
Articles

FALL 2015 35

CiteSeerX is a digital library search engine providing
free access to more than 5 million scholarly docu-
ments. In 1997 its predecessor, CiteSeer, was devel-

oped at the NEC Research Institute, Princeton, NJ. The serv-
ice transitioned to the College of Information Sciences and
Technology at the Pennsylvania State University in 2003.
Since then, the project has been directed by C. Lee Giles.
CiteSeer was the first digital library search engine to provide
autonomous citation indexing (Giles, Bollacker, and
Lawrence 1998). After serving as a public search engine for
nearly eight years, CiteSeer began to grow beyond the capa-
bilities of its original architecture. It was redesigned with a
new architecture and new features, such as author and table
search, and renamed CiteSeerX.

CiteSeerX is unique compared with other scholarly digital
libraries and search engines. It is an open access digital library
because all documents are harvested from the public web.

Copyright © 2015, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

CiteSeerX: AI in a
Digital Library Search Engine

Jian Wu, Kyle William, Hung-Hsuan Chen, Madian Khabsa,
Cornelia Caragea, Suppawong Tuarob, Alexander Ororbia,

Douglas Jordan,Prasenjit Mitra, C. Lee Giles

n CiteSeerX is a digital library search
engine that provides access to more than
5 million scholarly documents with
nearly a million users and millions of
hits per day. We present key AI tech-
nologies used in the following compo-
nents: document classification and de-
duplication, document and citation
clustering, automatic metadata extrac-
tion and indexing, and author disam-
biguation. These AI technologies have
been developed by CiteSeerX group
members over the past 5–6 years. We
show the usage status, payoff, develop-
ment challenges, main design concepts,
and deployment and maintenance
requirements. We also present AI tech-
nologies, implemented in table and
algorithm search, that are special search
modes in CiteSeerX. While it is chal-
lenging to rebuild a system like Cite-
SeerX from scratch, many of these AI
technologies are transferable to other
digital libraries and search engines.

Articles

36 AI MAGAZINE

This is different from arXiv, Harvard ADS, and
PubMed, where papers are submitted by authors or
pushed by publishers. Unlike Google Scholar and
Microsoft Academic Search, where a significant por-
tion of documents have only metadata (such as titles,
authors, and abstracts) available, users have full-text
access to all papers searchable in CiteSeerX. In addi-
tion, CiteSeerX keeps its own repository, which
serves cached versions of papers even if their previ-
ous links are not alive any more. In additional to
paper downloads, CiteSeerX provides automatically
extracted metadata and citation context, which
enables users to locate the relevant paragraphs and
sentences. CiteSeerX provides all metadata through
an OAI (Open Archive Initiative) service interface
and on Amazon S3 (Amazon charges based on usage).
Document metadata download service is not avail-
able from Google Scholar and only recently available
from Microsoft Academic Search. Finally, CiteSeerX
performs automatic extraction and indexing on
paper entities such as tables and figures, a capability
rarely seen in other scholarly search engines. For all
features, CiteSeerX extracts information from the
PDFs of scholarly documents, since this is their most
common format.

CiteSeerX also provides a digital library search
engine framework that can be deployed on similar
sites. This framework, called SeerSuite (Teregowda et
al. 2010), has been under active development and
applied to other digital libraries. Some services are
also available online, such as text extraction
(Williams et al. 2014a).

AI techniques are used in many CiteSeerX compo-
nents, including document classification, de-dupli-
cation, automatic metadata extraction, author dis-
ambiguation, and more. Here, we describe the AI
techniques used in these components and their per-
formance. We also briefly discuss some AI techniques
that are under active development.

CiteSeerX Overview
Figure 1 illustrates the top-level architecture of the
CiteSeerX system. At the front end, all user requests
are processed by the CiteSeerX web service, which is
supported by three data servers. Searching requests
are handled by the index server, cached full-text doc-
uments are provided by the repository server, and all
metadata are retrieved from the database server. At
the back end, the web crawler harvests PDF files
across the World Wide Web. These files are passed to
the data-extraction module where text contents are
extracted and classified. Scholarly documents are
then parsed and the metadata, such as titles, authors,
and abstracts, are extracted. The ingestion module
writes all metadata into the database. The PDF files
are renamed with document IDs and saved to the
repository server. Finally, the index data are updated.
This architecture was recently migrated from a phys-

ical machine cluster to a private cloud using virtual-
ization techniques (Wu et al. 2014). CiteSeerX exten-
sively leverages open source software, which signifi-
cantly reduces development effort. Red Hat
Enterprise Linux (RHEL) 5 and 6 are the operating
systems for all servers. heartbeat-idirectord provides
virtual IP and load-balancing services. Tomcat 7 is
used for web service deployment on web and index-
ing servers. MySQL is used as the database manage-
ment system to store metadata. Apache Solr is used
for the index, and the Spring framework is used in
the web application.

Highlights of AI Technologies
In this section, we highlight four AI solutions that are
leveraged by CiteSeerX and that tackle different chal-
lenges in metadata extraction and ingestion modules
(tagged by C, E, D, and A in figure 1). Document clas-
sification (tag C) is used to separate academic papers
from all PDF documents harvested by the web
crawler; metadata extraction (tag E) is used to extract
header and citation information automatically from
academic papers; de-duplication (tag D) eliminates
duplicate and near-duplicate academic papers based
on their metadata and helps to construct the citation
graph; author disambiguation (tag A) attempts to dif-
ferentiate authors that share the same names or
group name variants that belong to the same author.
Author disambiguation enhances search accuracy by
author names. It also enables better bibliometric
analysis by allowing a more accurate counting and
grouping of publications and citations. Overcoming
these four challenges is critical to retrieving accurate
and clean metadata used for searching and scientific
studies. We also present AI technologies implement-
ed in two specific search engines: table and algorithm
search developed on top of CiteSeerX.

