
AAPPS Bulletin  April 2007, Vol. 17, No. 2  21

Phase Statistics Approach to Physiological and 

Financial Time Series

Ming-Chya Wu*

Dynamical systems can usually be recorded by successive 
recording processes, and the characteristic behaviors are 
caught in corresponding time series. In this article, we 
review the phase statistics approach introduced recently 
to study physiological and financial time series. The ap-
proach consists of an application of the Hilbert-Huang 
transform to decompose an empirical time series into a 
number of intrinsic mode functions (IMFs), calculation 
of the instantaneous phase of the resultant IMFs, and the 
statistics of the instantaneous phase for each IMF. We 
consider cardiorespiratory synchronization and phase 
distribution and phase correlation of stock time series as 
examples. The applications to other time series are also 
briefly discussed.

1. INTRODUCTION
Dynamical systems can usually be recorded 
by successive recording processes, and the 
characteristic behaviors are caught in cor-
responding time series. Among others, most 
of the investigations of empirical time series 
focus on phenomenological interpretations, 
such that data processing methods play a 
crucial role in the obtained results. However, 
empirical data are usually noisy, nonlinear, 
and nonstationary. An essential task for such 
studies is to process signals and pickup es-
sential component(s) from experimental 
data. Even though proper filters can be used 
to filter out noises from real data, the capa-
bilities and the effectiveness of the filtration 
are usually questionable. This is due to the 
fact that most of these approaches require 
the original time series to be stationary 
and/or linear. Furthermore, there is also no 
strict criterion to judge what is the inherent 
dynamics and what is the contribution of the 
external factors and noise in experimental 
data. Improper approaches might then lead 
to misleading results.

In this article, we review the phase statis-
tics approach introduced recently to study 
physiological [1] and financial time series 
[2, 3, 4]. The approach mainly consists of 
an application of the Hilbert-Huang trans-
form (HHT) [5] to decompose an empiri-
cal time series into a number of intrinsic 
mode functions (IMFs), calculation of 
instantaneous phase of the resultant IMFs, 
and the statistics of the instantaneous phase 
for each IMF. The HHT was introduced 
by Huang et al. [5] for the analysis of 
nonlinear and nonstationary time series. It 
consists of the empirical mode decomposi-
tion (EMD) and Hilbert spectral analysis. 
Unlike conventional filters, the EMD 
method provides an effective way to extract 
physical rhythms from experimental data. 
This advantage provides reliable inter-
pretations from empirical time series. To 
illustrate the approach, here we consider 
cardiorespiratory synchronization (CS) and 
phase distribution and the phase correlation 
of stock time series as examples.
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2. THE HIBERT-HUANG TRANS-
FORM

The EMD of HHT is developed around the 
assumption that any time series consists of 
simple intrinsic modes of oscillations, and 
the essence of the method is to identify the 
intrinsic oscillatory modes by their charac-
teristic time scales in the data empirically 
and then decompose the data accordingly 
[5]. This is achieved by sifting data to 
generate IMFs. The IMFs introduced by 
the EMD are a set of well-behaved intrinsic 
modes and are symmetric with respect to 
the local mean and have the same numbers 
of zero crossings and extremes. Therefore, 
all IMFs enjoy good Hilbert transform. 
The algorithm to create IMFs in the EMD 
are rather simple, and has two main steps 
[1, 5]:
Step-1: Identify local extrema in the experi-
mental data {x(t)}. All the local maxima are 
connected by a cubic spline line U(t), which 
forms the upper envelope of the data. Repeat 
the same procedure for the local minima 
to produce the lower envelope L(t). Both 
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envelopes will cover all the data between 
them. The mean of upper envelope and 
lower envelope m1(t) is given by:

m1(t) =
U(t) + L(t)———–

2 . 
                               

