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In this paper, an approach we introduced recently to study physiological and financial time series
[Phys. Rev. E 73, 051917 (2006); Phys. Rev. E 73, 016118 (2006)] is reviewed. The approach
mainly consists of an application of the Hilbert-Huang method to decompose an empirical time
series into a number of intrinsic mode functions (IMFs), calculation of the instantaneous phase
of the resultant IMFs, and the statistics of the instantaneous phase for each IMF. To illustrate
the approach, we consider cardiorespiratory synchronization and the phase distribution and phase
correlation of financial time series as examples. The formulation of the approach is systematic and
can be applied to the analysis of other time series.
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I. INTRODUCTION

Dynamical systems can usually be recorded by a suc-
cessive recording processes, and the characteristic behav-
iors can be caught in corresponding time series. Some of
these time series are distinguishable by the character-
istic structures of their wave forms. For example, the
bursting features in seismic time series can be easily dis-
tinguished from the essentially regular waveforms of res-
piratory time series. For the investigations of empiri-
cal time series, some studies focus on phenomenologi-
cal interpretations. The data processing method plays
a crucial role in the obtained results. An essential task
for studies is to process such signals and pickup essen-
tial component(s) from experimental data. Even though
proper filters can be used to filter out noises from real
data, the capabilities and the effectiveness of the filtra-
tion are usually questionable. This is due to the fact
that most of these approaches require the original time
series to be stationary and/or linear. However, empirical
signals are usually noisy, nonlinear, and non-stationary.
Furthermore, there is also no strict criteria to judge what
is the inherent dynamics and what is the contribution of
the external factors and noise in experimental data. Im-
proper approaches might then lead to misleading results.

In this paper, we will review the phase statistics ap-
proach introduced recently to study physiological [1] and
financial time series [2]. The approach mainly consists of
application of the Hilbert-Huang method [3] to decom-
pose an empirical time series into a number of intrinsic
mode functions (IMFs), the calculation of instantaneous
phase of the resultant IMFs, and the statistics of the

∗E-mail: mcwu@phys.sinica.edu.tw

instantaneous phase for each IMF. The Hilbert-Huang
method introduced by Huang et al. [3] consists of the
empirical mode decomposition (EMD) and the Hilbert
spectral analysis. It was designated for the analysis of
nonlinear and non-stationary time series. Unlike con-
ventional filters, the EMD method provides an effective
way to extract physical rhythms from experimental data.
This advantage can, thus, provide a more reliable inter-
pretation from empirical time series. To illustrate the ap-
proach, here we consider cardiorespiratory synchroniza-
tion and phase distribution and the phase correlation of
financial time series as examples.

Cardiorespiratory synchronization is a phenomena
originating from the coupling between the cardiac and
the respiratory subsystems. The nature of the cou-
plings has been extensively studied from measured data
in recent years [4–13]. Recently, Schäfer et al. [14, 15]
and Rosenblum et al. [16] found that there were suffi-
ciently long periods of hidden synchronization and con-
cluded that the cardiorespiratory synchronization and
respiratory sinus arrhythmia (RSA) are two competing
factors in cardiorespiratory interactions. Up to now,
cardiorespiratory synchronization has been reported in
young healthy athletes [14, 15], healthy adults [17–19],
heart transplant patients [17,20], infants [21], and anes-
thetized rats [22]. Most of the studies support the ex-
istence of cardiorespiratory synchronization. The essen-
tial part of the investigation is the extraction of respira-
tory rhythms from noisy respiratory signals. A technical
problem in the analysis of the respiratory signal then
arises: insufficiently filtered signals may still have too
many noises, and over-filtered signal may be too regu-
lar to lose the characteristics of respiratory rhythms. To
overcome these difficulties, Wu and Hu [1] propose use-
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ing the Hilbert-Huang method for such studies and got
significantly reasonable results. In the first part of this
paper, we will review briefly the work of Wu and Hu [1].