Document Classification
Textual contents extracted from crawled documents
are examined by a binary filter, which judges whether
they are scholarly or not. Here scholarly documents
include all conference papers, journal and transac-
tion articles, technical reports, books, and even slides
and posters as long as they are freely accessible
online. The current filter uses a rule-based model,
which looks for the reference sections identified by
key words such as references, bibliography, and their
variants. While this appears simple, it performs sur-
prisingly well with 80–90 percent precision and 70–
80 percent recall evaluated based on manually
labeled document sets. Here, the precision is defined
as the number of correctly identified scholarly docu-
ments over all the documents examined by the filter;
the recall is defined as the number of correctly iden-
tified scholarly documents over all scholarly docu-
ments in the labeled sample. The relatively low recall
is caused by scholarly documents not containing any

Articles

FALL 2015 37

of the key words/key phrases above, for example,
invited talks, slides, posters, and others. In some
papers, such sections are called literature cited or notes.
The 10–20 percent of false positives are due to non-
scholarly documents such as government reports,
resumes, newsletters, and some PDF files simply con-
taining these key words/key phrases in their text bod-
ies.

We have developed a sophisticated AI approach to
increase the classification recall and precision
(Caragea et al. 2014b). The new approach utilizes
structural features to classify documents. We consid-
ered four types of structural features. File-specific fea-
tures include file size and page count. Text-specific
features include document length in terms of char-
acters, words, and lines, the average number of
words/lines per page, the reference ratio (the number
of references and reference mentions divided by the
total number of tokens in a document), the space
ratio (the percentage of space characters), the symbol
ratio (the percentage of words that start with nonal-
phanumeric characters), the length ratio (the length
of the shortest line divided by the longest line), the
number of lines that start with uppercase letters and
with nonalphanumeric characters. Section-specific
features include whether the document has section
headings such as abstract, introduction or motiva-
tion, conclusions, references or bibliography, and
chapter. Containment features are self references
such as this paper, this book, this thesis, and others.

To evaluate this new classification approach, we
draw two random samples from the crawl repository
(hereafter sample C) and from the CiteSeerX produc-
tion repository (hereafter sample P). The crawl repos-

itory is populated by the web crawler, which active-
ly crawls the web (Wu et al. 2012) and downloads
PDF documents. The production repository contains
academic papers selected from the crawl repository
based on certain criteria along with associated meta-
data. Obviously, sample C has more diverse docu-
ment types than sample P. The gold standard was
generated by manually labeling documents in these
two samples. The performance was evaluated with
multiple classifiers, all of which are trained on the
features above. The results on sample C indicate that
the support vector machine (SVM) (Cortes and Vap-
nik 1995) achieves the highest precision (88.9 per-
cent), followed by the logistic regression classifier
(Bishop 2006), which achieves a slightly lower preci-
sion (88.0 percent). The naïve Bayes classifier
achieves the highest recall (88.6 percent) at the sac-
rifice of a low precision (70.3 percent). Sample P
yields similar results. In either sample, the classifiers
based on the structural features significantly outper-
form the baseline in terms of precision, recall, and
accuracy. We find the top three informative features
of sample C are reference ratio, appearance of refer-
ence or bibliography, and document length; the top
three for sample P are page count, number of words,
and number of characters. We are working toward
extending this binary classifier such that it is able to
classify documents into multiple categories includ-
ing papers, reports, books, slides, posters, and
resumes. Documents in these categories can be
aligned on topics and displayed on the same web
page, which helps users to retrieve information more
efficiently.

Figure 1. Top Level Architecture of CiteSeerX.

users

search index

repository

database

web crawler

metadata extraction

ingestion

CiteSeerX
C E

D A

frontend backend

Articles

38 AI MAGAZINE

Metadata Extraction
Document metadata is extracted from textual con-
tent extracted from PDF files crawled from the web.
This step is a prerequisite for documents to be
indexed and clustered. The header metadata includes
15 fields: title, authors, affiliation, address, note,
email, date, abstract, introduction, phone, key word,
web, degree, publication number, and page informa-
tion. The citation metadata basically contains the
same fields as the header, but it has to be located and
parsed by a different algorithm due to its special for-
mat.

Header Extraction
Header extraction is performed using SVMHeader-
Parse (Han et al. 2003), which is an SVM-based head-
er extractor. The idea is to classify textual contents
into multiple classes, each of which corresponds to a
header metadata field. Although regular expressions
and rule-based systems do not require any training
models and are generally faster, they depend on the
application domain and a set of rules or regular
expressions that can only be set by domain experts.
SVMs are well known for their generalization per-
formance in handling high dimensional data. In
SVMHeaderParse, the traditional binary SVM is
extended to a multiclass classifier. The whole process
can be divided into three phases: feature extraction,
line classification, and metadata extraction.

SVMHeaderParse first extracts word-specific and
line-specific features from textual content. The word-
specific extraction is performed using a rule-based,
context-dependent word clustering method. The
rules are extracted from various domain databases,
including the standard Linux dictionary, Bob Bald-
win’s collection of 8441 first names and 19,613 last
names, Chinese last names, U.S. state names and
Canada province names, USA city names, country
names, and month names. We also construct domain
databases from training data: affiliation, address,
degree, pubnum, note, abstract, introduction, and
phone. Text orthographic properties are also extract-
ed, for example, capitalization. The domain data-
base’s words and bigrams are then clustered based on
their properties. For example, an author line Chungki
Lee James E. Burns is represented as Cap1NoneDict-
Word: :MayName: :Mayname: :SingleCap: :MayName:
after word clustering.

Line-specific features are also extracted such as the
number of words a line contains, line number, the
percentages of dictionary and nondictionary words,
the percentage of date words, and the percentage of
numbers in the line.

There are also features representing the percent-
ages of the class-specific words in a line, for instance,
the percentage of affiliation words, address words,
date words, degree words, phone words, publication
number words, note words, and page number words
in a line.

