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The cluster formation of silver adatoms on carbon nanotubes (CNTS) is investigated to infer the curvature
effect on surface diffusion. By analyzing the cluster density as a function of the deposition time ¢ for different
diameters d,. of CNTs, we obtain the scaling form for describing the curvature effect on surface diffusion in the
first-order approximation. We find that the curvature effect on the surface diffusion can well be described by
using the relation between the deposition time ¢ and the scaled deposition time 7 in the form of 7~1d_*, with
z being the exponent characterizing geometric properties of CNTs and the nanotube helicity. The value of z for
the armchair-type CNT is larger than those for the zig-zag type and the chiral-type CNTs. The scaling form is
further demonstrated and verified by numerical simulations, and is explained by the two-dimensional random
walk model. Our study may provide a potential application of determining the armchair-type single-wall CNT

from measuring the value of z.
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I. INTRODUCTION

Surface diffusion of adatoms plays an important role in
the microscopic mechanism of many surface processes,'™
such as adsorption and desorption, surface reaction, and crys-
tal growth. Recently, the study of the growth of metallic
atoms on carbon nanotubes (CNTs)* has attracted consider-
able attention. One reason is its importance for the physics in
nanoscale, and the other is the possibility for the implemen-
tation of microdevices by CNTs. For the latter, deposition of
metallic atoms on CNTs has been a practical technique
widely used to design particular functions for certain pur-
poses. For example, nanoleads can be fabricated by deposit-
ing metallic atoms on the surface of CNTs with well-
controlled adsorption and migration processes.’ Adatom
diffusion is obviously of fundamental importance for such
systems.

The study of adatom diffusion on the surface of a CNT
involves the theory for interactions between adatom and car-
bon (C) atoms in the CNT, and requires the knowledge of
quantum physics and chemistry in atomic scale. However, it
can be simplified to classical level, provided that the system
is considered as simple motions of particles in an effective
potential established by the C atoms in the CNT. Due to bond
deformation, the curved surface of a CNT has properties
which are different from those of a flat, strain-free surface.®
It is thus expected to lead to adatom diffusion processes dif-
ferent from those of an adatom on a flat surface. Recently,
the importance of curvature effects on adsorption and migra-
tion of adatoms has been addressed and emphasized.®” How-
ever, little is known about how metallic atoms adsorb and
migrate over the surface of a CNT. As a result, even though
it is proposed that the curvature effect appears to be impor-
tant for adsorption and migration, there is still no empirical
evidence supporting the proposal.

In this paper, we report the curvature effect on the surface
diffusion of silver (Ag) adatoms on CNTSs from experimental
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and theoretical aspects. Based on the scaling analysis of em-
pirical data, we assume a scaling form for describing the
curvature effect on surface diffusion. The scaling form is
parameterized by two constants to be determined from ex-
periments. We then determine the parameters from fitting
empirical data and use them to demonstrate the cluster for-
mation of adatoms by numerical simulations to verify our
assumptions. The simulation results confirm that the scaling
form can well describe the curvature effect on the surface
diffusion of Ag atoms on CNTs. Furthermore, to have theo-
retical explanations on the scaling form, a simple derivation
of the scaling form is further provided by considering the
anisotropic two-dimensional random walk model. The model
heuristically explains the range of the scaling exponent in the
scaling form.

The paper is organized as follows. In Sec. II, we introduce
the experimental setup for performing the cluster formation
of Ag atoms on CNTs and present the experimental results.
The scaling analyses are discussed in detail in Sec. III, and
the numerical simulations are performed in Sec. IV. In Sec.
V, we further derive the scaling form by using the two-
dimensional random walk model. Finally, we conclude our
results in Sec. VI