 (1)

Subtracting the running mean m1(t) from 
the original time series x(t), we get the first 
component h1(t),

h1(t) = x(t) + m1(t).                                (2)

The resulting component h1(t) is an IMF if 
it is symmetric and has all maxima positive 
and all minima negative. An additional con-
dition of intermittence can be imposed here 
to sift out waveforms with certain range of 
intermittence for physical consideration. 
If h1(t) is not an IMF, the sifting process 
has to be repeated as many times as it is 
required to reduce the extracted signal to 
an IMF. In the subsequent sifting process 
steps, h1(t) is treated as the data to repeat 
steps mentioned above, 

h11(t) = h1(t) + m11(t).                 (3)

Again, if the function h11(t) does not yet 
satisfy criteria for IMF, the sifting process 
continues up to k times until some accept-
able tolerance is reached:

h1k(t) = h1(k-1)(t) — m11(t).                        (4)

Step-2: If the resulting time series is an 
IMF, it is designated as c1=h1k(t). The first 
IMF is then subtracted from the original 
data, and the difference r1 given by

r1(t) = x(t) — c1(t)                                (5)

is the residue. The residue  r1(t) is taken as 
if it were the original data, and we apply to 
it again the sifting process of Step-1.

   Following the procedures of Step-1 and 
Step-2, we continue the process to find 

more intrinsic modes ci until the last one. 
The final residue will be a constant or a 
monotonic function which represents the 
general trend of the time series. Finally, 
we obtain

x(t) =      ci(t) + rn ,∑
n

i=1
                             (6)

ri-1(t)—ci(t) = ri(t) .                                   (7)

The instantaneous phase of IMF can be 
calculated by applying the Hilbert trans-
form to each IMF, say the rth component 
cr(t). The procedures of the Hilbert trans-
form consist of calculation of the conjugate 
pair of cr(t), i.e.,

P∫–∞
+∞

π–
1

t — t’
—— dt’,
cr(t’) yr(t) = 

                     
(8)

where P indicates the Cauchy principal 
value. With this definition, two functions 
cr(t) and yr(t) forming a complex conjugate 
pair, define an analytic signal zr(t):

zr(t) = cr(t) + iyr(t) =
_
 Ar(t)e iør (t) ,               (9)

with amplitude Ar(t) and the instantaneous 
phase ør(t) defined by

Ar(t) = [cr
2(t) + yr

2(t)]1/2 ,                         (10)

ør(t) = tan -1 (  yr(t)
 cr(t)
–—

(

.
                             

(11)

Then, we can calculate the instantaneous 
phase according to Eqs. (8) and (11).

3. CARDIORESPIRATORY SYN-
CHRONIZATION

First, we present an application of the HHT 
to the study of CS [1]. CS is a phenomenon 
originating from the interactions between 
the cardiac and the respiratory subsystems. 
These interactions can lead to a perfect 
locking of their phases whereas their am-
plitudes remain chaotic and non-correlated 
[6]. The nature of the interactions has been 
extensively studied from measured data in 

recent years [7-15]. Recently, Schäfer et 
al. [16] and Rosenblum et al. [17] found 
that there were sufficiently long periods of 
hidden synchronization and concluded that 
the CS and respiratory sinus arrhythmia 
(RSA) are two competing factors in car-
diorespiratory interactions. Since then, CS 
has been reported in young healthy athletes 
[16], healthy adults [18-20], heart transplant 
patients [18, 21], infants [22], and anesthe-
tized rats [23]. The essential part of such 
investigations is the extraction of respira-
tory rhythms from noisy respiratory signals. 
A technical problem in the analysis of the 
respiratory signal then arises: insufficiently 
filtered signals may still have too many 
noises, and over-filtered signal may be too 
regular to lose the characteristics of respira-
tory rhythms. To overcome these difficulties, 
Wu and Hu [1] proposed using the HHT for 
such studies and got significantly reason-
able results. In the implement of EMD, Wu 
and Hu extracted respiratory rhythms from 
empirical data by using the number of respi-
ratory cycles per minute for human beings 
as a criterion in the sifting process of EMD 
[1]. They consider empirical data consist-
ing of 20 data sets collected by the Harvard 
medical school in 1994 [24]. Each data set 
included electrocardiographic (ECG) data 
and respiration signals. The continuous ECG 
and respiration data were digitized at 250 Hz 
(respiratory signals were latter preprocessed 
to be at 5 Hz). Each heartbeat was annotated 
using an automated arrhythmia detection 
algorithm, and each beat annotation was 
verified by visual inspection. Each group 
of subjects included equal numbers of men 
and women.