The line classification algorithm includes two
steps: independent line classification and contextual
line classification. In step 1, 15 classifiers (corre-
sponding to 15 header fields) are trained on 15
labeled feature vector sets, each of which is generat-
ed by collecting all feature vectors labeled as a cer-
tain class. The goal is to classify text lines into a sin-
gle class or multiple classes. In the second step, the
classification is improved by taking advantage of the
context around a line. Specifically, the class labels of
the N lines before and after the current line L are
encoded as binary features and concatenated to the
feature vector of line L formed in step 1. A line clas-
sifier is then trained based on these labeled feature
vectors with additional contextual information. Text
lines are then reclassified by the contextual classi-
fiers, which is repeated such that, in each iteration,
the feature vector of each line is extended by incor-
porating the neighborhood label information pre-
dicted in the previous iteration, and converges when
the percentage of lines with new class labels is lower
than a threshold.

The key to extract metadata from classified lines is
identifying information chunk boundaries. Here, we
focus on author name extraction. While it is rela-
tively easy to identify chunks in punctuation-sepa-
rated multiauthor lines, it is challenging to identify
chunks in space-separated multiauthor lines. First,
we generate all potential name sequences based on
predefined name patterns; second, each name
sequence is manually labeled; third, an SVM classifi-
er is trained based on the labeled sample; finally, the
potential name sequences are classified and the one
with the highest score is predicted as the correct
name sequence. An example is presented in figure 2.
The core software we use for SVM training and test-
ing is SVMlight (Joachims 1999).

To evaluate the extractor, we use a data set con-
taining 935 labeled headers of computer science
papers (Seymore, Mccallum, and Rosenfeld 1999
[hereafter S99]). The overall accuracy is 92.9 percent,
which is better than the accuracy (90 percent) report-
ed by S99. Specifically, the accuracies of author, affil-
iation, address, and publication number classes are
improved by 7 percent, 9 percent, 15 percent, and 35
percent, respectively. Note that the evaluation above
was based on a set of high-quality extracted text files.
In real situations, the extracted metadata may be
noisy if the input text files are poorly extracted from
the original PDF files. In addition, the design of the
current classifier is optimized for computer science
papers. It does not necessarily perform equally well
for other subject domains such as medical science,
physics, and chemistry. We are planning a new
extractor that autonomously chooses a domain-
dependent model to extract header metadata.

Citation Extraction
CiteSeerX uses ParsCit (Councill, Giles, and Kan
2008) for citation extraction, which is an implemen-

tation of a reference string parsing package. The core
of ParsCit is a conditional random field (CRF) (Laf-
ferty et al. 2001) model used to label the token
sequences in the reference strings. This core was
wrapped by a heuristic model with added function-
ality to identify reference strings from plain text files
and to retrieve citation contexts. We summarize the
learning model of ParsCit next.

In the reference section of a paper, each reference
string can be viewed as a set of fields (for example,
author, title, year) with punctuations or spaces as
delimiters. We break down this string into a sequence
of tokens, each of which is assigned a label from a set
of classes (figure 3). To classify a token, we can make
use of any information derived from the reference
string including previous classification results. We
encode separate features for each token using multi-
ple types of features. Features include the ortho-
graphic cases, presence of punctuation, numeric
properties, token location within the reference string,
whether the token is a possible publisher name, a sur-
name, a month name, and others.

ParsCit attempts to find the reference section
before parsing the reference string. For generality,
ParsCit is designed to be independent of specific for-
matting and finds reference strings using a set of
heuristics given a plain UTF-8 text file. It first search-
es for sections labeled references, bibliography, or com-
mon variations of these key phrases. If it finds a label
too early in the document, it seeks subsequent
matches. The final match is considered the starting
point of the reference section. The ending point is

found by searching for subsequent section labels
such as appendices, acknowledgments, or the docu-
ment end.

The next phase is to segment individual reference
strings. We do this by constructing a number of reg-
ular expressions matching common marker styles,
for example, [1] or 1, then counting the number of
matches to each expression in the reference string
text. The regular expression with the greatest num-
ber of matches is indicated. If no reference string
markers are found, several heuristics are used to
decide where individual reference starts and ends
based on the length of previous lines, strings that
appear to be author name lists, and ending punctu-
ation.

The next step is to tag individual reference strings
automatically using CRF modeling. Each tagged field
is normalized into a standard representation. This
makes the structure of metadata more uniform and
easy for future analysis.

ParsCit also extracts citation context based on the
reference marker discovered above by scanning the
body text and locating citations matching a particu-
lar reference string. Citation context allows a user to
quickly and easily see what other researchers say
about an article of interest. For marked citation lists,
the expression can be a square bracket or other par-
enthetical expression. For unmarked citation lists
(such as Wu and Giles [2012]), the expression is con-
structed using author last names.

The evaluations were based on three data sets:
Cora (S99), CiteSeerX, and the CS data set (Cortez et

Articles

FALL 2015 39

Figure 2. Example of Potential Name Sequence.

score label possible name sequence

1.640 ACCEPT Alan Fekete | David Gupta | Victor Luchangco | Nancy Lynch | Alex Shvartsman

0.900 REJECT Alan Fekete | David Gupta | Victor Luchangco Nancy | Lynch Alex Shvartsman

0.006 REJECT Alan Fekete | David Gupta Victor | Luchangco Nancy | Lynch | Alex Shvartsman

Figure 3. A Labeled Reference String.

Each green (gray) bracket represents a token.

<author> A. Bookstein and S. T. Klein,</author> <9tle>

1995.</date>

Detec9ng content-bearing words by serial clustering,</9tle> <book9tle> Proceedings of the Nineteenth Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval,</book9tle><pages> pp. 319327,</pages> <date>

al. 2007). The results show that the performance of
ParsCit is comparable to the original CRF-based sys-
tem in Peng and Mccallum (2006). ParsCit outper-
forms FLUX-CiM (Cortez et al. 2007), which is an
unsupervised reference string parsing system, on the
key common fields of author and title. However,
ParsCit makes some errors in not segmenting vol-
ume, number, and pages, as ParsCit currently does
not further tokenize beyond white spaces (for exam-
ple, 11(4):11-22 versus 11 (4) 11 - 22). It is desirable
to incorporate some preprocessing heuristics for
ParsCit to correct for such errors.

