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I. INTRODUCTION

In experiments and in numerical studies of critical sys-
tems, it is essential to take into account finite-size effects.
The scaling behaviors of such corrections to the properties of
infinite systems play an increasingly important role in our
theoretical understanding of the critical regime of statistical
systems. Therefore, in recent decades there have many inves-
tigations on finite-size scaling, finite-size corrections, and
boundary effects for critical model systems �1–4�.

Recently, Ivashkevich, Izmailian, and Hu �IIH� �5� pro-
posed a systematic method to compute exact finite-size cor-
rections to the partition functions and their derivatives of free
models on torus, including the Ising model, dimer model,
and Gaussian model. They found that the partition functions
of all these models can be written in terms of the partition
functions with twisted boundary conditions Z�,� with �� ,��
= �1/2 ,0� , �0,1 /2�, and �1/2 ,1 /2�. Extending this ap-
proach, Izmailian, Oganesyan, and Hu�6� computed the
finite-size corrections to the free energy for the dimer model
on finite square lattices under five different boundary condi-
tions �free, cylindrical, toroidal, Möbius strip, and the Klein
bottle�. They found that the aspect-ratio dependence of
finite-size corrections is sensitive to boundary conditions and
the parity of the number of lattice sites along the lattice axis.

In contrast to the spin models, the critical behaviors of
dimer models are strongly influenced by the structure of the

lattice �7�. For example, though the dimer model on the
square lattice does not exhibit a phase transition �8�, it is
critical with algebraic decay of correlation functions �9�; the
dimer model on the honeycomb lattice with anisotropic
weights, which is equivalent to a five-vertex model on the
square lattice, exhibits a potassium-dihydrogen-phosphate
�KDP�-type singularity �10�. Moreover, the dimer model on
the triangular lattice exhibits Ising-type transitions �11�
precisely at the point at which it becomes the square lattice
when the dimer weight in the diagonal axis becomes 0
�Fig. 1�. Thus, it appears that the dimer model itself does not
have a single critical behavior, but several critical behaviors
associated with different classes of universality.

It has been shown explicitly �12� that the free energy per
site for the dimer model on the square lattice is insensitive to
the precise form of the boundary conditions in the limit of
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FIG. 1. Triangular lattice with dimer weights zh in the horizontal
direction, zv in the vertical direction, and t in the diagonal direction.
When t=0, the triangular lattice dimer model becomes the square
lattice dimer model.
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large lattices, but the finite size properties of the dimer model
on the square lattice is sensitive to boundary conditions and
the parity of the number of lattice sites along the lattice axis
�6,13�. The above statement holds for the dimer model on the
honeycomb lattice only in the case of toroidal boundary con-
ditions. In the case of the free boundary conditions it has
been proved that the free energy per site for the dimer model
on the honeycomb lattice depends on the exact shape of the
lattice boundary in the asymptotic limit of the large lattices
�14�, which actually means that in this case an infinite-size
limit cannot be called a thermodynamic limit because of this
lack of homogeneity. Very recently, it has been shown that
the finite-size corrections of the dimer model on planar �
�N square lattices depend crucially on the parity of N and
the boundary conditions and such unusual finite-size behav-
ior can be fully explained in the framework of the c=−2
logarithmic conformal field theory �15�.

Our objective in this paper is to study the finite-size prop-
erties of the dimer model on the plane triangular lattice using
the same techniques developed in earlier papers �5,6�. In par-
ticular, we want to know whether the behaviors of the trian-
gular lattice dimer model near the critical point t=0 �Fig. 1�
can be described by well defined finite-size scaling functions
as in the case of the percolation �2� and Ising �3� models. As
far as we know, this problem has not been studied before.
Thus our study could provide a more complete picture of the
critical behavior of the dimer model.

The paper is organized as follows. In Sec. II we express
the exact partition function of the dimer model on the trian-
gular lattice with periodic boundary conditions �11� as the
partition functions with twisted boundary conditions Z�,�,
where �� ,��= �1/2 ,0� , �0,1 /2�, and �1/2 ,1 /2�. Based on
such expressions and the algorithm of IIH �5�, we derive the
exact asymptotic expansion of the first and second deriva-
tives of the logarithm of the partition function at the critical
point �t= tc=0�. In Sec. III finite-size corrections are calcu-
lated. In Sec. IV we investigate the properties of the finite-
size scaling functions of the lattice dimer model. We find that
the triangular lattice dimer model near the critical point t
=0 has very good finite-size scaling behavior and finite-size
scaling functions are sensitive to the parity of the number of
lattice sites along the lattice axis. Our results are summarized
and discussed in Sec. V.