II. EXPERIMENTS

In our experimental setup, Ag atoms from an electron-
beam evaporator are deposited onto the CNTs. An ultrahigh-
vacuum transmission electron microscope (UHV TEM,
JEOL JEM-2000V) is employed to in situ record the forma-
tion and growth of the Ag clusters. The base pressure of the
microscope is 2 X 1071° Torr and is under 6 X 10~'° Torr dur-
ing the Ag deposition. The CNT samples are suspended in
isopropyl alcohol and then dropped on the perforated C film
supported by the copper grid. The sample can be quickly
exchanged through a load-lock chamber gated with a valve
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FIG. 1. Sequential TEM images of the formation of Ag clusters on the CNTs at two different temperatures. Images in the top row were
taken at room temperature 296 K (heating current /,=0) and those in the bottom at 503 K (1,=0.17 A). From the left frame to right, the
images were taken with time at about 5, 15, 35, and 55 min after Ag deposition. The scale bars are 5 nm in length.

to the main chamber of the TEM. A charge-coupled device
(CCD) camera with one million pixels is operated at one
frame per second to capture the dynamic behavior of the
adsorbed Ag atoms and clusters. The CNTs can be heated by
passing an electric current through a metal coil installed in
the sample holder. The temperature of the corresponding
heating current is measured by a thermal couple at the
sample stage. However, the true temperature at the place
where the image is taken is likely higher due to the electron-
beam irradiation. Figure 1 shows typical sequential TEM im-
ages of the formation of Ag clusters on the CNTs at two
different temperatures.

To describe the behaviors of the cluster formation of Ag
adatoms, we define the cluster density 7 as

N

= 1
iy (1)

where N is the number of clusters on the surface of the CNT
with diameter d.. and length® [ in the unit of nanometer (nm).
The cluster density # is a function of the deposition time ¢,
the curvature (R) of a CNT,” and the diffusion rate (p) of Ag
adatoms. Here, the diffusion rate p is related to the tempera-
ture of adatoms heated by the electric current [,. Further-
more, the curvature R is defined by6

(o

d b}

Cc

R= (2)

where o is a parameter describing the radius of the interac-
tion between the adatom and the C atoms in the CNT. Thus,
the curvature R explicitly enters into the function of 7 via d,.

The specifications of the CNTs and experimental settings
used in the experiments, and the corresponding derivatives,
are listed in Table I. The relation between [, and T is roughly
linear and can be described by T=296+12171,. The experi-
mental results for the cluster density as a function of the
deposition time are shown in Fig. 2. The curves of Fig. 2(a)
illustrate the cluster density # as a function of 7 for different
d,, and those shown in Fig. 2(b) illustrate the same but are
for different d., and I,,. In Fig. 2(a), there are two groups, one
with a shorter deposition time (<30 min) and the other with
a longer deposition time (#>50 min). The curve of graphite
is included for comparison. All the curves in Fig. 2(b) were
recorded for #>50 min with the CNTs heated by the speci-
fied current.

III. SCALING ANALYSIS FOR THE CURVATURE EFFECT

According to the behaviors of 7 shown in Figs. 2(a) and
2(b), we propose that 7 can be written as 7= 7(¢,R,p). The
cluster density 7 saturates at 7, after a characteristic thresh-
old of the deposition time z,(R, p). The curves shown in Figs.
2(a) and 2(b) can be generally described by three stages. In
the first stage with r<<r,, Ag atoms fall on the surface of a
CNT and diffuse in a limited degree of freedom defined by
the structure of CNT.% As two or more Ag adatoms move to
be the nearest neighbors, they form a cluster and immobilize
when the cluster is large enough. Therefore, the number of
clusters increases with time before r<<t,. This stage is known
as nucleation. In the second stage known as growth, the clus-
ter density saturates, and the nucleation and combination en-
ter into the equilibrium state, i.e., the number of clusters is
roughly kept constant in average, and the cluster size grows.
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TABLE 1. Specifications of the CNTs and settings used in the experiments, where d.. is the diameter of
CNT, [ is the length, n is the number of layers of C atoms, { is the aspect ratio defined as {=md.//, R is the
curvature, I, is the electric current for heating, T is the temperature, and z is the exponent defined in Eq. (6).