The procedures for the analysis are as fol-
lows [1]: (i) Apply the EMD to decompose 
the recorded data into several IMFs. Since 
the respiratory signal was preprocessed to 
a sampling rate of 5 Hz, there should be 
(10-30) data points in one respiratory cycle. 
Thus, for example, one can use c1: (3-6), c2: 
(6-12), c3: (12-24), .... etc. After the sifting 
processes of the EMD, the original respira-
tory data are decomposed into n IMFs c1, c2, 
... , cn, and a residue rn. (ii) Visually inspect 
the resulting IMFs. If the amplitude of a 
certain mode is dominant and the waveform 
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is well distributed, then the data are said to 
be well decomposed, and the decomposi-
tion is successfully completed. Otherwise, 
the decomposition may be inappropriate, 
and one has to repeat step (i) with different 
parameters. Fig. 1 shows a typical EMD for 
a respiratory time series. 

After picking up one IMF as the re-
spiratory rhythm, one can proceed in the 
calculation of the instantaneous phase and 
incorporating with heartbeat signals to 
construct cardiorespiratory synchrogram 
(CRS), which is a visual tool for inspect-
ing synchronization. More explicitly, let us 
denote the phase of the respiratory signal 
calculated by using Eq. (11) as ør and the 
heartbeat as øc. If the phases of respiratory 
signal ør and heartbeat øc are coupled in 
a fashion that a cardiovascular system 
completes n heartbeats in m respiratory 
cycles, then a roughly fixed relation can be 
proposed. In general, there is a phase and 
frequency locking condition [6, 17, 18]

ǀmør – nøcǀ ≤ const.                         (12)

with m, n integer. According to Eq. (12), 
for the case that ECG completes n cycles 
while the respiration completes m cycles, 
it is said to be synchronization of n cardiac 
cycles with m respiratory cycles. Using the 
heartbeat event time tk as the time frame, 
Eq. (12) implies the relation

ør(tk+m)–ør(tk) = 2πm.                          (13)

Furthermore, by defining

2π
––1Ψm(tk) = [ør(tk)mod2πm]               (14)

and plotting Ψm(tk) versus tk, synchroni-
zation will result in n horizontal lines in 
case of n:m synchronization. By choosing 
n adequately, a CRS can be developed for 

detecting CS [16].

Example of 3:1 synchronization with n=6 
and m=2 is shown in Fig. 2, where phase 
locking appears in several epochs, e.g. at 
2800-3600s, and there is also frequency 
locking, e.g. at 400s, near which there are n 
parallel lines with the same positive slope. 
Here we note that if we use other filters 
to the same empirical data, we will have 
different results depending on the strength 
of synchronization. Wu and Hu [1] found 
that from the aspect of data processing that 
could preserve the essential features of 
original empirical data, the EMD approach 
is better than Fourier-based filtering.

The same procedures and analysis can 
be applied to investigate the correlation 
and regularity of respiratory and cardiac 
signals. Due to the limited space, we will 
not discuss this further, but refer the reader 
to Ref. [1] for details and other demonstra-
tions.