II. PARTITION FUNCTION

In the present work, we consider the dimer model on the
M�N triangular lattice G with periodic boundary condi-
tions. The partition function is given by

Z�zh,zv,t,M,N� = �
G�

zh
nhzv

nvtnt, �1�

where the summation is taken over all dimer covering con-
figurations G� on G, zh, zv, and t are, respectively, the dimer
weight in the horizontal, vertical, and diagonal directions,

and nh, nv, and nt are, respectively, the number of horizontal,
vertical, and diagonal dimers �Fig. 1�. The dimer model on
the triangular lattice undergoes a phase transition at the point
t= tc=0 �and likewise for zh and zv�, where the partition func-
tion is nonanalytic as a function of t. Thus the dimer weight
t plays a role similar to the reduced temperature in the Ising
model. In what follows, we will set zh=zv=1.

An explicit expression for the partition function of the
dimer on a M�N triangular lattice wrapped on torus has
been obtained by Fendley, Moessner, and Sondhi �11� and
can be written as

Z�t,M,N� =
1

2
�G0,0�t,M,N� + G0,1/2�t,M,N�

+ G1/2,0�t,M,N� + G1/2,1/2�t,M,N�� , �2�

where

G�,�
2 �t,M,N�

= �
m=0

M/2−1

�
n=0

N−1

4�sin2 2��n + ��
N

+ sin2 2��m + ��
M

+ t2 cos2�2��n + ��
N

+
2��m + ��

M 	
 , �3�

for even M. Here �=0 corresponds to the periodic boundary
conditions for the underlying free fermion in the N-direction
while �=1/2 stands for the antiperiodic boundary condi-
tions. Similarly � controls the boundary conditions in the
M-direction.

We are interested in computing the asymptotic expansions
for large M and N with a fixed aspect ratio �e.g., length to
width ratio: �=M /N� of the free energy per site f�t ,M ,N�,
internal energy U�t ,M ,N�, and specific heat C�t ,M ,N�
near the critical point t= tc=0. These quantities are defined as
follows:

f�t,M,N� =
1

MN
ln ZM,N�t� , �4�

U�t,M,N� =
�

�t
f�t,M,N� , �5�

C�t,M,N� =
�2

�t2 f�t,M,N� . �6�

Since the total number of sites must be even if the lattice
is to be completely covered by dimers, an odd-odd case can
never occur in a dimer model, and here we will consider two
cases, namely an even-even �ee� case when M=2M and
N=2N, and an even-odd �eo� case when M=2M and N
=2N+1. Note, that due to the symmetry of the lattice the
odd-even case �oe� �M=2M +1, N=2N� can be obtained
from the even-odd case by a simple transformation �→1/�.

A. Dimers on 2MÃ2N lattices

It is easy to show that the partition function given by Eqs.
�2� and �3� can be written as
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Z�t,2M,2N� =
1

2
�Z0,0

2 �t,M,N� + Z0,1/2
2 �t,M,N�

+ Z1/2,0
2 �t,M,N� + Z1/2,1/2

2 �t,M,N�� , �7�

where we have introduced the partition function with twisted
boundary conditions Z�,�

2 �t ,M ,N�,

Z�,�
2 �t,M,N� = �

m=0

M−1

�
n=0

N−1

4�sin2 ��n + ��
N

+ sin2 ��m + ��
M

+ t2 cos2���n + ��
N

+
��m + ��

M
	
 . �8�

With the help of identity �16�

�
m=0

M−1

2�c − a cos�2��m + u�
M

	

= aM�2 sinh�M

2
ln �	+� − i�u	�2

, �9�

where c and a are real numbers such that 	=c /a
1 with
	±=	±�	2−1 �so that 	+	−=1�, the partition function with
twisted boundary conditions Z�,��t ,M ,N� can be trans-
formed into a form

Z�,��t,M,N� = �
n=0

N−1

an+��t�M/2
2 sinh�M�n+��t� − i���
 ,

�10�

where

�n+��t� = i�n+��t� + arcsinh�1

2
� cn+��N,t�

an+��N,t�
− 1	 , �11�

�n+��t� =
1

2
arctan

t2 sin
2��n + ��

N

1 − t2 cos
2��n + ��

N

, �12�

an+��N,t� =��1 − t2�2 + 4t2 sin2 ��n + ��
N

, �13�

cn+��N,t� = 1 + t2 + 2 sin2 ��n + ��
N

. �14�

At the critical point t=0, we have �n+��0�=0, an+��0�
=1, cn+��0�=1+2 sin2 ��n+�� /N and