d,. (nm) [ (nm) n 4 R/o I, (A) T (K) z
3.46 21.39 4 0.508 0.289 0 296 0.50
4.28 20.21 4 0.665 0.234 0 296 0.50
5.45 30.50 7 0.561 0.183 0 296 0.75
10.40 26.72 13 1.223 0.096 0 296 0.50
13.13 25.47 20 1.620 0.076 0 296 0.50
16.25 14.05 22 3.634 0.062 0 296 0.50
8.13 16.58 10 1.540 0.123 0.10 413 0.75
9.25 22.04 12 1.318 0.108 0.15 478 0.75
10.30 16.72 12 1.935 0.097 0.07 383 0.50
10.40 15.21 14 2.148 0.096 0.17 503 1.00
11.16 17.43 16 2.011 0.090 0.12 443 0.50

The third stage known as ripening starts when 7 starts to
decline gently. In this stage, the average cluster sizes reach a
critical value, and the effect of combination of two or more
clusters into a larger cluster dominates.

Recently, theoretical studies showed that curvatures and
helicities (chiralities) significantly affect the diffusion of ada-
toms on the surfaces of CNTs.® The general picture is that
positive curvature increases the diffusion barrier and corru-
gates the potential energy surface. Theoretical calculations
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FIG. 2. (Color online) Cluster density 7 as a function of ¢ for (a)
different d,. and 1,=0, and (b) different d.. and I, # 0. The curve of
graphite shown in (a) is for comparison.

show that the migration barriers of Ag atoms on CNTs is
0.2-0.3 eV.? The helicity also plays an important role on the
diffusion path, and different types of CNTs have different
diffusion paths.® To understand the roles the curvature effect
and helicity play in our empirical observations, here we use
the scaling analysis. The analysis relies on the assumption
that if the curvature effects can be described by scaling in a
proper way, the curves in Fig. 2 will roughly collapse into a
single curve when we plot scaled 7 as a function of a scaled
deposition time 7. For this purpose, we take 7/ 7 as scaled 7
and use the geometric property of CNTs to define 7and have

n(t.R,p)

7= (7.p). (3)

It has been well known that structures of CNTs can be
classified into the zig-zag, armchair, and chiral forms, as
shown in Figs. 3(a)-3(c), respectively. There is still a lack of

FIG. 3. (Color online) Schematic drawing for typical honey-
comb structures of (a) the zig-zag type (a connects to b), (b) the
armchair-type (a connects to b), and (c) the chiral-type (a’ connects
to b) CNTs. (d) The relation between components of the diffusion
rate and the orientation of the CNT.
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control over the helicities at the growth stage of CNTs, and
there is no practical approach available for determining the
helicity y of a multiwall CNT. We thus do not know the
helicities of the CNTs used in our experiments.

Since 7 depends on the diffusion rate p, we first analyze
the dependence of p on geometry of CNTs, represented by R
and 7y, and applied current 7,. We take a vector form of
diffusion rate

5(7aR’Ih)=pi(’yaRth)é+pH(’y’R’Ih)JA.’ (4)

where the coordinate is defined according to the orientation
of a CNT [along the y direction, as shown in Fig. 3(d)], such

that 6 and j are unit vectors of the azimuthal angle and axial
component, respectively. The ratio between p, and p, in Eq.
(4) is generally determined by the structure of the CNT. Ac-
cording to studies of Shu and Gong° p, is zero for the
armchair-type CNT if the thermal energy of the adatom is
lower than the axial energy barrier. For the case of the zig-
zag type CNT, the ratio between p, and p, is nonzero and of
the order of unity. Since the curvature effect enhances the
energy barrier,® the dependence of p on R is stronger in the
armchair-type CNT than in the zig-zag type CNT.

