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Abstract.   The  recent  boom  in  general-purpose  computing  on  graphics 
processing units (GPGPU) facilitates simulations with high demands on com-
puter resources. Such simulations are typical for macromolecules and nanopar-
ticles of biological importance. Several proteins, instead of folding into biologi-
cally active 3D structures, aggregate together forming large fibril structures 
called amyloid aggregates. Amyloids are being extensively studied both exper-
imentally and through computer simulations. Since amyloid aggregates are 
huge molecular complexes composed from hundreds of thousands of atoms, it 
is clear that their simulations need supercomputing power. GPGPU-based clus-
ters were shown to offer alternative resources for performing molecular dynam-
ics simulations on nanoscale. We were also using one of the newest docking 
methodology (the  AutoDock Vina program)  to model the differences in ligand 
binding to the native insulin and to the unfolded complexes. In addition, virtual 
lectin arrays were constructed and high-throughput “In Silico” screening was 
performed in order to select the best binders to the particular galectins. 

Keywords: GPGPU computing, molecular modeling; protein structure and in-
teractions, amyloid aggregation.  

1 Introduction 

A large variety of computational methods is available to calculate structural and elec-
tronic properties of biomolecules and their complexes. High demand for computation-
al resources is common for almost all first-principle quantum mechanical methods in 
dependence on the level of study. This can be started from the relatively fast semiem-
pirical methods to the ab initio level of solving of the Schrodinger equation (either 
using Hartree/Fock (HF) or Density Functional Theory (DFT)) to the full configura-
tion interaction (CI) protocol with Moller-Plesset (MP) perturbation theory in be-
tween. The size of the molecules (the number of atoms and the appropriate selection 
of the number and type of base functions describing the atomic orbitals) is a key fac-
tor influencing the approximation level of the method used in the computational study 
of molecular properties and behavior. The computation time of the ab initio method 
scales usually with n4 where n is the number of the atomic base functions. This scal-
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ing becomes even worse for MP2 (i.e. n5), MP4 (i.e. n5) or coupled-cluster CI (i.e. n7). 
Accordingly, such scaling reduces the usability of coupled-cluster CI to molecules of 
moderate size. 

Biological macromolecules such as proteins or nucleic acids and their aggregates 
(see Figure 1) are composed from thousands of atoms and their computational studies 
need different approaches. Approximative methods of the molecular mechanics (MM) 
(or sometimes called force field (FF)) are often used to calculate the molecular ener-
gies. The typical energy function here is a sum of terms accounting for bond deforma-
tions, bond angle distortions, torsion potentials, electrostatic interactions, nonbonded 
interactions (e.g. Lennard-Jones potential) and hydrogen bonding.  
 

 
Fig. 1. Molecular examples from a three-atomic water molecules to the Satelite Tobacco Mosa-
ic Virus (hidden in a water box [1]). Atomic color coding: Oxygen – red, Hydrogen – white, 
Nitrogen – Blue, Sulphur – Yellow.  

Due to their simplicity the MM methods are relatively fast (scale with N3 where N 
is the number of atoms in the system). However,  they are not always suitable for 
studies of chemical reactions (bond breaking/creation of new bonds). Combined ap-
proaches of QC/MM were proposed in order to study such cases of biological interest, 
i.e. reactions in the enzyme active site. In QC/MM protocols the atoms (the bound 
ligand and the surrounding atoms of the protein) are studied on HF or DFT level 
while the rest of the protein is described using MM protocols. 
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Monte Carlo (MC) or Molecular Dynamics (MD) are utilized when the time de-
velopment of the system is in question. The Newton’s equation of motion is solved in 
MD with femtosecond integration time step. Relatively long simulation times are 
required for simulations of solvated biological macromolecules and their aggregates 
in order to gain results comparable to experimental measurements. Accordingly, such 
simulations have high demands on computer resources (number and speed or proces-
sors, disk storage and inter-node communication).  

Approximative methodologies have been proposed also for the computations of 
protein-ligand or protein-protein intermolecular interaction energy profiles. These 
methods are described as molecular docking and the interaction energies are estimated 
from empirically parametrized functions. The computational demand comes here 
from the number of ligands that has to be analyzed for the protein of interest. Ligand 
libraries can hold few millions of members. Calculation of their interaction profiles 
with the macromolecules is independent between library members. High-throughput 
computer grids or clusters are the most suitable resources for performing this kind of 
molecular screening. There are several programs available for virtual screening of 
macromolecule-ligand (or macromolecule-macromolecule) docking profiles. The 
programs differ either in the search algorithms (systematic or stochastic searches in 
the torsion angle space, genetic algorithms, molecular dynamics) or in scoring func-
tions used to estimate the interaction energies. Docking is a very popular computa-
tional method according the huge number of papers published during the last few 
years. This is illustrated on Figure 2 where the methodology differences in docking-
related papers are summarized. The total number of papers published (PubMed 
searches, October 2011) is close to 6,000, covering both, experimental and computa-
tional docking approaches. There are around 16 computational methods referenced for 
docking. The main difference in these programs comes from searching algorithms and 
scoring functions as mentioned above. We implemented and tested several of them: 
Dock [2 , 3], AutoDock [4, 5], Glide [6], AutoDock Vina [7], FlexX [8] and HEX [9], 
although only four docking programs were shown to be used preferentially according 
the number of publications. 