Z�,��0,M,N� = �
n=0

N−1 �2 sinh�M
���n + ��
N

� − i��
� ,

�15�

where 
�k�=�k�0�=arcsinh�sin k�. Taking the derivative of
Eq. �10� with respect to the variable t and then considering
the limit t→0, we obtain

Z0,0� �0,M,N� = 2M�
n=1

N−1

2
 sinh�M
�
 , �16�

and Z0,1/2� �0,M ,N�=Z1/2,0� �0,M ,N�=Z1/2,1/2� �0,M ,N�=0.
The asymptotic expansion of ln Z�,��0,M ,N� for �� ,��

equals �0,1 /2�, �1/2 ,0�, and �1/2 ,1 /2�, and ln Z0,0� �0,M ,N�
has been given in Ref. �5� and has the forms

ln Z�,��0,M,N� =
S

�
�

0

�


�x�dx + ln���,��i��
��i��

�
− 2���

p=1

� ��2�

S
	p �2p

�2p�!
Re K2p+2

�,� �i���
2p + 2

,

�17�

ln Z0,0� �0,M,N� =
S

�
�

0

�


�x�dx +
1

2
ln 4�S + 2 ln 
��i��


− 2���
p=1

� ��2�

S
	p �2p

�2p�!
Re K2p+2

0,0 �i���
2p + 2

.

�18�

Here

S = MN, � = M/N, �
0

�


�x�dx = 2�,

� = 0.915 965 594. . .

is Catalan’s constant, ���� is the Dedekind-� function,
��,���� is the elliptic theta function, and K2p+2

�,� ��� is Kroneck-
er’s double series �5�. The differential operators �2p that
have appeared in Eq. �17� can be expressed via coefficients
�2p of Taylor expansion of the lattice dispersion relation

�k�,


�k� = k�� + �
p=1

�
�2p

�2p�!
k2p	 �19�

with �=1, �2=−2/3 , �4=4, etc.,

�2 = �2,

�4 = �4 + 3�2
2 �

��
,

�6 = �6 + 15�4�2
�

��
+ 15�2

3 �2

��2 ,

� �20�
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Taking the second derivative of Eq. �10� with respect to
variable t and then considering the limit t→0, we obtain

Z�,�� �0,M,N�
Z�,��0,M,N�

= �
n=0

N−1
M

2

A��0�
A�0�

+ Re M�
n=0

N−1

���0� + 2 Re M�
n=0

N−1

���0�

�exp�− 2m�M��0� + i���� , �21�

for �� ,�� equals �0,1 /2�, �1/2 ,0�, and �1/2 ,1 /2�. The ex-
pression of ���t=0� has the form

���0� = − 2i sin 2x +
cos2 x + sin2 x cos 2x

sin x�sin x2 + 1
, �22�

with x=��n+�� /N, and its Taylor expansion is

���0� =
1

x�1 + �
p=1

�
k2p

�2p�!
x2p
 =

1

x
exp��

p=1

�
�2p

�2p�!
x2p
 ,

�23�

where the coefficients �2p and k2p are related to each other
through the relations of moments and cumulants, k2=−1/3
−4i, etc. It is easy to see that the first sum in Eq. �21�
turns to zero. The other terms in Eq. �21� are similar to
those obtained in Ref. �5�. The only difference is that the
coefficients k2p in Eq. �23� are complex and have an imagi-
nary part. Following the same procedures as in Ref. �5�, we
obtain

Z�,�� �0,M,N�
Z�,��0,M,N�

=
2S

� �1

2
�

0

�

f�x�dx + ln�S

�
+ R�,����


+
1

2
Re��k2�

�

����
+ �2�2 �2

����2	 ln ���,��i��
��i��

�

− ���

p=2

� ��2�

S
	p−1 Re ��2pK2p

�,��i����
p�2p�!