As a second example, we will consider the application
of the EMD to the study of financial time series. Tra-
ditional analysis of financial systems is usually based on
fundamental statistics of return time series and tends to
address issues on drawing trading strategies for traders
and investors. With the power of new algorithms for sta-
tistical analysis, some previous studies have provided rich
information for such purposes [23]. However, previous
studies have also suffered from the limited scope provided
by the statistics of conventional derivatives from returns.
As a result, cross-disciplinary studies on financial sys-
tems have attracted much attention in recent decades
[24–28]. When considering the issue as a generic time
series analysis problem, there have been developments in
methodology [24,25,29], such as the method of random
matrix [24–26] and the wavelet transform modulus max-
ima approach [29–34]. The wavelet analysis has difficulty
with its non-adaptive nature, so once the basic wavelet is
selected, it is used to analyze all the data. However, some
wavelets are Fourier based, so they suffer the shortcom-
ing of Fourier spectral analysis for only giving a physical
meaningful interpretation to linear phenomena [3]. Nev-
ertheless, financial time series are nonlinear, so analyses
by using these approaches may lose information on the
nonlinear properties. In light of the above situation, Wu
et al. developed a new approach to study financial time
series [2, 35]. In their approach, the EMD was used to
define and evaluate the instantaneous phase of the time
series. Based on this method, Wu et al. studied the
returns of the Dow Jones Industrial Average 30 (DJIA)
and the NASDAQ stock indices to extract the character-
istic structures of the empirical data. The main issues
they addressed were the phase distribution of financial
time series and the phase correlation between two stocks
[2]. In the second part of this paper, we will then briefly
review the approach and discuss the new results they
obtained based on the approach.

The rest part of this part is organized as follows: In
Sec. II, we briefly introduce the Hilbert-Huang method.
In Sec. III, we apply the Hilbert-Huang method to the
study of cardiorespiratory synchronization. The applica-
tion of the same method to financial time series is pre-
sented in Sec. IV. Finally, we summarize our results in
Sec. V.

II. HILBERT-HUANG METHOD

As we mentioned above, the Hilbert-Huang method
consists of the EMD and the Hilbert spectral analysis.
The EMD method is developed from the assumption that
any time series consists of simple intrinsic modes of os-
cillation, and the essence of the method is to identify the
intrinsic oscillatory modes by their characteristic time

scales in the data empirically and then decompose the
data accordingly [3]. This is achieved by sifting data to
generate IMFs. The IMFs introduced by the EMD are a
set of well-behaved intrinsic modes, and these functions
satisfy the conditions that they are symmetric with re-
spect to the local zero mean and have the same numbers
of zero crossings and extremes. Therefore, the Hilbert
transform can be directly used to calculate the instanta-
neous phase after the decomposition processes. The al-
gorithm to create IMFs in the EMD has two main steps
[1,3]:

1. Step-1: First, the local extremes in the experimen-
tal respiratory time series data {x (t)} are identi-
fied. Then, all the local maxima are connected by
a cubic spline line U(t) while the same procedure is
applied for the local minima to produce the lower
envelope L(t). Both envelopes will cover all of the
original time series. The mean of upper envelope
and the lower envelope, m1 (t), given by

m1 (t) =
U (t) + L (t)

2
(1)

is a running mean. Subtracting the running mean
m1 (t) from the original time series x (t), we get the
first component h1 (t),

x (t)−m1 (t) = h1 (t) . (2)

The resulting component h1 (t) is an IMF if it sat-
isfies the following conditions: (i) h1 (t) is free of
riding waves. (ii) It displays symmetry of the up-
per and the lower envelopes with respect to zero.
(iii) The numbers of zero crossings and extremes
are the same, or only differ by 1. Beside these, an
additional condition based on the intermittence [1]
can be imposed here to sift out waveforms with a
certain range of intermittence for the purpose of
physical consideration. If h1 (t) is not an IMF, the
sifting process has to be repeated as many times
as is required to reduce the extracted signal to an
IMF.

In the subsequent sifting process steps, h1 (t) is
treated as the datum to repeat steps mentioned
above,

h1 (t)−m11 (t) = h11 (t) . (3)

Again, if the function h11 (t) does not yet satisfy
criteria (i)-(iii), the sifting process continues up to
k times until some acceptable tolerance is reached:

h1(k−1) (t)−m1k (t) = h1k (t) . (4)

2. Step-2: If the resulting time series is the first IMF,
it is designated as c1 = h1k (t). The first IMF is
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then subtracted from the original data, and the
difference r1 given by

x (t)− c1 (t) = r1 (t) , (5)

is the first residue. The residue r1 (t) is taken as if
it were the original data and is applied again the
sifting process of Step-1.