New computational horizons were opened on HW level by introduction of the 
Graphics Processing Unit (GPU). Recently, selected SW protocols for molecular 
modeling, computer-aided drug design (CADD) and computer-aided nanomolecular 
design (CAND) have been updated to benefit from GPU. Many-body interatomic 
interactions are evaluated by all-atom simulation techniques in MC or MD simula-
tions. These interactions can be described either according to first principles, e.g. 
Quantum Monte Carlo (QMC), or can be simplified to empirically parametrized inter-
action potentials used in the majority of MD simulations. The speedup of simulation 
methods involving hundreds of thousands of atoms has cardinal importance here and 
can be facilitated by GPU technologies. Indeed, we recognized an important speedup 
for the GPU version of the above mentioned HEX program for protein-protein dock-
ing. More detailed description of the programs benefiting from GPU is summarized in 
the next paragraph.  
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Fig. 2. Results of the PubMed searches for “docking”. Left: Comparison of all docking studies 
(both, experimental and computational) with ligand docking into protein’s active site resp. 
docking of a smaller protein into a larger one. Right: Comparison of the number of publica-
tions using different docking protocols. Four methods were referenced in the majority of arti-
cles: Dock [2 , 3], AutoDock [4, 5], Gold [10, 11] and Glide [6]. Only the first two programs 
(Dock, AutoDock) among the most referenced are non-commercial (academic) ones .  

2 Overview of GPU-updated methods for molecular modeling 
and design 

Significant effort was devoted to build a state-of-the-art computational laboratory 
equipped with the newest GPU-related software releases in order to match the recent 
trends in computer modeling of biomacromolecules [1] and nanomaterials [12]. Selec-
tions of some programs are available for download from several public domains as 
well as proprietary web pages. Our attention here is restricted to those that have  al-
ready been updated for GPU  computing [1].  NVIDIA  published the  list  of the MD  
programs with GPU option at 
http://www.nvidia.com/object/molecular_dynamics.html.  

ACEMD [13] is a commercial molecular dynamics simulation package optimized 
for GPU environment. The AMBER 11 [14] program suite was very recently also 
upgraded for GPU.  

The NAMD [15] and VMD [16] were among the first programs significantly bene-
fiting from the GPU environment. NAMD is typically used for MD simulations of 
large molecules within explicit solvent box [1]. 

The latest version of HOOMD (Highly Optimized Object-oriented Many-particle 
Dynamics) [17] is available at http://codeblue.umich.edu/hoomd-blue/index.html. 
HOOMD was originally proposed for polymer simulations and designed to run in 
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GPU environment. The recent version of LAMMPS (Large-scale Atomic/Molecular 
Massively Parallel Simulator (http://lammps.sandia.gov/index.html) has enhanced 
GPU/CUDA support as well. 

Probably the first QC program written directly for GPU CUDA is the TeraChem 
software [18-21] commercially available at http://www.petachem.com/. From the 
other QC programs only GAMESS [22, 23] was recently updated for GPU. 

3 Modeling amyloid aggregation of insulin 

Under certain physiological condition in living cell, some proteins fail to fold into 
native functional structure individually and aggregate together to form fibril struc-
tures, often called amyloids. Accumulation of such fibrils in living cells can initiate 
severe diseases.  Alzheimer´s and Parkinson´s diseases, type II diabetes, dialysis-
related amyloidosis or various forms of systemic amyloidosis [24, 25] belong to the 
amyloid-related diseases. Such systems are being extensively studied both experimen-
tally and through computer simulations [26, 27]. 

A review of computer modeling studies of nanomaterials in biological environ-
ment was recently published by Yarovski et al. [12]. Conformational changes of pro-
teins and nucleic acids induced by nanoparticles may result in amyloid aggregation 
[12]. The effect of nanoparticles on amyloid aggregation was experimentally studied 
also at our department. Moreover, small molecules were identified that can efficiently 
influence the amyloid aggregation. In order to better understand the effect of these 
molecules we performed “In Silico” binding studies.  