As the current /), is applied to the system, the temperature
T of the system is increased and the diffusion rate p also
increases. We find that the relation between T and [, in our
system is roughly linear within the temperature range of ex-
periments. Hence, we assume a linear relation!® between the
increment of diffusion rate (Ap) and [, i.e.,

Apoclh' (5)

In critical lattice systems,” the linear dimension of the
system has been used to define the scaling variable.'?"!>
Since the lengths of CNTs are usually ambiguous,® the most
relevant linear dimension of a CNT is its diameter d.. Under
the condition of constant flux of Ag atoms falling on the
surfaces of CNTs in the experiments and Eq. (5), Eq. (4) can
be explicitly expressed as

p(v.R.I,) = po(1 + FiI)[d26+ a()]], (6)

where p, and F; are constants, z is the exponent for the
dependence of the diffusion on d,, and =0 for the armchair-
type CNT and a# 0 for the zig-zag and chiral-type CNTs.
Wang and Hu'3 had defined the scaling variable for the dy-
namic lattice Ising model as L7, where ¢ is time, L is the
linear dimension of the lattice, and z is the dynamic critical
exponent.'® Thus, Eq. (6) suggests that we can define the
scaled deposition time 7 as

T= F2(1 +F1]h)td;z. (7)

Here F), is a constant related to p, and the flux of Ag atoms
and can be set to be 1. Consequently, there is only one pa-
rameter (z) to be determined in the case of 1,=0, and two
parameters (F; and z) in the case of I, # 0. According to the
experimental data, the order of F; should be taken as O(0.01)
to have the best scaling. Accordingly, in the following, we
will take F;=0.01. Equation (7) implies that the threshold of
the deposition time #,(R,p) can be written as
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FIG. 4. (Color online) The normalized cluster density 7 as (a) a
function of 7and d,, and (b) a function of 7, d., and I,,.

t(R,p) o« (1 + F,1,)"'d>7(R, p). (8)

The normalized cluster density 7 as a function of 7 for
different d,. are shown in Fig. 4(a), and the values of z used
are listed in Table I. The CNT with the diameter of d,
=5.45 nm has a distinct z of 0.75 and is likely an armchair-
type CNT, which will be discussed further below. The results
of Fig. 4(a) are impressive since all data roughly collapse
into a curve. Because the realizations in Fig. 4(a) are non-
self-averaging, the small deviations can be considered as be-
ing originated from different types (structures) of CNTs. For
example, different helicities lead to different diffusion paths,
which in turn set different restrictions to cluster formations.
This feature will be examined later by numerical simulations.
The common behavior for the curves in Fig. 4(a) is that the
normalized cluster density, 7, starts from zero at 7=0 to the
saturated density, 77=1, at 7= 5. The saturation extends from
7=5 to 7=~ 10, and then 7 starts to decline gently. The single
curve for different d, in Fig. 4(a) implies the curvature effect
can be substantially described by the relations formulated in
Eqgs. (6) and (7).

We further apply the scaling analysis to the case of I,
#0, and the results are shown in Fig. 4(b). The values of z
for different realizations are listed in Table I. The larger
value of z for I, # 0 implies a smaller ratio of p;/p, at higher
temperatures. This could be due to the effect that higher tem-
perature anisotropically enhances the surface diffusion. As a
result, the curvature effect may be further overestimated and
the value of z becomes larger. This implies Egs. (6) and (7)
with z—% are applicable only for the case with small 7.
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Further, we find that % for small 7, (<0.15 A) generally
follows a similar path with significant fluctuations in com-
parison with those with zero I;,. However, the trend of 7 for
large I, (>0.15 A) can be very different from those with
small and zero [,. This indicates that there is a critical elec-
tric current (temperature) for the surface diffusion. When an
electric current exceeding the critical value is applied, the
adsorption becomes loose such that a cluster can continue to
move even with a large cluster size (see the bottom images
of Fig. 1), and the diffusion path becomes more free. This
effect finally leads to an unusually large (overestimated)
value of z(=1). Here we should note that the realizations with
zero and nonzero [, were regarded as different groups, and
the time scale in Fig. 4(b) has been rescaled with different
parameters from that in Fig. 4(a). Thus the profiles in Figs.
4(a) and 4(b) can be different.

