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Abstract

Correlation of foreign exchange rates in currency markets is investigated based on the empirical data of USD/DEM and
USD/JPY exchange rates for a period from February 1 1986 to December 31 1996. The return of exchange time series is
first decomposed into a number of intrinsic mode functions (IMFs) by the empirical mode decomposition method. The
instantaneous phases of the resultant IMFs calculated by the Hilbert transform are then used to characterize the behaviors
of pricing transmissions, and the correlation is probed by measuring the phase differences between two IMFs in the same
order. From the distribution of phase differences, our results show explicitly that the correlations are stronger in daily time
scale than in longer time scales. The demonstration for the correlations in periods of 1986—-1989 and 1990-1993 indicates
two exchange rates in the former period were more correlated than in the latter period. The result is consistent with the
observations from the cross-correlation calculation.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Financial markets are complex systems consisting of a large number of traders, institutions, and regulatory
agents interact one another on the basis of market information to determine asset prices. Traditional studies of
financial systems relies heavily on economic fundamentals such as dividend yield, long-short interest rate
spreads, risk, book value, etc, and tend to address issues on drawing trading strategies for traders and
investors. With the increase of knowledge on financial systems and developments of new algorithms for
statistical analysis, some previous studies have provided rich information for such purposes [1].

However, previous studies have also suffered by a limit of scope from the statistics of return and its derivatives.
As a result, cross disciplinary studies on financial systems have attracted much attention in recent decades [2-7].
With the aid of ideas and techniques from other fields, there have been significant advancements on the studies of
economy science. One of great achievements has been the applications of statistical mechanics to economic
systems, which has been later referred to econophysics [5]. Some correspondences between quantities in economic
systems and physical systems were found, and knowledge in physics such as phase transitions in criticality [§],
finite-size scaling theory [2,5,6], etc, were suggested to be fundamental concepts behind.
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There are also developments on the analysis of financial time series in methodology [3,4,9]. For example, the
method of random matrix theory has been developed to study statistical structure of multivariate time series
[3.4], and given remarkable agreement between theoretical prediction and empirical data [3,7]. Furthermore,
the wavelet transform modulus maxima approach [10] has been applied to study non-stationary time series
such as physiologic systems [11-14] and economic systems [9]. Quite recently, Wu et al. proposed a new
approach to study stock time series [15]. The approach was based on the concept of instantaneous phase
defined from the return time series can catch the characteristic structures of financial time series [15]. To
implement the proposal, the Hilbert—Huang time signal analysis method [16] was used to define and evaluate
instantaneous phase of return time series. Based on the investigations of phase distribution and phase
correlation of the so-called intrinsic mode functions (IMFs), Wu et al. concluded that the return time series fall
into a class which is different from other non-stationary time series, and the statistics of phase differences
further provided useful observations on the trading activities in Dow-Jones and NASDAQ stock markets.

In this paper, we will follow the approach proposed in Ref. [15] to study correlation of foreign exchange
time series. We use the empirical data of USD/DEM and USD/JPY exchange rates for the study. There are
some significant differences between foreign exchange markets and stock markets. In contrast to stock
markets which are highly regulated, foreign exchange markets function under a very loose, essentially self-
policing environment. Furthermore, the foreign exchange market is the largest market in the world, with $1.9
trillion in all currencies changing hands each day [17]. However, due to relatively moderate price variations of
foreign exchange rates in currency markets, there are fewer reports on the investigations of foreign exchange
rates in comparison with rich studies on stock markets. It is heuristic to demonstrate the application of the
approach to foreign exchange time series.

The main purpose of this study is to provide an alternative and promising scheme for the demonstration of
correlations of exchange rates in currency markets. To have quantitative descriptions on the correlative
behaviors revealing from the return of foreign exchange time series, we first employ the empirical mode
decomposition (EMD) method [16] to decompose a return time series into a set of IMFs and then apply the
Hilbert transform to calculate instantaneous phases of these IMFs. We measure the correlation between two
exchange time series by calculating the distribution of phase differences of the IMFs in the same order. Our
results show explicitly the correlations are stronger in daily time scale than in longer time scales, and two
exchange time series were more correlated in the period of 1986-1989 than in the period of 1990-1993.