Document De-Duplication
and Citation Graph
Duplication is rare in submission-based digital
libraries, such as arXiv and PubMed. For a crawl-
based digital library, such as CiteSeerX, document
duplication is inevitable and should be handled
intelligently. Two types of duplication are consid-
ered: bitwise and near duplication.

Bitwise duplicates are documents that are identical
in all bits. Web crawlers may download the same doc-
ument in two crawl batches, but the system should
keep only the first copy. Bitwise duplicates have the
same cryptographic hash values, such as SHA-1, so as
long as the new document has exactly the same SHA-
1 as an existing one in the database, it is dropped
immediately.

Near duplicates (NDs) refer to documents with
similar content but minor differences, for example, a
preprint and a published version of the same paper.
Intuitively, NDs can be detected if two papers have
the same title and authors. However, matching
title/author strings directly is inefficient because it is
sensitive to the text extraction and parsing results,
which are noisy in general.

NDs in CiteSeerX are detected using a key-map-
ping algorithm, applied after the metadata extraction
module but before papers are ingested. Most papers
we crawled do not contain complete publication
information, that is, journal name, year, and page
numbers, so we have to rely on title and author infor-
mation, which appear in almost all papers. When a
document is imported, a set of keys is generated by
concatenating normalized author last names and
normalized titles. For example, two keys are generat-
ed for the paper Focused Crawling Optimization by

Jian Wu: wu_focuscrawloptimize, and wu_crawlopti-
mize. The first key is matched against all keys in the
key-map database table. If it is not found, a new doc-
ument cluster is created with the above two keys, and
the metadata extracted from this paper is imported as
the metadata of the new cluster. If it matches an
existing key in the table, this paper is merged into the
cluster owning that key. In either case, the two keys
above are written into the keymap table as cluster
keys. If a paper contains multiple authors, additional
keys are generated using the second author’s last
name. Note that an offset title is used in key genera-
tion, that is, crawloptimize, in which the first word is
removed from the original title. These provide alter-
native keys in paper matching.

An alternative to the key-mapping algorithm
would be a full-text-based approach. This approach
would not be susceptible to errors in metadata extrac-
tion; however, it could still suffer from other short-
comings.

We conducted an experiment to evaluate the per-
formance of the key-mapping algorithm and com-
pare it with the state-of-the-art simhash approach
(Charikar 2002). In the experiment, 100,000 docu-
ments were randomly sampled from the CiteSeerX
collection. Documents containing fewer than 15
tokens were filtered after standard information
retrieval preprocessing such as stemming and remov-
ing stop words, resulting in a collection of 95,558
documents. Documents belonging to the same clus-
ter were grouped. The precision was estimated by
manually inspecting a random sample of 20 docu-
ment pairs belonging to the same cluster. The recall
was estimated based a set of 360 known ND pairs
from a previous study (Williams and Giles 2013). We
check each of these 360 pairs to determine if they had
been assigned to the same cluster and recall was cal-
culated as the proportion of the 360 pairs. Table 1
compares the performance of these two algorithms.
The precision and recall of the simhash algorithm are
quoted from Williams and Giles (2013).

As can be seen from table 1, the simhash method
outperforms the key-mapping method. The main rea-
son is that the key-mapping method is largely
dependent on the quality of the author and title
extraction since any errors could result in incorrect
keys. The results are also only preliminary due to the
relatively small sample size and more analysis is
needed before strong conclusions can be drawn.
Actually, there are cases where the key-mapping
approach works better. For instance, given a pair con-
sisting of a paper and an extended version of that
paper, the full-text based methods may not consider
them NDs due to there potentially being large differ-
ences in their text content. The key-mapping
approach, however, may still group the papers
together as they may have the same title and authors.
Whether or not this is desirable will vary depending
on the application.

Articles

40 AI MAGAZINE

Precision Recall
key-mapping 0.65 0.67
simhash 0.94 0.88

Table 1. Performance Comparison of ND Algorithms.

Aside from full-text documents, a document clus-
ter may also contain citations, which typically con-
tain title, author, venue, and year information. When
a citation is parsed from a paper, it is merged into a
document cluster in the same way as a document.
The concept of document cluster integrates papers
and citations, making it more accurate to perform
statistical calculations, ranking, and network analy-
sis. The citation graph is naturally generated on top
of document clusters. Each directional edge repre-
sents a citation relationship. Document clusters are
modified when a user correction occurs. When a user
corrects metadata of a paper, it is removed from its
previous cluster and put into a new cluster based on
the corrected metadata. The previous cluster is delet-
ed if it becomes empty.

Author Disambiguation
In addition to document search, another important
function of CiteSeerX is author search, which enables
users to find an author’s basic information and pre-
vious publications. Author search is also the founda-
tion of several other services we provide, such as col-
laborator search (Chen et al. 2011) and expert search
(Chen et al. 2013).

To search for an author, a typical query string is the
author’s name. However, processing a name-based
query is complex. First, different authors may share
the same name. It is not straightforward to decide if
the John Smith of one paper is the same as the one in
another paper. Second, one author may have several
name variations. For instance, Dr. W. Bruce Croft
could be interpreted as W. B. Croft or Bruce Croft. The
ambiguity of names is a common issue for most dig-
ital libraries.

To disambiguate authors, one could define a dis-
tance function between two authors and identify the
similarity between a pair of authors based on this dis-
tance function. However, a digital library usually
contains millions of papers and tens of millions of
un-disambiguated authors. It is infeasible to compare
each pair of authors. To reduce the number of com-
parisons, CiteSeerX groups names into small blocks
and claims that an author can only have different
name variations within the same block. Thus, we
only need to check name pairs within the same
block. CiteSeerX groups two names into one block if
the last names are the same and the first initials are
the same.