IV. NUMERICAL SIMULATIONS

Next, we simulate the cluster formations on CNTs based
on the assumptions that the adsorption is uniform, and ad-
sorbed atoms can diffuse freely in specified directions before
forming clusters. To take the structures of CNTs into ac-
count, we consider the diffusion direction and diffusion rate
as control parameters and take the periodic boundary condi-

tions in the @ direction. In short, the cluster formation is
described by the following model. We first take the diameter
ro of an Ag atom (about 2 A) as a basic unit and set ro=1;
thus, 1 nm allows 5 Ag atoms in a row. The surface of a
CNT is mapped to a planar lattice with size Smd.X 5] to
make the lattice size in simulation consistent with real CNTs.
The process of the constant flux of Ag atoms randomly fall-
ing on the plane is simulated by the constant rate (number
per unit time) of Ag atoms being generated on the surface.

According to the theoretical studies of Krasheninnikov et
al.” and Durgun et al.,” the most favorable binding site for
adatoms depends on the adatom and the type of CNTs. How-
ever, there is as yet no experimental evidence for the favor-
able binding sites of Ag atoms on CNTs.!” In the case that an
Ag adatom favorably locates at the center of the honeycomb
lattice, the “sites” which Ag atoms adsorb form a triangular
lattice. On the other hand, if an adatom will locate at one of
the middle of the six honeycomb bridges, then the sites form
a honeycomb lattice. In the latter case, the radius of the Ag
atom excludes the possibility of two Ag atoms locating at
adjacent bridges. As one Ag atom adsorbs at one bridge, the
nearest four bridges cannot be occupied by other atoms.
Therefore, an additional rule for the diffusion path should be
imposed in this case for each adatom to check the next site
where it can move. This leads to a complicated situation for
various possibilities. In order to catch essential features of
the cluster formation, here we will simply consider deposi-
tion and diffusion of Ag atoms on a square lattice.

In our simulation, the deposition time ¢ is proportional to
the number of steps in the algorithm. Thus, we control both
the falling rate of Ag atoms and the diffusion rate of Ag
adatoms. The simulation consists of two steps:

1. At time #;, n, Ag adatoms are generated and distributed
randomly on the lattice.
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2. At time f;,, an adatom can diffuse in four directions
with equal probability in the zig-zag type CNT, with non-
equal probability in the chiral-type CNT, and can only dif-
fuse along the circumference with equal probability in the
armchair-type CNT. The diffusion rate in the simulation
should follow Eq. (6) to take into account the curvature ef-
fect which appears as d.° in p. When two adatoms (or one
adatom and one cluster) with radii r; and r,, respectively,
contact within a distance smaller than (r;+r,) or overlap,
they coalesce with mass conservation to form a cluster (or
merge with a larger cluster) with a radius r=(r4+74)"¢, with
d being the effective dimension of the cluster.'® Later, the
cluster will be regarded as a new individual in the next simu-
lation step. All adatoms update once in this step. This step
repeats m times until time ¢;,,,.

At time t,,,,,, step 1 is repeated and n, Ag adatoms are
generated again on the lattice and the simulation repeats step
2. Such processes are iterated until the required number of
iterations is reached.

The effective dimension d is generally compared with the
spacial dimension D. When d<D, we have r= (r’lj+ rzD)”D,
and a single cluster forms and extends across the entire sys-
tem in a finite time. This situation is similar to percolation
and gelation phenomena. For the case of d>D, we have r
< (r?+rD)""P and there is no gelation in a finite time and the
growth proceeds much in the same manner as in low-density
colloidal aggregation. Since the experimental condition un-
der consideration corresponds to d=3 and D=2, our simula-
tion should exhibit a scenario similar to the case of d> D.

The number of clusters is monitored at each time step.
Finally, we get the number of clusters as a function of the
simulation time. By adjusting these control parameters for
the case of 1,=0, the curve of a typical realization obtained
from simulations can fit experimental results well, as shown
in Fig. 4(a). The falling rate (n,/m) used in the simulation is
four atoms (n,=4) per hundred simulation steps (m=100),
the system size is 86X 153 (roughly in the scale of 5md,
X51), pp=10, a=1, and d.=5.45 are taken, and a cluster
with two Ag atoms cannot move. The value of F' 2=% is used
in Eq. (7) to correct the selected value of p, to have a better
fitting. Similarly, we can simulate a realization with F;
=0.01 to fit the cases with nonzero [,, and the results are
shown in Fig. 4(b).