4. STOCK TIME SERIES
As a second example, we present the ap-
plication of the phase statistics approach 
to the study of stock time series [2]. The 
analyses are based on the DJIA and the 
NASDAQ from the Trade and Quotation 
(TAQ) database [25]. The intraday 10-
minute scale values for both the DJIA and 
the NASDAQ spanning from August 1, 
1997, through December 31, 2003, cover 
the whole six-and-half hours trading from 
9:30 to 15:50 EST. Fig. 3 shows the DJIA 
and the NASDAQ index data from 1 Au-
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Fig. 1: Example of EMD for a typical respira-
tory time series. The criterion for intermittence 
in the sifting process is (3-6) data points per 
cycle for c1. Signal x(t) is decomposed into 14 
components including 13 IMFs and 1 residue; 
here, only the first 7 components are shown. 
After Ref. [1].

Fig. 2: CRS for a typical subject. There are about 
800s synchronization at 2800-3600s, and several 
spells of 50-300s at other time intervals. After 
Ref. [1].
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Fig. 3: DJIA and NASDAQ index data from 1 August 1997 to 31 December 2003.
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gust 1997 to 31 December 2003. 

In the study of financial time series, one 
generally uses the logarithmic return. For 
the index values denoted by a time series 
Y(t), the time series of logarithmic returns 
of an asset priced at Y(t) over a time scale 
τ is defined as

Rτ (t) = InY (t)—InY (t—τ) ,              (15)

where τ is a multiple of the primary time 
sampling unit ∆t (=10 min). Since the time 
scale τ (in unit of ∆t) is a parameter used to 
sample time series of returns, we can take 
different τ for Rτ(t) to explore behaviors 
of the returns with intraday frequency. 
Because there are 39 sampling data in each 
trading day, we take τ = 10, 30, 130, 390 
min to sample the time series of Rτ(t) for 
the intraday data.

The application of the phase statistics 
approach to investigate the return time 
series of the DJIA and the NASDAQ is 
based on the concept that the instantaneous 
phase can catch the characteristic features 
of a financial time series [2, 3, 4]. We first 
take the intraday returns Rτ(t) with a time 
sampling interval of 10 min as the primary 
time series and then perform the EMD to 
decompose Rτ(t) into 14 IMFs. The results 
are shown in Fig. 4(a). It is obvious that c1 

catches the main structures of Rτ(t) because 
the time series of Rτ(t) is mainly character-
ized by its highest frequency component. 
Similarly, we can perform the EMD on the 
time series with time sampling intervals 
of 30, 130, and 390 min. We define the 
probability density function (PDF) P as 
the normalized distribution of a measure 
p, which satisfies

                                                       
P(p) dp = 1 ,∫–∞

+∞

                                (16)

where the measure p can be Rτ, phase 
or phase difference defined in the later 
discussions. We find that except for 
the first-IMFs of these time series, the 

phases of the other IMFs are randomly 
distributed and have equal probabilities 
for all possible phases, i.e., –π ≤ ø1 ≤ π, 
as shown in Fig. 4(b). Figs. 5(a) and 5(b) 
show the amplitude and the phase distribu-
tions of the first-IMFs of these time series, 
respectively.

The PDFs of the amplitudes for the first-
IMFs are general Boltzmann distributions. 
Among these, the phase distribution is quite 
interesting. Most phases of the first-IMFs 
locate at – 0.5π ≤ ø1 ≤ 0.5π. The clustered 
distribution of phase originates from abrupt 
changes in the behaviors of the index time 
series, which is a nature of a time series 
with intermittency close to the sample 

Fig. 4: (a) Intraday DJIA 
index and the correspond-
ing return sampled by 10 
min and the first 3 IMFs; 
(b) probability distribution 
of phases. After Ref. [2].