Following the above procedures of Step-1 and Step-2,
we continue the process to find more intrinsic modes ci

until the last one. The final residue will be a constant or
a monotonic function that represents the general trend
of the time series. Finally, we get

x (t) =
n∑

i=1

ci (t) + rn (t) , (6)

ri−1 (t)− ci (t) = ri (t) . (7)

Note that among these IMFs, the first IMF has the
highest oscillatory frequency, and in our practical EMD
process, there is a general relation of intermittence for
different modes:

τn = 2n−1 · τ1, (8)

where τn denotes the intermittence of the nth mode. In
other words, if c1 has an intermittence ranging from τ1

to 2 · τ1, then the cn mode has an intermittence ranging
from 2n−1 · τ1 to 2n · τ1.

The instantaneous phase of the resultant IMFs can
then be calculated by using the Hilbert transform. For
the kth mode, this can be done by first calculating the
conjugate pair of ck (t), i.e.,

yk (t) =
1
π

P

∫ ∞

−∞

ck (t′)
t− t′

dt′, (9)

where P indicates the Cauchy principal value. With this
definition, the two functions ck (t) and yk (t) forming a
complex conjugate pair define an analytic signal. Ac-
cordingly, we define

ck (t) + iyk (t) = Ak (t) eiφk(t), (10)

with the amplitude Ak (t) and the phase φk (t) defined
by

Ak (t) =
[
c2
k (t) + y2

k (t)
]1/2

, (11)

φk (t) = tan−1

(
yk (t)
ck (t)

)
. (12)

Then, we can calculate the instantaneous phase accord-
ing to Eqs. (9) and (12).

III. CARDIORESPIRATORY
SYNCHRONIZATION

In this section, we present an application of the
Hilbert-Huang method to the study of cardiorespiratory
synchronization [1]. Cardiorespiratory synchronization
is considered as a process of adjustment of rhythms due
to physiological interactions between the cardiac and the
respiratory subsystems. These interactions can lead to a
perfect locking of their phases whereas their amplitudes
remain chaotic and non-correlated [36].

For the study of cardiorespiratory synchronization, the
EMD is useful for the extraction of respiratory rhythms
from empirical data which usually has noise. This is
achieved by taking into account the physiological situ-
ation as the sifting process in the EMD is performed.
More specifically, the number of respiratory cycles per
minute for human beings is such a condition. The num-
ber of respirations of human beings has a rather wide
range; it is about 18 cycles per one minute for adults,
and about 26 cycles per one minute for children. For
different healthy states, the number of cycles may also
vary case by case. To include most of these possibili-
ties, one may take respiratory cycles ranging from 10 to
30 times per minute; each respiratory cycle then takes
roughly 2− 6 seconds.

The empirical data consisting of 20 data sets were col-
lected by the Harvard medical school in 1994 [37]. Each
data set included electrocardiographic (ECG) data and
respiration signals. The continuous ECG and respira-
tion data were digitized at 250 Hz (respiratory signals
were latter preprocessed to be at 5 Hz). Each heartbeat
was annotated using an automated arrhythmia detection
algorithm, and each beat annotation was verified by vi-
sual inspection. Among these, records f1y01, f1y02, · · ·
and f1y10 were obtained from ayoung cohort, and records
f1o01, f1o02, · · · and f1o10 were obtained from an elderly
cohort. Each group of subjects included equal numbers
of men and women.

The procedures for the analysis are as follows [1]: (i)
Apply the EMD to decompose the recorded data into
several IMFs. We use the time scale of the respiratory
cycle as the criteria in the sifting process. Since the
respiratory signal was preprocessed to a sampling rate
of 5 Hz, there are (10 − 30) data points in one cycle.
Then, for example, we can use c1 : (3− 6), c2 : (6− 12),
c3 : (12− 24), · · ·, etc. After the sifting processes of the
EMD, the original respiratory data are decomposed into
n empirical modes c1, c2, · · · , cn, and a residue rn. (ii)
Visually inspect the resulting IMFs decomposed by using
the EMD. If the amplitude of a certain mode is dominant
and the wave-form is well distributed, then the data are
said to be well decomposed, and the decomposition is
successfully completed. Otherwise, the decomposition
may be inappropriate, and we have to repeat step (i)
with different parameters. Fig. 1 shows a typical EMD
for a cardiorespiratory time series.