To demonstrate our model quantitatively, we further simu-
late realizations by Eq. (6) with predetermined parameters
for different d. and [ which are compatible with the specifi-
cations of the CNTs used in experiments (but z=% is as-
sumed for all realizations), and the results are shown in Fig.
5(a). Similarly, we simulate the situations with nonzero I,
and F,=0.01, and the results are shown in Fig. 5(b). The
significant agreement between experimental results and
simulations implies that the picture we proposed catches the
essential factors in the cluster formation of Ag adatoms on
CNTs.

As mentioned above, the value of z also characterizes the
geometric properties (e.g., helicity) of CNTs. In order to
have more insight into the effect of helicity and to verify the
scaling form of Eq. (7), we further keep |p|=10 and take
different values of p’=p,/p, in Eq. (4) for the simulations of
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FIG. 5. (Color online) Simulations for (a) 7,=0 and (b) I, # 0.
The same specifications of the CNTs as those in experiments (see
Table I) and z=0.5 have been used in these simulations.

the cases with I,=0. From our analysis, different values of p’
correspond to different types of CNTs. For instance, p’'=0
corresponds to the armchair-type CNT. Thus, simulations us-
ing Eq. (4) with different p’ in simulations resemble real
experiments for different types of CNTs. Except for using
Eq. (4) instead of Eq. (6), we use the same simulation algo-
rithm disclosed above. The parameters used here are also the
constant falling rate of four atoms per area per 100 simula-
tion steps on a lattice with size 86X 153, and (p,,p)
=(10,0),(10,1),(9,4),(7,7) for p’'=0,0.1,0.45,1. More
specifically, an Ag atom can either move p, sites in +6 di-
rections or py sites in +/ directions with a probability gener-
ated by computers in one simulation step. Note that under the
conditions of constant falling rate of Ag atoms and p; and p |
being smaller than the lattice size, the choice of other lattice
sizes does not alter the results. We first use z=% in 7 for all
p’ in the scaling analysis, and the results are shown in Fig.
6(a). The deviations of four curves in the range of 7<<10
demonstrate the effects of p,/p, originated from the nano-
tube helicity. According to the scaling analysis presented
above, we can take different values of z for different p’ to
compensate these effects. We then adjust the values of z in 7
to make the four curves collapse, and the results are shown in
Fig. 6(b). The remarkable coincidence of the four curves
indicates the effect of p;/p, which plays a crucial role dur-
ing the nucleation and growth stages in the case of 1,=0, can
well be described by the exponent z. It follows that the scal-
ing form in Eq. (7) is verified. Furthermore, the curve with
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FIG. 6. (Color online) Simulations for different p’'=p;/p, ra-
tios, and 7 is rescaled with (a) z=0.5 for all p’, and (b) z=0.75 for
p'=0, z=0.7 for p’=0.1, z=0.5 for p’=0.45, and z=0.5 for p’
=1.0.

p'=0 is rescaled with the largest value of z. Since p’'=0
corresponds to the armchair-type CNT, this implies that from
comparing the value of z the armchair-type CNT is distin-
guishable from the zig-zag and chiral-type CNTs. This pro-
vides a potential application of this study that one can deter-
mine the armchair-type CNT from measuring the value of z.

V. RANDOM WALK ANALYSIS

In light of the simulations in Sec. IV, a simple derivation
for the exponent z is available from considering the aniso-
tropic two-dimensional random walk model.'® Since the cur-
vature effect and nanotube helicity can be considered as an-
isotropic controls on the diffusion rate, we assume the step

lengths are p; in the +] directions and p | in the +0 directions
in the random walk. After ¢ steps, we get a sum of 7 two-
dimensional vectors with random orientations in a plane. The
average of the final position r after ¢ steps is>°

(r?) = t\p? + i ©)
The root-mean-square distance after ¢ steps is thus
|r|rms=tl/2(pi +pﬁ)1/4- (10)

