molecules belonging to different evolutionary classes have
different correlation properties of their base sequences[10].

The model we studied contains only the most minimal
number of ingredients needed to describe unzipping, and to
account for correlations in the base sequence of DNA. There-
fore, many realistic features of the unzipping process remain
beyond our study. We, nevertheless, believe that the obtained
results will be useful especially for drawing qualitative con-
clusions.

Let us now summarize our results starting from the finite-
range correlated situation. In Sec. III A we have shown that
the presence of a finite correlation lengtht plays a stabilizing
role for the unzipping process: for a fixed external forcef the
average number of broken base pairs decreases under in-
creasingt. If only finite-range correlations are present, the
process of unzipping does not depend much on the detailed
structure of the base sequence: all typical — i.e., frequently
met among all possible base sequences — scenarios of un-
zipping have the same qualitative pattern of behavior, that is,
the number of the broken base pairs diverges as the external
force approaches its critical value:f →0. This divergence
can be adequately understood by studying the average —
over all possible base sequences — number of broken base
pairs. All by all, one can say that the basic influence of finite-
range correlations is in stabilizing the DNA molecule with
respect to the external unzipping force.

The influence of long-range correlations is certainly more
drastical. Possibly the most important aspect is that the situ-
ation is essentially non-self-averaging: there are two radi-
cally different scenarios of typical unzipping which depend
on the detailed structure of the base sequence and which do
not coincide with the behavior averaged over all possible
base sequences. Within the first scenario, the number of bro-
ken base pairsXsfd shows as a function of the external force
f a sequence of sharp jumps at sequence-dependent values of
f. The overall number of jumps is nearly constant within the
class. Each jump has the magnitude comparable withL, that
is, under small change off a large number of base pairs can
be opened. The pointf =0 is special, sinceXs0d either coin-
cides withL or at least is very close to it. We argued in Sec.
V that it is sensible to describe this scenario as a sequence of
phase transitions. Such an effect is known from other disor-
dered or strongly frustrated systems[22,25].

The second typical scenario is crucially different. NowX
is a smooth, slowly changing function of the external forcef
in the whole relevant domain 0, f ,1. There is no sign of
phase transition, and the valuef =0 is not distinguished from
f .0 as far asX is concerned. DNA molecules which due to
the structure of their base sequence fall into this class are
thus rather stable with respect to the external unzipping
force.

It appears, interestingly enough, that the qualitative and
even some quantitative features of the long-range correlated
situation can be understood via the analytical solution of the
model with the totally correlated(frozen) noise, which we
presented in Sec. IV. In particular, this allows us to explain
why there exist two typical scenarios with widely different
behavior of the number of unzipped base pairs, and provides
rather robust analytical indications for the phenomenon of
non-self-averaging.

Summarizing features of these two scenarios, one can say
that long-range correlations increase the adaptability of the
corresponding DNA molecule, since in some typical sce-
narios it becomes more stable with respect to the force(any
sharp transition is absent), while in others the unzipping is
realized via a sequence of sharp phase transitions. The actual
scenario for a single molecule will crucially depend on the
detailed structure of the base sequence.

We also studied how the average numberkXl of unzipped
base pairs depends on the applied forcef. In contrast to

FIG. 13. (Color online) The same as in Fig. 11 but witha
=0.75 andd=0.08.

FIG. 14. dsad defined by Eq.(78) vs a.
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white-noise situation, where the behavior ofkXl for small
(that is, critical) forces f →0 is governed by a power law
kXl, f−2, we found numerically no indications of a power
law for small forces in the long-range correlated situation. In
contrast, the dependence ofkXsfdl on f for small f ’s is very
weak and to a large extent is governed bykXsf =0dl. The
latter quantity displays a power-law behavior(78) as a func-
tion of L. The region of validity of this power law appeared
to be unexpectedly wide.