The physical meanings of IMFs can be understood
from their intermittencies. Here, we should note that
the variability of respiratory signals are substantially pre-
served in a certain IMF by using the property of an adap-
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Fig. 1. Example of EMD for a typical respiratory time
series data (code f1o01). The criteria for intermittence in the
sifting process is (3 − 6) data points per cycle for c1. Signal
x(t) is decomposed into 14 components including 13 IMFs
and 1 residue; here, only the first 7 components are shown.
After Ref. [1].

tive basis instead of the a-priori basis used in other meth-
ods, such as Fourier-based analysis and Wavelet methods
[3]. In other words, the frequency in the EMD method
is not global, but is local in time (i.e., time-dependent).
Here, we should emphasize that in the study, only one
IMF should be taken for the respiratory rhythm and that
any sum of a few of IMFs can not be used [1]. Therefore,
one should properly choose the intermittence such that
the respiratory time signal can be correctly gathered into
a single IMF.

Next, we construct the cardiorespiratory synchrogram
(CRS), which is a visual tool for inspecting synchroniza-
tion. Let us denote the phase of the respiratory signal
calculated by using Eq. (12) as φr and the heartbeat as
φc. If the two phases couple in a fashion that a cardio-
vascular system completes m heartbeats in n respiratory
cycles, then a roughly fixed relation can be proposed. In
general, there will be a phase-locking condition [14,15,
36]

|nφr −mφc| = const., (13)

with m and n being integer, or a weaker type of synchro-
nization named frequency locking [15,36],

|nφr −mφc| < const. (14)
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Fig. 2. Cardiorespiratory synchrogram for a typical sub-
ject (code f1o06). Empirical data are preprocessed by using
the EMD method. There is about an 800 sec synchronization
at 2800− 3600 sec, as well as several spells of 50− 300 sec at
other time intervals. After Ref. [1].

More precisely, frequency locking should be regarded as
modulation, not synchronization [15].

According to Eq. (13), when the ECG completes m
cycles while the respiration completes n cycles, synchro-
nization of m cardiac cycles with n respiratory cycles
occurs. If the heartbeat event time tk is the time frame
in which the length of the time intervals are not fixed,
but vary with the time, then Eq. (13) implies the relation

φr (tk+m)− φr (tk) = 2πn. (15)

Furthermore, by defining

Ψm (tk) =
1
2π

[φr (tk)mod 2πn] . (16)

and plotting Ψm (tk) versus tk, synchronization will re-
sult in n horizontal lines in case of n : m synchroniza-
tion. By choosing n adequately, a CRS can be developed
for detecting synchronization between the heartbeat and
respiration [14,15].

The example of 3 : 1 synchronization with n = 6 and
m = 2 is shown in Fig. 2, where phase locking appears
in several epochs, e.g., at 2800 ∼ 3600 sec. There is also
frequency locking, e.g., at 400 sec, near which there are n
parallel lines with the same positive slopes. Fig. 3 shows
a histogram of the phases for the phase-locking period
from 2800 to 3600 sec in Fig. 2. Significantly higher
distribution can be found at Ψ2 ≈ 0.25, 0.6, 0.9, 1.25, 1.6
and 1.9 in the unit of 2π, indicating that heartbeat events
occur roughly at these respiratory phase during this pe-
riod.

The same procedures and analysis can be applied to
all subjects. Due to the limited space, we will not discuss
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Fig. 3. Histogram of the phase for the phase locking period
from 2800 sec to 3600 sec for a typical subject (code f1o06)
shown in Fig. 2. After Ref. [1].
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Fig. 4. DJIA and NASDAQ index data from 1 August
1997 to 31 December 2003.

this further, but refer the reader to Ref. [1] for details
and other demonstrations.

IV. PHASE STATISTICS OF FINANCIAL
TIME SERIES

In this section, we present the application of the
Hilbert-Huang method to the study of financial time se-
ries [2,35]. The empirical analyses are based on the DJIA
and the NASDAQ from the Trade and Quotation (TAQ)
database and the Yahoo database [38]. The intraday
10-minute scale values for both the DJIA and the NAS-
DAQ spanning from August 1, 1997, through December
31, 2003, cover the whole six-and-half hours trading from
9 : 30 to 15 : 50 EST. Fig. 4 shows the DJIA and the
NASDAQ index data from 1 August 1997 to 31 Decem-
ber 2003.