In many cases, simple name information alone is
insufficient for author disambiguation. Other infor-
mation related to authors is used including, but not
limited to, their affiliations, emails, collaborators
(coauthors), and contextual information, such as the
key phrases and topics of their published papers.
CiteSeerX relies on this additional information for
author disambiguation. For example, if we found
John Smith of paper A and J. Smith of paper B belong
to different affiliations then the two Smiths are less

likely to be the same person. However, if both papers
discuss similar topics and have a similar set of
authors, the two names are very likely to refer to the
same person. Specifically, CiteSeerX selects 12 fea-
tures for two target authors of two different papers,
including the similarity between two authors’s first
names, the similarity between their middle names,
the authoring orders in two papers, the similarity
between the emails of the first authors, the similari-
ty between the affiliations of the first authors in two
papers, the similarity between the author names of
in two papers, and the similarity between the titles of
two papers.

While we can classify authors by applying a super-
vised learning approach on the aforementioned fea-
tures, such a classification may output results that
violate transitivity principle. For example, even if
author A and author B are classified as one person,
and author B and author C are also classified as one
person, author A and author C may be classified as
two different persons. By applying density-based spa-
cial clustering of application with noise (DBSCAN), a
clustering algorithm based on the density reachabil-
ity of data points, CiteSeerX resolves most of these
inconsistent cases (Huang, Ertekin, and Giles 2006).
The remaining small portion of ambiguous cases are
those located at cluster boundaries. These authors
are difficult to disambiguate even manually due to
insufficient or incorrectly parsed author informa-
tion.

We have compared the accuracy of the author dis-
ambiguation problem using several supervised learn-
ing approaches, including random forest, support
vector machine, logistic regression, naïve Bayes, and
decision trees. We found that the accuracy achieved
by the Random Forest significantly outperforms the
other learning methods (Treeratpituk and Giles
2009), and its model can be trained within a reason-
able period. Thus, CiteSeerX applies Random Forest
on the 12 features we listed for author disambigua-
tion.

Table Extraction
CiteSeerX has partially incorporated a special mode
(Liu et al. 2007) to search tables in scholarly papers.
Tables are ubiquitous in digital libraries. They are
widely used to present experimental results or statis-
tical data in a condensed fashion and are sometimes
the only source of that data. However, it can be very
difficult to extract these tables from PDF files due to
their complicated formats and schema specification
and even more difficult to extract the data in the
tables automatically. CiteSeerX uses the table meta-
data extractor developed by Liu et al. (2007), which
comprises three major parts: a text information strip-
per, a table box detector, and a table metadata extrac-
tor.

The text information stripper extracts out the tex-
tual information from the original PDF files word by

Articles

FALL 2015 41

word by analyzing the output of a general text extrac-
tor such as PDFBox or PDFLib TET. These words are
then reconstructed with their position information
and written into a document content file, which
specifies the position, line width, and fonts of each
line. An example line in the file is

[X,Y]=[31,88] Width=[98] font=[14] Text=[This paper]

Based on the document content file, the tables are
identified using a box-cutting method, which
attempts to divide all literal components in a page

into boxes. Each box is defined as a rectangular region
containing adjacent text lines with a uniform font
size. The spacing between two text lines in each box
must be less than the maximal line spacing between
two adjacent lines in the same paragraph. Figure 4
illustrates the results of the box-cutting method
when applied on an article page. These boxes are
then classified into three categories: small-font, regu-
lar-font, and large-font, depending on how their font
sizes compare to the font size of the document body
text. Of course, other methods can be considered.

Articles

42 AI MAGAZINE

Figure 4. An Example of the Box-Cutting Result.

1

2 3

4

5

7

11

10

14

13

15

9

12

6

8

The next step is to find tables and their metadata
in these boxes (Liu et al. 2006). First, the algorithm
generates table candidates by matching small-font
boxes against a list of key words, such as Table and
TABLE. If it detects the tabular structure from white
space information, it confirms this box as a real table.
If the algorithm does not find any table candidates in
the first iteration, it starts the second iteration on reg-
ular-font boxes and then large-font boxes. Most
tables are in fact detected among small-font boxes.
Figure 4 shows that Box 12 is detected to contain the
key word Table. Its neighbor — Box 13 — is con-
firmed as the table body.

Work in this area is still of interest. The ICDAR
conference has held table competitions for several
years with the goal of improving extraction precision
and recall.

Algorithm Extraction and Indexing
Recently AlgorithmSeer, a prototype of the algorithm
search mode of CiteSeerX (Tuarob, Mitra, and Giles
2014) has been designed. In this section, we focus on
AI technologies used in algorithm extraction and
indexing.

Algorithms are ubiquitous in computer science
and related fields. They offer stepwise instructions for
solving computational problems. With numerous
new algorithms developed and reported every year, it
would be useful to build systems that automatically
identify, extract, index, and search this ever increas-
ing collection of algorithms. Such systems could be
useful to researchers and software developers looking
for cutting-edge solutions to their problems.

A majority of algorithms in computer science doc-
uments are represented as pseudocodes. We develop
three methods for detecting pseudocodes in scholar-
ly documents including a rule-based, a machine-
learning based, and a combined method. All meth-
ods process textual content extracted from PDF
documents. The rule-based method detects the pres-
ence of pseudocode captions using a set of regular
expressions that captures captions containing at least
one algorithm key word or its variants, for example,
algorithm, pseudocode, and others. This method yields
high detection precision (87 percent), but low recall
(45 percent), because a majority of pseudocode
(roughly 26 percent) does not have associated cap-
tions.

The machine-learning method directly detects the
presence of pseudocode content. This method relies
on the assumption that pseudocodes are written in a
sparse, programminglike manner, which can be visu-
ally spotted as sparse regions in documents. Our
experiments show that a sparse region contains at
least four consecutive lines, whose nonspace charac-
ters are less than 80 percent of the average number of
characters per line. We use 47 features to characterize
each sparse region, including a combination of font-
style based, context based, content based, and struc-

ture based features. The machine-learning method
can capture most noncaptioned pseudocodes, but
some still remain undetected. Such pseudocodes are
either written in a descriptive manner or are present-
ed as figures.