, �24�

where

f�x� =
cos2 x + sin2 x cos 2x

sin x�sin x2 + 1
−

1

x
−

1

� − x
, �25�

R�,���� = − 2ln 
��,��i��
 + CE + 2 ln 2, �26�

�0
�f�x�dx=−2+ln 2−2 ln � and CE=0.577 215 664. . . is the

Euler constant. The differential operators �2p that have ap-
peared here can be expressed via the coefficients 
2p=�2p
+�2p��� / ���� as

�2 = 
2,

�4 = 
4 + 3
2
2,

�6 = 
6 + 15
4
2 + 15
2
3,

� �27�

Taking the first and the second derivative of the loga-
rithm of the partition function given by Eq. �7� with
respect to variable t and then considering the limit t→0
we obtain

U�0,2M,2N� = 0, �28�

C�0,2M,2N� =
1

2MN

Zxx�

�Z0,1 � 2�0,M,N��2 + �Z1 � 2,0�0,M,N��2 + �Z1 � 2,1 � 2�0,M,N��2 , �29�

with

Zxx� = „Z0,0� �0,M,N�…2 + Z0,1 � 2�0,M,N�Z0,1 � 2
� �0,M,N�

+ Z1 � 2,0�0,M,N�Z1 � 2,0
� �0,M,N�

+ Z1 � 2,1 � 2�0,M,N�Z1 � 2,1 � 2
� �0,M,N� .

B. Dimers on 2MÃ „2N+1… lattices

With the help of identities

�
n=0

2N �h + b cos2� f +
2�n

2N + 1
	 + g sin2 2�n

2N + 1



= �
n=0

2N �h + b cos2� f +
��2n + 1�

2N + 1
	 + g sin2��2n + 1�

2N + 1



= �
n=0

2N �h + b cos2� f +
�n

2N + 1
	 + g sin2 �n

2N + 1

 , �30�

the partition function given by Eq. �2� can be written as,

Z�t, 2M, 2N + 1� = Z0,0�t, M, 2N + 1� + Z0,1/2�t, M, 2N + 1� .

�31�
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Taking the first and the second derivative of the logarithm
of the partition function given by Eq. �31� with respect to
variable t and then considering the limit t→0, we obtain

U�0, 2M, 2N + 1� =
1

2M�2N + 1�
Z0,0� �0,M,2N + 1�

Z0,1 � 2�0,M,2N + 1�
,

�32�

C�0, 2M, 2N + 1� =
1

2M�2N + 1�
�Z0,1 � 2

� �0,M,2N + 1�

Z0,1 � 2�0,M,2N + 1�

−
Z0,0� �0,M,2N + 1�2

Z0,1 � 2�0,M,2N + 1�2
 . �33�

Note that Eqs. �7� and �31� in the case t=0 coincide with the
corresponding expressions of the square lattice �see Ref. �6��.

III. FINITE SIZE CORRECTIONS

After reaching this point, one can easily write down all of
the terms in the exact asymptotic expansion of the free en-
ergy per site, the internal energy per site, and the specific
heat per site at the critical point t=0. These asymptotic ex-
pansions can be written in the following form:

f�0,M,N� = fbulk + �
p=1

�

fp���S−p, �34�

U�0,M,N� = ubulk + �
p=1

�

up���S−p+1 � 2, �35�

C�0,M,N� = cbulk + �
p=1

�

cp���S−p, �36�

where S=MN is area of the lattice.
�a� For the dimer model on the 2M �2N lattice the ex-

pansion coefficients are:

fbulk =
�

�
,

f1��� = ln
�2

2 + �3
2 + �4

2

2�2 ,

f2���

=
2�3�2

45

7

8
��2

10 + �3
10 + �4

10� + �2
2�3

2�4
2��2

2�4
2 − �2

2�3
2 − �3

2�4
2�

�2
2 + �3

2 + �4
2 ,

�

ubulk = 0,

up = 0, for p = 1,2, . . .

�

cbulk��� =
1

�
ln�S

�
+

1

�
�ln

23/2

�
+ CE − 1	 +

�

2
R�

−
2

�

ln ��2
�2

2
�3

�3
2
�4

�4
2�

�2
2 + �3

2 + �4
2 , �37�

c1��� = −
�2�2

18

�3
4�4

4�− 2�2
2 + �3

2 + �4
2�

�2
2 + �3

2 + �4
2

−
�3�3

24

�2
2�3

2�4
2��2

10 + �3
10 + �4

10�
��2

2 + �3
2 + �4

2�2

−
��

36

��4
2 − �2

2���3
4 + �2

2�3
2 + �3

2�4
2 − �2

2�4
2�

�2
2 + �3

2 + �4
2

��1 + 8�
�

��
ln�2	 −

�2�2

6
R� ln �3

��2
2+�4

2���3
4+�2

2�4
2�

��2
��3

2+�4
2���3

4−3�3
2�4

2+�4
4��4

��2
2+�3

2���2
4−3�2

2�3
2+�3

4�, �38�

�

where R���2
2�3

2�4
2 / ��2

2+�3
2+�4

2�2,

�

��
ln �2 = −

1

2
�3

2E , �39�

E is the elliptic integral of the second kind, S=4M
�N , �=M /N, and �i=�i��� with i=2,3 ,4.