The rest part of this paper is organized as follows. In next section, we briefly introduce the source of the
empirical data under consideration. Return time series of USD/DEM and USD/JPY are shown in Section 3
for an exploration. The analyses of phase correlation are presented in Section 4. Finally, we conclude our
results in Section 5.

2. Data

The empirical data used in this paper includes the transaction prices of USD/DEM and USD/JPY
exchanges over the period from February 1 1986 to December 31 1996 [18]. The ownership of the data belongs
to the Olsen & Associates and the authorized use in the current work was under the agreement between the
author’s institution (Academia Sinica) and Olsen & Associates. The original data of the USD/DEM and USD/
JPY exchange time series were separatively recorded and the data lengths were not consistent. After deleting
the dates without records, and then aligning the opening and closing prices by date for each contract, we
finally got a set of time series with totally 3843 sampling points for the study. In general, the number of
sampling point is too few for scaling analysis, but is enough for a whole-set statistics to give reliable
estimation. Therefore, we will focus on the latter in this paper.

3. Time series of intraday returns

To examine the pricing transmission of the USD/DEM and USD/JPY exchange rates, we define the
intraday return R(¢) as

Y (1) = Yo()

R(1) = Yoo

(1)
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where Y (7) is the foreign exchange time series, and the subscript “o”” denotes the opening price and ““¢” for the
closing price. The general features of intraday return time series of USD/DEM and USD/JPY exchange rates
are shown in Fig. 1. Except for inherent stochastic behaviors reveal in such time series [15], the correlative
behaviors among them can be found but are implicit over the whole period. The technique used in this work is
intended to provide statistical demonstrations for correlative behaviors.

We further define the probability distribution (or more precisely, probability density function) P as the
normalized distribution of a measure p, which satisfies the normalization condition

/ P(p)dp =1, )
—0o0
where the measure p can be return R(¢) or phase difference ¢ to be defined and used in the later discussions.
The probability distributions P of intraday returns for USD/DEM and USD/JPY exchange rates are shown
in Fig. 2. Fig. 2(a) is the probability distributions P(R) of intraday returns shown in linear scale, and Fig. 2(b)
is the same but in semi-logarithmic scale. The curves of Fig. 2(b) show similar profiles with those of stock
return time series considered in Refs. [2,5,15], while there is a significant peak at R = 0 due to the definition of
Rin Eq. (1) and properties of currency market. It was also shown in Ref. [15] that return time series of foreign
exchange rate falls into the same class as stock returns. Therefore, essential properties of the returns for
exchange time series resemble those of stock returns, such as heavy tail and Lévy stable distribution. However,
due to the limitation that the size of our empirical data is too short for scaling analysis, we will not discuss this
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Fig. 1. Time series of intraday returns for the USD/DEM and USD/JPY exchange rates from February 1 1986 to December 31 1996.
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Fig. 2. Probability density function P(R) of intraday returns in (a) in linear scale, and (b) in semi-logarithmic scale.
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Fig. 3. Cross-correlation coefficient C with (a) 7 =5 and (b) 7T = 10 for the USD/DEM and USD/JPY exchange time series.

issue in this paper. Here we note that the probability distributions P for two exchanges are in general the same
in Fig. 2(a) and (b). This shows returns of exchange rates of different currencies share the same intrinsic
properties.

Conventional approach for demonstrating the behaviors of correlation among a number of stocks and
markets is by the so-called cross-correlation coefficient C;; defined as the statistical overlap of the fluctuations
OR;(t) = Ri(¢) — (Ri(?)) between two markets i/ and j, that is

~_ {ORi()OR,(1))
0]

where R;(?) is the intraday return of market i, and 07 = ([6Ri(£)]?). The average (- - -) is over a time period T or
a fixed number of time sampling point in empirical data. By the definition, Cj; has a value ranging from —1
(the weakest correlation) to 1 (the strongest correlation). The cross-correlation coefficients between USD/
DEM and USD/JPY exchange time series with 7= 5 and 10 are shown in Fig. 3(a) and (b), respectively.
These figures shows C;; for USD/DEM and USD/JPY exchange time series is closer to 1 in a period from 1987
to 1989, and is relatively closer to 0 in 1990 and 1993.