The combined method combines the benefits of
both rule-based and machine-learning methods
through a set of heuristics in two steps, (1) for a giv-
en document, run the rule-based and the machine-
learning methods; (2) for each pseudocode box
detected by the machine-learning method, if a
pseudocode caption detected by the rule-based
method is in proximity, the pseudocode box and the
caption are combined. The combined method
achieves a precision of 87 percent and a recall of 67
percent (Tuarob et al. 2013).

Indexable metadata of an algorithm includes cap-
tion, reference sentences, and synopsis. The former
two are directly extracted from the original text. The
synopsis is a summary of an algorithm, which is gen-
erated using a supervised learning approach to rank
and retrieve top relevant sentences in the document
(Bhatia et al. 2011). The synopsis generation method
employs a naïve Bayes classifier to learn features from
the captions and references. The features include
content-based and context-based features (Tuarob et
al. 2013). Again, algorithm search is still work in
progress with much left to do at this time.

Development and Deployment
Although CiteSeerX utilizes many open source soft-
ware packages, many of the core components are
designed and coded by CiteSeerX contributors. The
current CiteSeerX codebase inherited little from its
predecessor’s (CiteSeer) codebase. The core part of the
main web apps were written by Isaac Councill and
Juan Pablo Fernández Ramírez. Other components
were developed by graduate students, postdocs, and
software engineers, over at least three to four years.

Usage and Payoff
CiteSeer started running in 1998 and its successor

CiteSeerX has been running since 2008. Since then,
the document collection has been steadily growing
(see figure 5). The goal of CiteSeerX is to improve

the dissemination of and access to scholarly and sci-
entific literature. Currently, CiteSeerX has registered
users from around the world and is hit more than 2
million times a day. The download rate is about 3–
10 PDF files per second (Teregowda, Urgaonkar, and
Giles 2010). Besides the web search, CiteSeerX also
provides an OAI protocol for metadata harvesting

in order to facilitate content dissemination. By pro-
grammatically accessing the CiteSeerX OAI harvest

URL, it is possible to download metadata for all
CiteSeerX papers. We are receiving about 5000 OAI
requests each month on average. Researchers are

Articles

FALL 2015 43

fy the development of subdisciplines based on the
combination of DBLP and CiteSeerX data sets.
Recently, Caragea et al. (2014a) generated a large
cleaned data set by matching and merging CiteSeerX
and DBLP metadata. This data set contains cleaned
metadata of papers in both CiteSeerX and DBLP
including citation context, which is useful for study-
ing ranking and recommendation systems (Chen et
al. 2011). Other data sets have also been created (Bha-
tia et al. 2012).

Previously, the majority of CiteSeerX papers were
from computer and information sciences. Recently, a
large number of papers have been crawled and ingest-
ed from mathematics, physics, and medical science
by incorporating papers from open-access reposito-
ries, such as PubMed (subset), and crawling URLs
released by Microsoft Academic Search. It is chal-
lenging to extract metadata from noncomputer sci-
ence papers due to their different header and citation
formats. As a result, the current extraction tools need
to be revised to be more general and efficient for
papers in new domains. We are working to imple-
ment a conditional random field (CRF)–based meta-

interested in more than just our metadata but also
real documents. CiteSeerX usually receives a dozen
or so data requests per month through the contact

form on the CiteSeerX website (Williams et al.
2014b). Those requests include graduate students
seeking project data sets and researchers that are

looking for large data sets for experiments. For these
requests, dumps of our database are available on

Amazon S3. This alleviates our cost for distributing
the data since users pay for downloads.

The CiteSeerX (and CiteSeer) data have been used
in much novel research work. For example, the Cite-
Seer data was used to predict the ranking of comput-
er scientists (Feitelson and Yovel 2004). In terms of
algorithm design, Councill, Giles, and Kan (2008)
used CiteSeerX data along with another two data sets
to evaluate the performance of ParsCit. Madadhain
et al. (2005) used CiteSeerX as a motivating example
for JUNG, which is a language to manipulate, ana-
lyze, and visualize data that can be represented as a
graph or network. Pham, Klamma, and Jarke (2011)
studied the knowledge network created at the jour-
nal/conference level using citation linkage to identi-

Articles

44 AI MAGAZINE

Figure 5. Changes in the CiteSeerX Document Collection Since 2008.

The indexed counts reflect unique papers without ND.

1.89
2.9

5.62
6.15

7.93

13.02

21

0.61 1.38 1.66 1.93 2.35

3.78

5.10

0.48 0.83 1.02 1.22 1.54

2.89

4.00

0

5

10

15

20

25

2008 2009 2010 2011 2012 2013 2014

D
o
cu

m
en

ts
/m

ill
io
n

Year

CiteSeerX Document Collection

data extraction tool to replace SVMHeaderParse, and
rebuild the entire production database and reposito-
ry. We expect this to encourage users from multiple
disciplines to search and download scholarly papers
from CiteSeerX, and to be useful for studying cross-
discipline citation and social networks.

In addition to increasing the collection size, Cite-
SeerX also strives to increase metadata quality. For
example, we are using multiple data-cleaning tech-
niques to sanitize and correct wrong metadata. We
are also developing new algorithms to improve the
quality of text and metadata extraction. Users will
soon see cleaner and more accurate descriptions and
more reliable statistics.

Besides data services, CiteSeerX has released the
digital library search engine framework, SeerSuite
(Teregowda et al. 2010), which can be used for build-
ing personalized digital library search engines. As far
as we know, at least five other SeerSuite instances are
running in the world.