Fig. 5: Probability distributions of (a) amplitudes and (b) phases for the first-IMFs of the returns of the 
DJIA index sampled by 10, 30, 130, and 390 min. After Ref. [2].
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time scale τ. These behaviors exist for all 
sample time scales of the intraday data. It is 
remarkable that the distributions of phases 
are the same in spite of the compositions of 
their stocks. This implies that it is a char-
acteristic behavior of such kinds of time 
series. For comparison, we calculate the 
phase distribution of a typical respiratory 
time series and compare the PDFs of phases 
for returns of the DJIA and the NASDAQ 
indices and for the respiratory time series in 
Fig. 6. From the results, it is apparent that 
the return time series and the respiratory 
time series belong to different classes.

To investigate the correlative behaviors 
between two stocks, we apply the HHT to 
calculate instantaneous phases of several 
epochs of the return time series of DJIA and 
NASDAQ indices. Here we further define 
phase differences of the first-IMFs for dif-
ferent indices. Taking DJIA as a reference, 
we define phase difference ∆ø1 as

∆ø1 = ø1(NASDQA) – ø1 (DJIA),        (17)

and then calculate PDFs for certain epoches 
and events. Fig. 7 shows the PDFs of phase 
differences between the first-IMFs of 
returns of the two indices for 1998-2002, 

Fig. 7: Probability distributions of phase dif-
ferences between the first-IMFs of returns of 
the DJIA and the NASDAQ indices for 1998-
2002 and for certain periods and events. After 
Ref. [2].

Fig. 6: Probability distributions of phases for 
the first-IMFs of the returns for the DJIA and 
the NASDAQ indices sampled by 10 min, and 
the third IMF of a typical respiratory time series. 
After Ref. [2].

the first half year of 1999 (indicated by 
1999a), the first half year of 2000 (indicated 
by 2000a), the last half years of 2001 and 
2002 (indicated by 2001b and 2002b, re-
spectively), and the whole year of 2003. We 
find that there is a remarkable change in the 
behavior of the trading activities both in the 
DJIA and the NASDAQ since 9/11 attack. 
More specifically, Fig. 7 shows that there 
were more correlative activities after 9/11 
so that the distribution functions of 2001b 
and 2002b were quite different from those 
before 9/11. There was a similar spectrum 
in the year 2003, implying the scenario 
persisted in later trading activities. This 
was seen as faster information transmission 
and stronger event dependence in the stock 
markets after 9/11 [2].

5. DISCUSSIONS
We have briefly explored the scheme of 
the phase statistics approach and its ap-
plications to the study CS and the analysis 
of stock time series. The remarkable ad-
vantage of the HHT used in this approach 
is that it can catch primary structures of 
intrinsic rhythms from empirical data based 
on its adaptive feature [5, 26]. This prop-
erty is especially suitable for performing 
phase statistics on empirical time series. 
By imposing intermittency criteria based 
on physical conditions revealed by empiri-

cal time series, this feature also allows us 
to effectively keep the signal structures. 
Furthermore, the introduction of IMFs in 
the EMD provides a reasonable definition 
of the instantaneous phase which is also 
helpful for the implement of phase statistics 
approach.
 

Recently, the phase approach has been 
successfully applied to the study of foreign 
exchange time series [3] and the identifica-
tion of fatal ventricular fibrillation (VF) 
from human ECG data [27]. Wu [3] found 
that the correlation between the USD/DEM 
and USD/JPY exchange rates was stronger 
during 1986-1989 than 1990-1993, which 
was consistent with the observations from 
cross-correlation calculation. The scenario 
was explained by event of unification of 
East Germany and West Germany and the 
era of bubble economy of Japan in early 
1990s [3]. Moreover, Wu et al. [27] ap-
plied the phase statistics approach to the 
investigations of human VF time series. 
By specifying phase distribution patterns 
for fatal and non-fatal VFs, they found 
fatal VF can be identified with a probability 
higher than 80% [27]. According to the 
impressive achievements of the applica-
tion of the phase statistics approach to time 
series analysis with the aid of the HHT, we 
expect that the approach presented herein 
also can be useful for statistical analysis 
of other time series, such as time series of 
temperature variation, seismic time series, 
biological systems [28], and other social 
models.
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