The advantage of the evaluation of cross-correlation coefficient is the resultant quantity represents
continuously the dynamical correlation for a pair of time series. This provides a window for the survey of
evolution of correlative behaviors in the period of interest. However, a shortcoming of the same is the detailed
structures of correlations may be smeared by the average over a time period in Eq. (3).

(€)

4. Phase correlation

In this section, we will employ the approach proposed in Ref. [15] to analyze the correlation among foreign
exchange rates of USD/DEM and USD/JPY. The analyses will be achieved by performing statistics on the
phase differences between two exchange time series. The approach is based on the concept of the
instantaneous phase defined from the return time series can catch the characteristic features of financial time
series, and the idea is originated from the fact that phases of a time series usually contain rich information
about the structures of the time series [15]. In the approach, the Hilbert-Huang time signal analysis method
[16], which is suitable for the analysis of non-stationary time series, is adapted to define and calculate
instantaneous phase.

The Hilbert-Huang method consists of the EMD and the Hilbert spectral analysis [16]. The EMD method is
developed from the assumption that any time series is consisted of simple intrinsic modes of oscillation, and
the essence of the method is to identify the intrinsic oscillatory modes by their characteristic time scales in the
data empirically, and then decompose the data accordingly [16]. This is achieved by an algorithm with a series
of processes for sifting data to generate IMFs. The IMFs introduced by the EMD are a set of well-behaved
intrinsic modes which are symmetric with respect to the local zero mean and have the same numbers of zero
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crossings and extremes. Therefore, the Hilbert spectral analyses can be directly worked on the resulting IMFs
to calculate instantaneous phases.

Now we briefly review the EMD method. The sifting algorithm to create IMFs in EMD consists of two
steps. First, the local extremes in the return time series data R(¢) are identified. Then, all the local maxima are
connected by a cubic spline line U(¢) forming the upper envelope of the time series, and another cubic spline
line L(¢) forming the lower envelope. Both envelopes will cover all the original time series, and the mean of
upper envelope and lower envelope m;(f) given by

(= LOTEO @

is a running mean. The running mean m,(¢) is then subtracted from the original time series R(¢) to yield the
first component, /,(¢),

R(1) — mi(t) = (1) )

The resulting component 4,(¢) is an IMF if it satisfies the conditions: (i) /;(¢) is free of riding waves. (ii) It
displays symmetry of the upper and lower envelopes with respect to zero. (iii) The numbers of zero crossing
and extremes are the same, or only differ by 1. If /;(¢) is not an IMF, the sifting process has to be repeated as
many times as it is required to reduce the extracted signal to an IMF. In the subsequent steps of sifting process,
hi(2) is treated as the data,

hi(t) — my1(2) = h(2). (6)

Again, if the function /() does not yet satisfy requested conditions (i)—(iii), the first sifting process continues
up to k times until some acceptable tolerance is reached,

hige—1)(#) — mig(t) = hi(2). (7

If the resulting time series is the first IMF, then it is designated as ¢; = (7). Subsequently, the first IMF is
subtracted from the original data, and the difference r; given by

R(1) — c1() = r1(2) (8)

is a residue. The residue r(¢) is taken as if it were the original data, and we apply to it again the sifting process.
Following above procedures, the process of finding more intrinsic modes, ¢;, continues until the last mode is
found. The final residue will be a constant or a monotonic function which represents the general trend of the
time series data. Finally, we get

n

R(D) =" ci(t) + ra(0), ©)

i=1

ri-1(t) — (1) = ri(2), (10)
where r, is a residue.

Notably, according to the algorithm for generating IMFs, the lowest order of IMF has the highest
frequency. In terms of intermittency (i.e., variative period), this means the length of intermittency is
proportional to the order of IMFs. The intermittency can be here considered as a window used to eliminate
the end effects and to facilitate computation. However, a characteristic intermittency in trading time of a
currency market is indefinite. For a truly non-stationary process, there is no time scale to guide the choice of
the window size. This is the nature of the financial time series [15,19], and we thus do not impose definite
intermittencies in the sifting process as an additional criterion.