Main Design Concepts
While RHEL is the major development environment,
the application uses Java as the main programming
language for portability. The architecture of the web
application is implemented within the Spring frame-
work, which allows developers to concentrate on
application design rather than access methods con-
necting to applications, for example, databases. The
application presentation uses a mixture of Java serv-
er pages and JavaScript to generate the user interface.
The web application is composed of servlets, which
are Java classes used to extend the capabilities of web
servers (that is, Tomcat) by means of responding to
HTTP requests. These servlets interact with the index-
ing and database servers for key word search and gen-
erating document summary pages. They also interact
with the repository server to serve cached files.

We partition the entire data across three databases.
The main database contains document metadata and
is focused on transactions and version tracking. The
second database stores the citation graphs, and the
third stores user information, queries, and document
portfolios. The databases are deployed using MySQL
and are driven by InnoDB for its fully transactional
features with rollback and commit.

Metadata extraction methods are built on top of a
Perl script, with a multithread wrapper in Java. The
wrapper is responsible for acquiring documents from
the crawl database and repository, as well as control-
ling jobs. The Perl script assembles multiple compo-
nents such as text extraction, document classifica-
tion, and header and citation extraction. It works in
an automatic mode, in which each thread keeps pro-
cessing new batches until it receives a stop com-
mand. It is fast enough to extract one document per
second on average. The ingestion system is written in
Java, which contains methods to interact with the
extraction server, the database, the Solr index, and

Articles

FALL 2015 45

the repository servers. The crawl document importer
middleware is written in Python and uses the Djan-
go framework. The name disambiguation module is
written in Ruby and uses the Ruby on Rails frame-
work.

The current CiteSeerX codebase has been designed
to be modular and portable. Adding new functional-
ity, such as other databases or repository types, is as
easy as implementing more classes. In addition, the
use of Java beans enables CiteSeerX to dynamically
load objects in memory. One can specify which
implementation of the class to use allowing for more
flexibility at runtime.

Development Cost
CiteSeerX is not just a digital library that allows users
to search and download documents from a large
database and repository. It encapsulates and inte-
grates AI technologies designed to optimize and
enhance document acquisition, extraction, and
searching processes. The implementation of these AI
technologies makes CiteSeerX unique and more valu-
able, but meanwhile makes it difficult to estimate the
cost of rebuilding itself. An estimation using the
SLOCcount software suggests that the total cost to
rewrite just the core web app Java code from scratch
might be as high as $1.5 million. Table 2 lists the esti-
mation of effort, time, and cost in the default con-
figuration.

Table 2 implies it could take lots of effort to build
a CiteSeerlike system from scratch. Looking at these
challenges in the context of AI, one would face
numerous obstacles. To begin with, all the machine-
learning algorithms need to be scalable to support
processing hundreds of thousands of documents per
day. For example, the document classifier should not
be too slow compared to the crawling rate. Similarly,
the information extraction part must not be a bot-
tleneck in the ingestion pipeline. However, having
fast machine-learning algorithms should not com-
promise accuracy. This also extends to citation
matching and clustering, which compares millions
of candidate citations. Therefore, obtaining the best
balance between accuracy and scalability is a major
challenge that is addressed by relying on heuristic
based models for certain problems, while relying on

Description Estimation
Total physical source lines of code 44,756
Development effort (Person-Years) 10.82
Schedule estimate (Years) 1.32
Estimated average number of developers 8.18
Total estimated development cost* $1,462,297

Table 1. Performance Comparison of ND Algorithms.

algorithms that need to optimize intractable solu-
tions for others.

Recently, CiteSeerX was migrated from a cluster
composed of 18 physical machines into a private
cloud platform (Wu et al. 2014) for scalability, stabil-
ity, and maintainability. Our cost analysis indicates
that, based on the current market, moving to a pri-
vate cloud is more cost-effective compared with a
public cloud solution such as Amazon EC2. The
major challenges include lack of documentation,
resource allocation, system compatibility, a complete
and seamless migration plan, redundancy/data back-
up, configuration, security, and backward availabili-
ty. Most of the AI modules are compatible with the
new environment.

Maintenance
CiteSeerX has been maintained by graduate students,
postdocs, and department information-technology
(IT) support since it moved to Pennsylvania State
University. With limited funding and human
resources, it is challenging to maintain such a system
and add new features. CiteSeerX is currently main-
tained by one postdoc, two graduate students, an IT
technician, and one undergraduate student. Howev-
er, this changes as students leave. Only the postdoc
is full time. The maintenance work includes periodi-
cally checking system health, testing and imple-
menting new features, fixing bugs and upgrading
software, and adding new documents.

CiteSeerX data is updated regularly. The crawling
rate varies from 50,000 to 100,000 PDF documents
per day. Of the crawled documents, about 40 per-
cent–50 percent are eventually identified as scholar-
ly and ingested into the database.

Conclusion
We described CiteSeerX, an open access digital
library search engine, focusing on AI technologies
used in multiple components of the system. Cite-
SeerX eliminates bitwise duplicates using hash func-
tions; it uses a key-mapping algorithm to cluster doc-
uments and citations. The metadata is automatically
extracted using an SVM-based header extractor, and
the citations are parsed by ParsCit, a reference string
parsing package. Author names are disambiguated to
facilitate the author search. CiteSeerX has modules to
extract tables and index them for search.

Algorithms are also extracted from PDF papers
using combinations of rule-based and machine-
learning methods. These AI technologies make Cite-
SeerX unique and add value to its services. CiteSeerX
has a large worldwide user base, with a downloading
rate of 3–10 documents per second. Its data is updat-
ed daily and is utilized in many novel research proj-
ects. CiteSeerX takes advantages of existing open
source software. It contains more than 40,000 lines of

code in its Java codebase. It could take up to 10 per-
son-years to rebuild this codebase from scratch.
Despite limited funding and human resources, Cite-
SeerX has been maintained regularly with many fea-
tures planned for the near future. Migrating to the
cloud environment is a milestone to scale up the
whole system. New features that could be incorpo-
rated into CiteSeerX are algorithm search (Tuarob et
al. 2013), figure search (Choudhury et al. 2013), and
acknowledgment search (Giles and Councill 2004;
Khabsa, Treeratpituk, and Giles 2012) .