At first the insulin native structure (Figure 3 top left) and the unfolded dimer (top 
right) were optimized. Determination of the possible binding sites of these structures 
was the next step in the computational protocol. This was done using the SiteMap 
[28] program of Schrodinger LLd. The same molecules that were used in the experi-
mental part of the study [29] were then docked into the binding sites using the Auto-
Dock Vina program [7]. Although this program did not belong to the “preferential” 
docking choices (see Figure 2), it outperforms the “parent” AutoDock. The reason for 
smaller usage is simple: the novel AutoDock Vina methodology was published very 
recently in 2010. In comparison to the more older and popular AutoDock the docking 
efficiency was significantly improved from 49% (AutoDock) to 78% (Autodock Vi-
na) as was shown on the training set. 

The results of the computational modeling of small molecule binding to insu-
lin/native structure versus insulin/amyloid aggregate were very promising. We were 
able to identify the best binder in global agreement with the experimental binding 
study. This confirmed that both, the protein model with the calculated binding site as 
well as the Vina method were chosen properly to model the binding of the small or-
ganic molecules, namely phytoalexins. 
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Fig. 3. Possible mechanism of the amyloid aggregation of insulin. 1. The helical segment of the 
A (red) and B (blue) chain can unfold into elongated sheet-like monomer. The fold-
ing/unfolding can be a reverse procedure. 2. The monomer can dimerize with “zipper”-like 
stabilization of the amino acid side chains. 3. Further stabilization comes from sandwich-like 
structure. 4. Equivalent stabilization appears during the fibrillization resulting in extended 
insulin amyloid aggregate. The coordinates for the starting amyloid fibril structures were down-
loaded from http://people.mbi.ucla.edu/sawaya/jmol/fibrilmodels. 

4  “In Silico” arrays in protein-ligand interaction studies 

All our preliminary testings of AutoDock Vina indicated that the program can reason-
ably predict the binding affinities of small molecules. Accordingly, we extended our 
study towards “In Silico” lectin arrays and performed huge number of docking calcu-
lations.  

We constructed the array as follows: one dimension of the array was relatively 
small and was composed from 6 lectin molecules, Galectin-1, Galectin-3, Galectin-4, 
Galectin-7, Galectin-8 and Galectin-9. Galectins belong to the class of galactose bind-
ing lectins. The other dimension of the array was significantly larger and was com-
posed from libraries of small molecules. These libraries belong to the ZINC database 
and we were using the following subsets: Asinex with around 370,000 compounds, 
Otava (~330,000 compounds) and the database of Natural products (~90,000 com-
pounds). This in total is close to 790,000 compounds. The virtual screening thus 
needed to run around 4,740,000 computations. Such large high-throughput computa-
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tion task was accomplished using the Torque/Maui batch system. In addition, there 
were 9 geometries stored in each file resulting from successful docking. We used a 
special (self written) software in order to sort and analyze such a huge dataset and to 
select the best binders for each galectin under study. The three database sets, Asinex, 
Otava and the Natural compounds were analyzed separately. 

Figure 4 illustrates part of the accomplished results. The best binders from the Nat-
ural products database are visualized here. Although the six galectins have similar 
binding sites, three of them (Galectin-3, Galectin-4 and Galectin-8) bind different 
small molecules. The other three galectins do not exhibit selectivity in the binding. 
The same small molecule is the preferred binder for Galectin-1, Galectin-7 and Galec-
tin-9. Further modeling studies are required here to modify the small molecule in 
order to gain larger binding selectivity. 

 

 
Fig. 4. The best binders to the Galectins under study as resulted from the database of the Natu-
ral Compounds. The galectins where the same ligand is the best binder are highlighted red in 
italic. The van der Waals protein surface of the galectins is colored according electrostatic 
potential. The ligand atoms are colored as follows: carbon in green, oxygen in red and nitrogen 
in blue.  
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5 Conclusions and outlooks 

We succeeded to implement, test and use an important set of programs and gain sig-
nificant speedup resulting from GPGPU. We also succeeded to enhance the efficiency 
of high-throughput computing by running around 100,000 docking runs/day. In addi-
tion to our former efforts to build an efficient international virtual computational la-
boratory for biomolecular modeling [30], our interest was further expanded overseas. 
Our recent attention is devoted to establish a joint virtual computation laboratory 
between Academia Sinica, Taiwan and IEP SAS in Kosice, Slovakia. Within this 
project, a number of packages developed in the Laboratory of Statistical and Compu-
tational Physics (Taiwan), like SMMP [31], ARVO [32], CAVE [33], etc. will be 
upgraded to include the GPU supporting software. 
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