In the study of financial time series, one usually uses
the logarithmic return. For the index values denoted by
a time series Y (t), the time series of logarithmic returns
of an asset priced at Y (t) over a time scale τ is defined
as

Rτ (t) = ln Y (t)− ln Y (t− τ), (17)
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Fig. 5. (a) Intraday DJIA index and the corresponding
return sampled by 10 minutes and the first 3 IMFs; (b) prob-
ability distribution of phases. After Ref. [2].

where τ is a multiple of the primary time sampling unit
∆t. Since the time scale τ (in unit of ∆t) is a parameter
used to sample the time series of returns, we can take
different τ for Rτ (t) to explore behaviors of the returns
with intraday and interday frequencies. Furthermore,
we define the probability distribution (or more precisely,
probability density function) P as the normalized distri-
bution of a measure ρ, which satisfies

∫ ∞

−∞
P (ρ) dρ = 1, (18)

where the measure ρ can be Rτ , the phase or phase dif-
ference defined in the later discussions.

The application of the phase statistics approach to
investigate the return time series of the DJIA and the
NASDAQ is based on the concept that the instanta-
neous phase can catch the characteristic features of a
financial time series [2, 35]. The idea originated from
the fact that the phases of a time series usually contain
rich information about the structures of the time series.
To faithfully extract information, the approach further
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Fig. 6. Probability distributions of (a) amplitudes and (b) phases for the first-IMFs of the returns of the DJIA index sampled
by 10, 30, 130, and 390 minutes. After Ref. [2].

applies the Hilbert-Huang method [3] to define and cal-
culate the instantaneous phase. Since a characteristic
intermittency in the trading time of a stock market is
indefinite, one cannot impose definite intermittencies in
the EMD. Hence, the structures of the time series with
primary time sampling intervals are closely preserved in
the first IMF.

We first take the intraday returns Rτ (t) with a time
sampling interval of 10 minutes as the primary time se-
ries and then perform the EMD to decompose Rτ (t) into
14 IMFs. The results are shown in Fig. 5(a). It is obvi-
ous that c1 catches the main structures of Rτ (t) because
the time series of Rτ (t) is mainly characterized by its
highest frequency component. Similarly, we can perform
the EMD on the time series with time sampling intervals
of 30, 130, and 390 minutes. We find that except for the
first-IMFs of these time series, the phases of the other
IMFs are randomly distributed and have equal probabili-
ties for all possible phases, i.e., −π ≤ φ ≤ π, as shown in
Fig. 5(b). Figs. 6(a) and 6(b) show the amplitude and
the phase distributions of the first-IMFs of these time
series, respectively.

The probability density functions of the amplitudes
for the first-IMFs are general Boltzmann distributions.
Among these, the phase distribution is quite interest-
ing. Most phases of the IMFs locate at −0.5π ≤ φ ≤
0.5π. The clustered distribution of phase originates from
abrupt changes in the behaviors of the index time series,
which is a nature of a time series with intermittency
close to the sample time scale τ . We find these behav-
iors exist for all sample time scales (time sampling in-
tervals of multiples of 10 minutes) of the intraday data.
The same analysis can be applied to the NASDAQ in-
dex time series. It is remarkable that the distributions
of phases are the same in spite of the compositions of
their stocks. This implies that it is a characteristic be-
havior of such kinds of time series. For comparison, we
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Fig. 7. Probability distributions of phases for the first-
IMFs of the returns for the DJIA and the NASDAQ indices
sampled by 10 minutes, and the third IMF of a typical respi-
ratory time series (f1o06). After Ref. [2].

calculate the phase distribution of a typical respiratory
time series (code: f1o06) and compare the probability
distributions of phases for returns of the DJIA and the
NASDAQ indices and for the respiratory time series in
Fig. 7. From the results, that the return time series and
the respiratory time series belong to different classes is
quite apparent.

In Fig. 4, the DJIA and the NASDAQ indices show
explicit correlations in several epoches. For example, two
indices decline in March of 2001 and abruptly decline in
September of 2001 due to 9/11 attack. These big changes
are in-phase. There are also out-of-phase changes, such
as those in the period from February to March of 2000. In
other periods, there are also similar behaviors on shorter
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Fig. 8. Probability distributions of phase differences be-
tween the first-IMFs of returns of the DJIA and the NASDAQ
indices for 1998-2002 and for certain periods and events. Af-
ter Ref. [2].

time scales. Therefore, in spite of the substantial differ-
ences between two markets in the definitions of the in-
dices and in compositions, there are correlative behaviors
between the two markets. More specifically, the DJIA is
a price-equally-weighted index while the NASDAQ is a
value-weighted index. Further, the stocks in the DJIA
are more stable and mature than those in the NASDAQ,
and the stocks in the NASDAQ are usually more ac-
tive than those in the DJIA. These differences generally
manifest themselves in the transaction volume and in re-
actions to events. Since the index simply represents an
average of the trading activities in a market, an inves-
tigation of the correlation between two indices is not a
comparison of the former which is more suitable by the
scaling analysis (see Ref. [1] for detail), but is associated
with the latter. We, thus, have to exclude the effect from
transaction volume. This can be achieved by using the
Hilbert transform. The phase variation of a time series
calculated by the Hilbert transform is equivalent to the
variations of the time series under amplitude normaliza-
tion.