The scaling analysis essentially corresponds to the consider-

ation of a walk with unit step length. Therefore, we compare

Eq. (10) and that for the isotropic case with the unit step
= [, 2.

length p (=Vp7 +pj is assumed here) and 7 steps. The con-

125424-6



CURVATURE EFFECT ON THE SURFACE DIFFUSION...

dition for two walks to reach the same position r is

70~ t(p7 +p))'". (11)
Thus we have
2, 2\12 v
+
T~t<—pi_2p“> ~r<’%> : (12)
p p
. In(1+pf/p?) Lo
with v=1+ BT It follows that we have 5 =v=1 for p,

ranging from p;=p, to p,=0. This relation holds for the ran-
dom walk of a free particle. This is generally not true for our
case in which an adatom cannot continue to “walk” after it
becomes part of a cluster. The real situation is that some
atoms form clusters as they deposit on the surface, and others
diffuse for a significantly long time. Since we are consider-
ing an average effect, Eq. (12) should be replaced by an
ensemble average. As a result, we have

r=t<@)v=t<p%)z~tajz. (13)
p p

Since p, >(p, ), we have z<w. The average effect quantita-
tively reduces and sets an upper bound to the value of z, and
we finally have %s z<1. From simulations (see Fig. 6), we
find that the upper bound is about 0.75, which is consistent
with experimental results for 7,=0 and small I, (see Table I).
For large I, clusters continue to diffuse and the upper bound
is close to 1. Consequently, the formations of clusters gener-
ally perturb the behaviors of a random walk, but character-
istic features of the two-dimensional random walk model can
still provide a consistent picture for surface diffusion in the
cluster formation of adatoms on CNTs.

VI. DISCUSSION

In conclusion, we have investigated the curvature effect
on the surface diffusion of Ag adatoms on CNTs. We first set
up an experiment for depositing Ag atoms on CNTs to ob-
serve the behaviors of the cluster formation of Ag adatoms.
The flux of Ag atoms was kept constant in the experiment to
exclude the existence of the finite-size effect. Based on the
analysis of the cluster density as a function of the deposition
time for different diameters of CNTs, the scaling form of Eq.
(7) was derived to describe the curvature effect on surface
diffusion in the first-order approximation. By using the nu-
merical simulations, the scaling form is further verified to be

PHYSICAL REVIEW B 74, 125424 (2006)

true. Consequently, we conclude that the curvature effect on
surface diffusion can be described by the relation between
the deposition time 7 and the scaled deposition time 7 in the
form of 7~1td_* with the exponent z for characterizing geo-
metric properties of CNTs and the nanotube helicity. The
value of z is determined from empirical data and it ranges
from 0.5 to 0.75 for the case of 7,=0 in this work. For the
case I, # 0, the value of z determined from the scaling form
is essentially overestimated for large /,’s and it ranges from
0.5 to 1.0. The scaling form and the value of the exponent z
can be explained from the consideration of the anisotropic
two-dimensional random walk model.

In our simulation, the square lattice has been used for
simplicity, instead of using the triangular or honeycomb lat-
tice which is closer to a real situation. It is considered that
simulations on triangular and honeycomb lattices may pro-
vide improvements in the demonstration, but the final con-
clusion does not change since the diffusion rate p has been
generalized as two components in our simplified version.
The present work mainly provides a simple exploration on
the curvature effect on surface diffusion, a thorough investi-
gation based on more realistic lattices will be reported else-
where.

The CNTs used in our study are multiwall CNTs, but we
expect the experiment and analysis can also be performed on
single-wall CNTs. It follows that the current work also in-
spires further studies on the detection of the nanotube helic-
ity. For example, depending on its helicity, the single-wall
CNT can be either metallic or semiconducting. However, the
armchair-type single-wall CNT is always metallic. Since the
analysis of the curvature effect in this work implies stronger
dependence of curvature effect for the armchair-type CNT
from the value of z, it will be useful to develop a practical
scheme to test the prediction our work offers. We are work-
ing in this direction and will report the further results in a
future paper.
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