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Overview

• Reading
– S&S: Chapter 7

• Skim sections since mostly described using BJT circuits.  Lecture notes focus on 
MOS circuits.

• Supplemental Reading
– Razavi, Design of Analog CMOS Integrated Circuits: Chapter 6

• Background
– So far, our treatment of small-signal analysis of amplifiers has been for low 

frequencies where internal capacitances do not affect operation. However, 
we did see that internal capacitances do exist and we derived the fT of 
transistors.  Moreover, we spent some time looking at amplifiers modeled 
with a single pole.  Now, we will see how these capacitances affect the 
frequency response of amplifiers.
To fully understand and model the frequency response of amplifiers, we 
utilize Bode plots again. We will use a technique called open-circuit time 
constants (OCTs) to approximate frequency response calculations in the 
presence of several capacitors and and Miller’s theorem to deal with 
bridging capacitors.
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Amplifier Transfer Function

• Voltage-gain frequency response of amplifiers seen so far take one of two forms
– Direct-Coupled (DC) amplifiers exhibit low-pass characteristics – flat gain from DC to 

ωH
– Capacitively coupled amplifiers exhibit band-pass characteristics – attenuation at low 

frequency due to impedance from coupling capacitances increasing for low frequencies
• We will focus on the high-frequency portion of the response (ωH)

– Gain drops due to effects of internal capacitances of the device
• Bandwidth is the frequency range over which gain is flat

– BW = ωH or ωH-ωL ≈ ωH (ωH >> ωL)
• Gain-Bandwidth Product (GB) – Amplifier figure of merit

– GB ≡ AMωH
where AM is the midband gain

– We will see later that it is possible to trade off gain for bandwidth
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Gain Function A(s)

• We can represent the frequency dependence of gain with the following 
expression:

– Where FL(s) and FH(s) are the functions that account for the frequency 
dependence of gain on frequency at the lower and upper frequency ranges

– We can solve for AM by assuming that large coupling capacitors are short 
circuits and internal device capacitances are open circuits (what we have 
done so far for low-frequency small-signal analysis)
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High-Frequency Response

• We can express function FH(s) with the general form:

• Where ωP and ωZ represent the frequencies of high-frequency poles and zeros
• The zeros are usually at infinity or sufficiently high frequency such that the numerator 1 

and assuming there is one dominant pole (other poles at much higher frequencies), we can 
approximate the function as…

– This simplifies the determination of the BW or ωH

• If a dominant pole does not exist, the upper 3-dB frequency ωH can be found from a plot of 
|FH(jω)|. Alternatively, we can approximate with following formula (see S&S p593 for 
derivation).

– Note: if ωP1 is a dominant pole, then reduces to ωH=ωP1
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Open-Circuit Time Constant Method

• It may be difficult to find the poles and zeros of the system (which is usually the 
case).  We can find approximate values of ωH using the following method.

– We can multiply out factors and represent FH(s) in an alternative form:

– Where a and b are coefficients related to the zero and pole frequencies
– We can show that 

and b1 can be obtained by considering the various capacitances in the high-
frequency equivalent circuit one at a time while reducing all other capacitors 
to zero (or open circuits); and calculating and summing the RC time 
constant due to the circuit associated with each capacitor.

– This is called the open-circuit time constant method (OCT)
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Calculating OCTs

The approach:
• For each capacitor: 

– set input signal to zero
– replace all other capacitors with open circuits
– find the effective resistance (Rio) seen by the capacitor Ci

• Sum the individual time constants (RCs or also called the open-circuit time 
constants)

• This method for determining b1 is exact.  The approximation comes from using 
this result to determine ωH.

– This equation yields good results even if there is no single dominant pole 
but when all poles are real

• We will see an example of this method when we analyze the high-frequency 
response of different amplifier topologies
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Miller’s Theorem

• Before we begin analyzing the high-frequency response of amplifiers, there is an important 
phenomenon that we should first investigate called “Miller Effect”
Consider the circuit network below on the right with two nodes, 1 and 2.  An admittance Y 
(Y=1/Z) is connected between the two nodes and these nodes are also connected to other 
nodes in the network. Miller’s theorem provides a way for replacing the “bridging” 
admittance Y with two admittances Y1 and Y2 between node 1 and gnd, and node 2 and 
gnd.