To investigate the correlative behaviors between trad-
ing activities in the DJIA and the NASDAQ, we calcu-
late the instantaneous phases of several epoches of the
return time series of the DJIA and the NASDAQ indices.
To be statistical meaningful, each epoch will have more
than 3, 000 sampling points. Here, we define the phase
differences of the first-IMFs for different indices. Taking
the DJIA as a reference, we define the phase difference
∆φ1 as

∆φ1 = φ1(NASDAQ)− φ1(DJIA) (19)

and then calculate the probability distributions for cer-
tain epoches and events. Fig. 8 shows the probability

distributions of phase differences between the first-IMFs
of returns of the two indices for 1998 – 2002, the first half
year of 1999 (indicated by 1999a), the first half year of
2000 (indicated by 2000a), the last half years of 2001 and
2002 (indicated by 2001b and 2002b, respectively), and
the whole year of 2003. We find that there is a remark-
able change in the behavior of the trading activities both
in the DJIA and the NASDAQ since 9/11 attack. More
specifically, Fig. 8 shows that there were more correlative
activities after 9/11 so that the distribution functions of
2001b and 2002b were quite different from those before
9/11. Note that there was a similar spectrum in the
year 2003, which implies the scenario persisted in later
trading activities.

V. SUMMARY

We have briefly explored the scheme of the phase
statistics approach by introducing the Hilbert-Huang
method and its application to the study cardiorespira-
tory synchronization and the analysis of financial time
series. The remarkable advantage of the EMD method is
that it can catch primary structures of intrinsic rhythms
from empirical data based on its adaptive feature [39].
This property is especially suitable for performing phase
statistics on empirical time series. By imposing intermit-
tency criteria based on physiological conditions revealed
by empirical time series, this feature also allows us to
effectively keep the signal structures and avoid the in-
troduction of the artificial signals that easily appear in
the Fourier-based filters with a-priori bases that cannot
process properly variative intermittencies in a nonlinear
time series. Furthermore, the introduction of IMFs in
the EMD provides a reasonable definition of the instanta-
neous phase. This advantage is considered to be helpful
for drawing reliable conclusions from studies of empirical
data. From our results [1], we also found the existence
of cardiorespiratory synchronization with several locking
ratios occurring in several subjects as in Refs. [14,15].

Furthermore, we have also reviewed investigations of
phase distribution and the phase correlation of the DJIA
and the NASDAQ indices based on the paper of Ref. [2].
The EMD method was used to decompose the return
time series into several IMFs, and the Hilbert transform
was used to calculate the instantaneous phase of the first
three IMFs. We find that except for the first-IMFs of
these time series, which have phases mainly distributed
within the range of −0.5π ≤ φ ≤ 0.5π, the phases of
the other IMFs are randomly distributed and have equal
probabilities for all possible phases. This behavior ex-
ists in all sample time scales (time sampling intervals of
multiples of 10 minutes) of the intraday data. The phase
distributions corresponding to abruptly change behav-
iors indicate non-predictable and stochastic features of
the index. Furthermore, our results show that explicitly
the phase spectra of the return time series fall into a
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class different from other signals, such as a time series of
human respiration.

The investigations on the correlations between the
DJIA and the NASDAQ indices by using the phase dif-
ference for various epochs show a remarkable picture on
trading activities. The phase distribution between two
indices became closer after the event of 9/11. This im-
plies an explicit change in the behavior of trading activi-
ties of the DJIA and the NASDAQ after September 2001
[2]. A similar spectrum in the last half of 2002 and the
whole year of 2003 (Fig. 8) further implies the scenario
persisted in later trading activities. This was seen as
faster information transmission and stronger event de-
pendence in the stock markets after 9/11 [2]. Accord-
ing to the impressive achievements of the application of
the phase statistics approach to time series analysis with
the aid of the Hilbert-Huang method, we expect the ap-
proach presented herein to also be useful for statistical
analysis of other time series, such as time series of tem-
perature variation, seismic time series, and other social
models.
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