�b� For the dimer model on 2M � �2N+1� lattice the ex-
pansion coefficients are,

fbulk =
�

�
,

f1��� =
1

3
ln

4�2�3

�4
2 ,

f2��� =
�3�2

90
�14�2

4�3
4 − �4

8� ,

�

ubulk = 0,

u1��� =
1

2
���4

2, �40�

u2��� = −
�3�5/2�2

4�3
4�4

2

24
, �41�

�
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cbulk��� =
1

�
ln�S

�
+

1

�
�ln

23/2

�
+ CE − 1	

−
1

�
ln ��2�3� −

�

4
�4

4, �42�

c1��� =
�3�3

24
�2

4�3
4�4

4 +
�2�2

36
�3

4�4
4

+
����2

4 + �3
4�

72
�1 + 8�

�

��
ln �2	 . �43�

�

Here S=2M � �2N+1� , �=2M / �2N+1�, and �i=�i���
with i=2,3 ,4.

In Fig. 2 we plot the aspect-ratio ��� dependence of finite-
size correction terms u1, u2, and cbulk− �1/��ln N, for the
2M �2N �ee�, 2M � �2N+1� �eo�, and �2M +1��2N �oe�
lattices. In addition, to explore different features of f and U
for N-even and -odd cases, we define

	 lnZ�t,2M,2N� =
1

2
�lnZ�t,2M,2N − 1� + lnZ�t,2M,2N + 1��

− lnZ�t,2M,2N� , �44�

	U�t,2M,2N� = U�t,2M,2N + 1� − U�t,2M,2N� . �45�

The behaviors of 	 ln Z�t , 2M , 2N� and 	U�t , 2M , 2N�
as functions of t for different lattice sizes are shown in
Fig. 3. In Fig. 3�a�, curves for different lattice sizes but with
the same aspect ratio �=1 approach to a constant 0.3615 at
t=0, which is consistent with the result of Ref. �13�. Figure
3�b� shows that 	 ln Z�t , 2M , 2N� is a function of � at the
critical point t=0.

On the other hand, in Fig. 3�c�, the amplitude of 	U at
t=0 is proportional to 1/N. Therefore, in the bulk limit,
systems with even and odd N are not distinguishable from
their internal energy U. We will further consider this situa-
tion for the specific heat C in the next section.

IV. FINITE-SIZE SCALING FUNCTIONS

The behaviors of C�t ,M ,N� as a function of t for differ-
ent lattice sizes are shown in Fig. 4. In general, C�t ,M ,N�
for N-even and -odd cases have significant differences only
near criticality, and may not be distinguishable elsewhere.
Here we note that, in Fig. 4�c�, the curves for lattice sizes
4000�40, 4001�40, 40�4000, and 40�4001 almost co-
incide into a single curve, and curves for 4000�41 and 41
�4000 coincide into another curve. This implies the behav-

FIG. 2. �Color online� Aspect-ratio ��� dependence of finite-size
correction terms �a� u1, �b� u2, and �c� cbulk− �1/�� ln N, for the
2M �2N �ee�, 2M � �2N+1� �eo�, and �2M +1��2N �oe� lattices.
Note that eo and the oe are exchangeable by taking �→1/�, and the
odd-odd case cannot occur.

FIG. 3. �Color online� �a� 	 ln Z�t , 2M , 2N� as a function of t
for different lattice sizes with the aspect ratio �=1. �b�
	 ln Z�t , 2M , 2N� as a function of t for different lattice sizes with
the aspect ratio �=2,1 ,1 /2. �c� 	U�t , 2M , 2N� as a function of t
for different lattice sizes with the aspect ratio �=1.
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iors of C�t ,M ,N� near the critical point t=0 depend
strongly on the value of M ,N being even or odd for small
M ,N. The behaviors of C�t ,2M ,N� as a function of t for
different lattice sizes with even and odd N are shown in Figs.
5�a� and 5�b�, respectively.