– The relationship between V2 and V1 is given by K=V2/V1

– To find Y1 and Y2

Y
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High-Frequency Response of CS Amp

• Take the following circuit and investigate its high-frequency response
– First, redraw using a high-frequency small-signal model for the nMOS

• There are two ways to find the upper 3-dB frequency ωH

– Use open-circuit time constant method
– Use Miller’s theorem
– Brute force calculations to find vout/vin

• Let’s investigate them all
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Using OCT on CS Amplifier

• Find the RC time constants associated with Cgd and Cgs in the following circuit

• Replace Cgd with an open-ckt and find the resistance seen by Cgs

• Replace Cgs with an open-ckt and find the resistance seen by Cgd
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Using OCTs Cont’d

• Summing to two time constants yields ωH

– From the above equation, it is not difficult to imagine that Cgd has a more 
significant effect on reducing BW

– The resulting frequency dependence of gain is…

• Let’s compare this result with what we get using Miller’s theorem 
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Using Miller’s Theorem on CS Amplifier

• Redraw the high-frequency small-signal model using Miller’s theorem

– Assuming a dominant pole introduced by Cgd in parallel with Cgs

– Miller multiplication of Cgd results in a large input capacitance
• Notice that this approximation for ωH is close to the approximation found using OCT 

assuming that RsCgd(1+gmRL’) dominates

• Let’s verify our assumptions by deriving the exact high-frequency transfer function of the CS 
amplifier
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High-Frequency Response of CS Amplifier

• Replace the input source and series resistance with a Norton equivalent

– The exact solution gives a zero (at a high frequency) and two poles
– Notice that the s term is the same as the solution using the OCT method

• Unfortunately, the denominator is too complicated to extract any useful info…  
So, assuming the two poles are widely separated (greater than an order of 
magnitude), we can rewrite the expression for the denominator as…
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HF Response of CS Amplifier

• Rewrite the denominator as:

– And from the solution on the previous slide we can write…

• So the second pole is usually at a much higher frequency and we can assume a 
dominant pole

• Using either Miller’s theorem or OCTs enables a way to quickly find 
approximations of the amplifier’s high-frequency response
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Frequency Response of CG Amplifier

• One way to avoid the frequency limitations of Miller multiplication of Cgd is to utilize 
a CG amplifier configuration

• Using OCT method, we find two time constants
– At the input (source node)

– At the output (drain node)

• The output usually drives additional load capacitance such that the output pole is 
dominant

• The frequency response of CG amplifiers is when combined with a CS stage to 
build a cascode circuit
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Cascode Stage

• Cascoding enables high bandwidth by suppressing Miller multiplication of Cgd. Let’s 
investigate how with the following high-frequency model of a cascode stage.

– Use OCT method to find the time constants associated with each capacitor.  
The time constant associated with Cgd1 is…
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Frequency Response of Source Followers

• Start with a high-frequency small-signal model of the source follower circuit

– Directly solving for vout/vin yields:

• The zero is due to Cgs that directly couples the signal from the input to the output
– If poles are far apart, then the s term represents the dominant pole
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More on Source Follower

• Other important aspects of a source follower are its input and output 
impedances (since they are often used as buffers)

• Let’s calculate the input impedance using the high-freq small-signal 
models

• Now calculate the output impedance (ignoring gmb for simplicity)

– At low frequency, Zout ≈ 1/gm

– At high frequency, Zout ≈ Rs

– Shape of the response depends on the relative size of Rs and 1/gm
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Differential Pair

• We have seen that a symmetric differential amplifier can be analyzed with a 
differential half circuit.  This still holds true for high-frequency small-signal 
analysis.  

– The response is identical to that of a common-source stage

RD RD

I

vout

+vd/2

-vd/2

Rs

Rs

Rs

Cgs

gmvgs

Cdb

Cgd

voutvd/2 RD



ES154 - Lecture 17Wei 20

High-Frequency CMRR

• The CMRR of a differential pair degrades at high frequency due to a 
number of factors.  The most important is the increase in CM gain with 
frequency due to capacitance on the tail node.

• Use the common-mode equivalent half circuit to understand how CM 
gain increases with frequency

– Draw the small-signal equivalent model and see the effect of CTAIL
on the vout/vin transfer function

– Zero at ωZ = 1/roCTAIL (since ro is big, ωZ occurs at a low frequency)
– There are additional poles at higher frequencies due to CTAIL and 

other internal capacitances (that we have ignored)
• The zero causes the CM gain to increase with frequency until the higher 

frequency poles kick in CMRR degrades due to the zero
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HF CMRR plots

• The impact of the zero in the CM gain on CMRR can 
be illustrated as shown

– Remember CMRR = Ad/Acm

• There is a trade off between CMRR and voltage 
headroom

– Wider current source devices enable lower vds

– Wider current source device means larger CTAIL
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Next Time

• Reading
– S&S Chapter 8

• Supplemental Reading
– Razavi: Chapter 8

• What to look forward to…
– Negative feedback for amplifiers was invented in 1927 by Harold Black to 

stabilize the gain and correct the distortion of amplifiers used in long-
distance telephone networks.  Negative feedback (as well as positive 
feedback) is widely used in analog circuits today.  In fact, we used negative 
feedback when we constructed op amps with gain set using resistors.  
Throughout the next lecture, we will investigate the general theory of 
feedback and look at four basic feedback topologies.  We will also learn 
how to understand and analyze the stability of amplifiers.