We hope that these results will contribute to the under-
standing of the role and the purpose of correlation structures
in DNA.
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APPENDIX A: GENERATION OF THE LONG-RANGE
CORRELATED NOISE

Using ideas of Ref.[23] we shall here describe a method
for numerical generation of a Gaussian random noisehstd
with zero average and an arbitrary symmetric autocorrelation
function:

Kst − t8d = khstdhst8dl, sA1d

Kstd = Ks− td. sA2d

Assume that the noise is periodic with periodM:

hstd = hst + Md. sA3d

ThereforeKstd is also periodic with the same period and can
be expanded as

Kstd = o
n=−`

`

kne
−inv0t, v0 =

2p

M
, sA4d

wherekn is given by Fourier formula

kn =
1

M
E

−M/2

M/2

dtKstdeinv0t. sA5d

SinceKstd is a real and symmetric function,kn=kn
* =k−n, and

thus

kn =
2

M
E

0

M/2

dt Kstdcossnv0td. sA6d

It is now straightforward to see that the noiseh we are
looking for is represented as

h = o
n=−`

`

Îknhne
−inv0t, sA7d

wherehn are complex Gaussian random variables with

khnhml = dsn + md, sA8d

where ds0d=1 and dskd=0 for kÞ0. Indeed, oncehn are
assumed to be Gaussian,hstd is Gaussian as well; it is seen
as well that Eq.(A1) is valid. Complex random variableshn
can be conveniently expressed via real random variables:

hn =
1
Î2

san + ibnd for n ù 1, sA9d

hn =
1
Î2

san − ibnd for n ø − 1, sA10d

h0 = a0, sA11d

where quantitiesan and bn are independent, zero-average
Gaussian random variables normalized to one:

kakall = dkl, kbkbll = dkl, kakbll = 0. sA12d

Using this one writes

h = o
n=1

`

Î2knfancossnv0td + bnsinsnv0tdg + Îk0a0.

sA13d

Let us consider an example:

Kstd = s for t , 1

=
s

Ît
for t ù 1. sA14d

This represents a long-range correlated noise regularized for
small t. For this autocorrelation function the coefficientskn
read from Eq.(A6):

k0 = 2sS Î2
ÎM

−
1

M
D ,

kn =
s sinsnv0d

pn
+

2s

ÎnM
FFCsÎ2nd − FCS Î2n

ÎM/2
DG ,

sA15d

whereFCsxd is Fresnel’sC function:

FCsxd =E
0

x

dt cosSpt2

2
D . sA16d

Numerical implementation

Equataions(A13) and (A15) are sufficient for generating
long-range correlated, periodic Gaussian random noise.
However, for numerical implementations this noise has to be
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discretized. First we note that the above method produces
periodic random noise(with period M), while our problem
does not have any periodicity. Therefore, we have chosen
M =2L, and took discrete values oft=1,2, . . . ,L in Eq.
(A13), thereby generatingL long-range correlated random
numbers without any periodicity. Note that Eq.(A13) con-
tains infinity as the upper limit of the summation in its RHS.
For numerics this infinity should obviously be substituted by
some number larger thanL, and additionally one should
check that the situation is stable with respect to varying this
number. As for concrete calculations we have used, e.g.,L
=104, we found sufficient to take for this upper summation
limit 104.

Numerical simulations in Sec. V were performed by using
the Gaussian independent random variables generated by the
“gasdev” algorithm of Ref.[26]. The long-range correlated
noise was generated following the scheme proposed in this
appendix.

APPENDIX B: DERIVATION OF TWO ASYMPTOTIC
RELATIONS

Here we derive the following asymptotic identities used in
the main text:

E
a

` dj

Î2p
e−j2/2 =

e−a2/2

aÎ2p
S1 −

1

a2 + ¯D, a @ 1, sB1d

E
0

a

djej2/2 =E
0

a

djej2/2 =
ea2/2

a
S1 +

1

a2D + ¯ , a @ 1.

sB2d

The first one is easliy done via integration by parts:

E
a

` dj

Î2p
e−j2/2 = −E

a

` dfe−j2/2g
jÎ2p

=
e−a2/2

aÎ2p
+E

a

` dfe−j2/2g
j3Î2p

.

sB3d

For the second relation one notes that fora@1 the relevant
domain of integration isj,a. In more details,

E
0

a

dj ej2/2 = ea2/2E
0

`

dj e−aj+j2/2 =
ea2/2

a
E

0

a2

dy e−y+y2/s2a2d.

sB4d

Now one can expand inside of the second exponent in the
RHS of Eq.(B4), since the main contribution to the integral
comes fromy,0 (the other side, that is,y,a2, is strongly
suppressed as seen):

ea2/2

a
E

0

a2

dye−ay+y2/s2a2d =
ea2/2

a
E

0

a2

dy e−yS1 +
y2

2a2 + ¯D .

sB5d

Neglecting exponentially small terms, one gets get finally
Eq. (B2).
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