Fig. 4 shows the IMFs obtained by the EMD method from the two return time series. Note that in the
practical EMD procedures, the number of IMFs is case by case and depends on the properties of primary time
series. Here, a return time series is decomposed into 11 IMFs in the sifting processes but only five IMFs are
shown in Fig. 4. Among these IMFs, the ¢; IMF catches the finest structures, and c¢; is the next. It was
reported that the ¢; component reveals the stochastic properties of financial time series [15], which can be
demonstrated by existing stochastic volatility models [20]. Furthermore, it is also interesting that the
correlative behaviors in the return time series of Fig. 1 are more apparent from these IMFs. Since the length of
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Fig. 4. Intraday returns and the first five IMFs obtained by the EMD method for (a) USD/DEM and (b) USD/JPY exchange time series.

intermittency is proportional to the order of IMFs, the correlative behaviors among time series can also be
demonstrated in terms of various intermittency via the analyses of correlations among the same order of
IMPFs. This is beneficial to the analyses of relations between correlative strength and time scale. In particular,
it is intuitively expected that the strengths of correlations of exchange rates in currency markets should vary
with time scale.

After IMFs being obtained from the EMD, we can proceed to apply the Hilbert transform to each IMF
component to calculate the instantaneous phases of IMFs. The Hilbert transform can be shortly summarized
as firstly calculating of the conjugate pair of ¢,(?), i.e.,

y(1) = lP/ ) gy (11)
T J oot —V

where “P” indicates the Cauchy principal value. Then, the two functions ¢,(f) and y,(f) forming a complex
conjugate pair can be expressed as

c(t) + iy (1) = A (D), (12)
with amplitude A4,(f) and the phase ¢,(¢) defined by

A0 = [0+ v} (012, (13)

¢,(t) = arctan ()C}:Eg) (14)

Consequently, we can calculate instantaneous phase of the rth IMF according to Eq. (14).

Fig. 5 shows instantaneous phase variations of the first-IMFs (¢; in Fig. 4) for the return time series of the
USD/DEM and USD/JPY exchanges. Note that in some epoches the phases of these time series follow the
same paths. This implies collective behaviors in the periods. The amplitudes of such time series have been
shown to be in Boltzmann distribution [15], and we will not discuss here since our analyses do not concern
with the amplitude of return time series. However, we shall mention that the properties we observed can
further be used to demonstrate that the return time series can be modelled by time-varying amplitudes in
Boltzmann distribution with time-varying phases distributed in particular patterns [19].

To study correlation between the exchange rates of USD/DEM and USD/JPY, we further define the phase
differences between pairs of IMFs in the same order. We take USD/DEM as a reference and define the relative
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Fig. 5. Instantaneous phase variations of the first-IMFs (¢; in Fig. 4) of the returns of USD/DEM and USD/JPY exchange time series.

phase difference A¢, as
A¢, = ¢,(USD/IPY) — ¢,(USD/DEM), (15)

and the results for A¢,, A¢, and A¢, are shown in Fig. 6(a). The corresponding probability density functions
are shown in Fig. 6(b), and a summary of skewness and kurtosis statistics of the phase differences are listed in
Table 1.

From Fig. 6(b), we can make quantitatively descriptions on the correlations between two exchange rates. In
Fig. 6(b), the distribution of phase difference A¢; is narrower and more peaked at A¢, = 0 than those of A¢,
and A¢;. This observation is apparent from the statistics of kurtosis listed in Table 1, in which the kurtosis
changes from 0.5826(A¢;) to —0.3373(A¢,) and then to —0.2488(A¢;). This implies return variations
contributed by the first-IMFs are more in phase than those of higher-order IMFs. In other words, two
exchange rates are more correlative in daily time scale. Furthermore, no significant difference is found between
distributions of A¢, and A¢;. This further implies the correlative behaviors between USD/DEM and USD/
JPY exchange rates were similar in time scales longer than daily. This scenario is completely different from
single currency at different spots. The feature observed may be interpreted by the fact that USD has been a
hard currency in currency markets. The exchange rates of USD/DEM and USD/JPY were correlated under
the influence of USD. According to the decomposition scheme of the EMD, the first IMF catches the finest
structures of fluctuations. For financial time series, such fluctuations are characteristics of non-predictable and
stochastic features [15]. In this time scale, the fluctuations are essentially generated by local trading activities in
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Fig. 6. Instantaneous phase difference of (a) the first three IMFs of intraday returns of the USD/DEM and USD/JPY exchange time
series; (b) probability density function P of the phase difference A¢,.