The difference between two curves can also be calculated
exactly based on the expansion of C�t ,M ,N� at t=0. Ac-
cording to Eqs. �37� and �42�, the difference between
C�0,2M ,2N� and C�0,2M ,2N+1� is a finite “constant” at
the bulk limit. We define this difference as

	C��� = C�0,2M → � , 2N → � �

− C�0,2M → � , 2N + 1 → � �

� cbulk
ee �M

N
	 − cbulk

eo � 2M

2N + 1
	 , �46�

where the superscript ee denotes the �M-even, N-even� case
and eo denotes the �M-even, N-odd� case. The difference
	C is a function of the aspect ratio �, and its behavior with
respect to ln � is shown in Fig. 6. Figure 6 provides a
window for exploring the crossover behaviors of 	C from
��1 to ��1. In particular, at �=1.4444, the difference
	C��� has a maximum value, 0.3689.

From the above observations, the function C�t ,M ,N�
and the dimer weight t play, respectively, roles similar to the
specific heat and the reduced temperature in the Ising model.
It is then interesting to investigate the properties of the finite-
size scaling functions of the lattice dimer model. To do this,
we propose a quantity �, defined by �= tS1/2, as a metric
factor for the triangular lattice dimer model. According to
the scaling ansatz �17�, the logarithmic divergence of
C�t ,M ,N� with respect to system size S at t=0 can be
transformed to a logarithmic divergence with respect to t via
the metric factor �. Hence, in the bulk limit, the divergence
of C�t ,M→ � , N→ � � with respect to t is logarithmic, i.e.,

C�t,M → � , N → � � � −
1

�
ln t , �47�

at small t �critical region�. These are examined in Figs. 7�a�
and 7�b�, in which the curves obtained from the proposed
functions g�t� can fit C�t ,M ,N� very well at the critical

FIG. 4. �Color online� C�t ,M ,N� as a function of t for different
lattice sizes with �a� the aspect ratio �=1, �b� the aspect ratio
�=10, and �c� the aspect ratio �=100,0.01.

FIG. 5. �Color online� C�t ,M ,N� as a function of t for different
lattice sizes with �a� even N, and �b� odd N.

FIG. 6. �Color online� 	C as a function of ln �. The maximum of
	C is 0.3689, which occurs at ln �=0.3677 ��=1.4444�.

FINITE-SIZE CORRECTIONS AND SCALING FOR THE… PHYSICAL REVIEW E 73, 016128 �2006�

016128-7



region. These confirm the fact that both of C�t ,2M ,2N� and
C�t ,2M ,2N+1� have the same logarithmic divergence of t at
the critical region.

Furthermore, according to the expansion of C�t ,M ,N� in
Eq. �36�, we can define the finite-size scaling functions for
C�t ,M ,N� as in Ref. �18�. Specifically, we may define the
scaling function W�� ,�� as

W��,�� = C�t,M,N� − cbulk��� . �48�

The behaviors of the scaling function W�� ,�� as function of �
are shown in Fig. 8. This figure shows that dimers with
�M=2M , N=2N� and �M=2M , N=2N+1� have a differ-
ent scaling function. In addition, the scaling function W�� ,��
for the two cases have very nice finite-size scaling behaviors.

V. CONCLUSIONS

In the present paper, we study the dimer model on planar
M�N triangular lattices with periodic boundary conditions.
Using the exact partition function of the dimer model on the
triangular lattice with the periodic boundary condition ob-
tained by Fendley, Moessner, and Sondhi �11� and the IIH’s
algorithm �5�, we derive the exact asymptotic expansion of

the first and second derivatives of the logarithm of the parti-
tion function in the critical point �t=0�. We find that the
aspect-ratio dependence of finite-size corrections and the
finite-size scaling functions are sensitive to the parity of the
number of lattice sites along the lattice axis. The free energy
�specific heat� is always smaller �greater� for even-even than
for even-odd lattices.

Our results inspire some interesting problems for further
studies. It has been shown in Ref. �11� that the dimer model
in the critical region is a lattice version of two free Majorana
fermions with a mass term. Thus the partition functions and
scaling behaviors of the dimer model discussed in this paper
could be closely related to the behaviors of free fermions
with various boundary conditions. We are working in this
direction and will report the further results in a future paper.
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