Table 1
Summary of skewness and kurtosis statistics for the phase differences A, Ag,, and A¢; of USD/DEM and USD/JPY for the period of
1986-1996, and A¢, for 1986-1989 and 1990-1993

Ad, A, Ads Ag,(1986-1989) A, (1990-1993)
Skewness 0.0458 0.0341 —0.0260 0.0340 0.0454
Kurtosis 0.5826 ~0.3373 —0.2488 1.9112 0.1108

which effects contributed by individual transactions dominate. Stronger interactions leading to stronger
correlations are possible in open markets. In contrast, high-order IMFs are derivatives from local means of the
original time series, in which short-time scale fluctuations have been smeared out. The smearing is similar with
local average of the original time series under a specified window size. In this case, the factors of governmental
policy and other balance mechanisms are dominant factors determining the profiles of the time series. In
principle, governmental policy and some balance mechanisms usually aim to direct the exchange rate of its
currency in an independent and stable way. They work as a self-modulation on the basis of economic
fundamentals to stabilize currency markets. A harmony of interdependence and correlation in foreign
exchange markets reveals such that similar correlations represented by the distribution of A¢, and A¢; can be
observed. As a result, the correlative behaviors in longer time scales are weaker than those in daily time scale.

To demonstrate the scheme of phase statistics to correlation between exchange rate time series, we further
consider A¢, of different time periods. For comparison, we take two periods, one from 1986 to 1989 and the
other from 1990 to 1993. In our statistics, the period 1986—1989 consists of 1367 data points and the period
1990-1993 consists of 1400 data points. We calculate the distribution of A¢, for these two periods and the
results are shown in Fig. 7. The result confirms that the correlation between two exchange rate time series in
the period of 1986—1989 was stronger than in the period of 1990-1993, which is consistent with the result of the
cross-correlation calculation shown in Fig. 3. Note that in 1990-1993, foreign exchange rates of DEM and
JPY in currency markets were affected by the unification of East Germany and West Germany and the era of
bubble economy of Japan. The factors directing the pricing transmissions of USD/DEM and USD/JPY
exchanges were not USD but economic environments and governmental policies of the unified Germany and
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Fig. 7. Probability density function P of the phase difference A¢, for periods 1986-1989 and 1990-1993.

Japan. Therefore, two currencies were more independent, and the USD/DEM and USD/JPY exchange rates
became weakly correlated in this period.

5. Conclusions

In conclusion, we have investigated the correlations of foreign exchange rates of USD/DEM and USD/JPY
for the period from February 1 1986 to December 31 1996 from the aspect of phase correlation. Following the
approach proposed in Ref. [15], we defined the instantaneous phase from the return time series of exchange
rate. To achieve this, the Hilbert-Huang method was employed to decompose empirical time series into a
number of IMFs and the Hilbert transform was then applied to calculate the instantaneous phase of the
resultant IMFs. Then phase differences between two exchange rate time series were calculated and statistics on
the phase differences were performed to probe their correlations. Our results showed explicitly that two
exchange rates were more correlative in daily time scale than in longer time scales. This feature was explained
from the trading environment with self-modulation mechanisms and time scale for free of interventions in
currency markets.

We also calculated the distributions of the phase differences between the first-IMFs of two exchange time
series in periods from 1986 to 1989 and from 1990 to 1993. The result indicates that two exchange rate time
series were more correlated in the period of 1986—1989 than in the period of 1990-1993, which is consistent
with direct observations from the cross-correlation calculation. The weaker correlation was explained from the
economic environments and governmental policies after the unification of East Germany and West Germany
and in the era of bubble economy of Japan in early 1990s.

Finally, it should be emphasized that even though existing analyses based on cross-correlation coefficient
can also provide information on the correlative behaviors among markets, our approach based on phase
statistics has provided an alternative and promising scheme for the demonstration of correlations among
financial time series. It is also expected that the method can be applied to the studies of other time series, such
as physiological time series [21], seismic time series, temperature variations, and other social models [19].
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