Acknowledgments
We acknowledge partial support from the National
Science Foundation and suggestions from Robert
Neches.

References
Bhatia, S.; Caragea, C.; Chen, H.-H.; Wu, J.; Treeratpituk, P.;
Wu, Z.; Khabsa, M.; Mitra, P.; and Giles, C. L. 2012. Special-
ized Research Datasets in the Citeseerx Digital Library. D-Lib
Magazine 18(7/8).

Bhatia, S.; Tuarob, S.; Mitra, P.; and Giles, C. L. 2011. An
Algorithm Search Engine for Software Developers. In Pro-
ceedings of the 3rd International Workshop On Search-Driven
Development: Users, Infrastructure, Tools, and Evaluation, 13–
16. New York: Association for Computing Machinery.

Bishop, C. M. 2006. Pattern Recognition and Machine Learning
(Information Science and Statistics). Secaucus, NJ: Springer-
Verlag New York, Inc.

Caragea, C.; Wu, J.; Ciobanu, A.; Williams, K.; Fernandez-
Ramirez, J.; Chen, H.-H.; Wu, Z.; and Giles, C. L. 2014a.
Citeseerx: a Scholarly Big Dataset. In Proceedings of the 36th
European Confernence on Information Retrieval, 311–322.
Berlin: Springer.

Caragea, C.; Wu, J.; Williams, K.; Gollapalli, S. D.; Khabsa,
M.; and Giles, C. L. 2014b. Automatic Identification of
Research Articles From Crawled Documents. Paper present-
ed at the 2014 WSDM Workshop on Web-Scale Classifica-
tion: Classifying Big Data From the Web. 28 February 2014,
New York, NY.

Charikar, M. 2002. Similarity Estimation Techniques from
Rounding Algorithms. In Proceedings of the Thirty-Fourth
Annual ACM Symposium on Theory of Computing (STOC ’02),
380–388. New York: Association for Computing Machinery.

Chen, H.-H.; Gou, L.; Zhang, X.; and Giles, C. L. 2011. Col-
labseer: A Search Engine for Collaboration Discovery. In Pro-
ceedings of the 2011 ACM/IEEE Joint Conference on Digital
Libraries (JCDL ’11), 231–240. New York: Association for
Computing Machinery.

Chen, H.-H.; Treeratpituk, P.; Mitra, P.; and Giles, C. L. 2013.
Csseer: An Expert Recommendation System Based on Cite-
seerx. In Proceedings of the 13th ACM/IEEE Joint Conference on
Digital Libraries (JCDL ’13), 381–382. New York: Association
for Computing Machinery.

Choudhury, S. R.; Tuarob, S.; Mitra, P.; Rokach, L.; Kirk, A.;
Szep, S.; Pellegrino, D.; Jones, S.; and Giles, C. L. 2013. A Fig-
ure Search Engine Architecture for a Chemistry Digital
Library. In Proceedings of the 13th ACM/IEEE Joint Conference
on Digital Libraries (JCDL ’13), 369–370. New York: Associa-
tion for Computing Machinery.

Articles

46 AI MAGAZINE

Cortes, C., and Vapnik, V. 1995. Support-Vector Networks.
Machine Learning 20(3): 273–297.

Cortez, E.; Da Silva, A. S.; Gonçalves, M. A.; Mesquita, F.;
and De Moura, E. S. 2007. Flux-Cim: Flexible Unsupervised
Extraction of Citation Metadata. In Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries (JCDL ’07),
215–224. New York: Association for Computing Machin-
ery.

Councill, I.; Giles, C. L.; and Kan, M.-Y. 2008. Parscit: An
Open-Source CRF Reference String Parsing Package. In Pro-
ceedings of the Sixth International Conference on Language
Resources and Evaluation (LREC’08). Paris: European Lan-
guage Resources Association (ELRA).

Feitelson, D. G., and Yovel, U. 2004. Predictive Ranking of
Computer Scientists Using Citeseer Data. Journal of Docu-
mentation 60(1): 44–61.

Giles, C. L., and Councill, I. 2004. Who Gets Acknowledged:
Measuring Scientific Contributions Through Automatic
Acknowledgement Indexing. Proceedings of the National
Academy of Sciences of the United States of America 101(51):
17599–17604.

Giles, C. L.; Bollacker, K.; and Lawrence, S. 1998. Citeseer:
An Automatic Citation Indexing System. In Proceedings of
the IEEE International Forumn on Research and Technology
Advances in Digital Libraries (ADL ’98), 89–98. Piscataway,
NJ: Institute of Electrical and Electronics Engineers.

Han, H.; Giles, C. L.; Manavoglu, E.; Zha, H.; Zhang, Z.; and
Fox, E. A. 2003. Automatic Document Metadata Extraction
Using Support Vector Machines. In Proceedings of the 2003
ACM/IEEE Joint Conference on Digital Libraries (JCDL ’03), 37–
48. New York: Association for Computing Machinery.

Huang, J.; Ertekin, S.; and Giles, C. L. 2006. Efficient Name
Disambiguation for Large-Scale Databases. In Proceedings of
the 10th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD ’06). 536–544.
Berlin: Springer.

Joachims, T. 1999. Making Large-Scale SVM Learning Prac-
tical. In Advances in Kernel Methods, 169–184. Cambridge,
MA: The MIT Press.

Khabsa, M.; Treeratpituk, P.; and Giles, C. L. 2012. ACKseer:
A Repository and Search Engine for Automatically Extract-
ed Acknowledgments from Digital Libraries. In Proceedings
of the 2012 ACM/IEEE Joint Conference on Digital Libraries
(JCDL ’12), 185–194. New York: Association for Computing
Machinery.

Lafferty, J. D.; Mccallum, A.; and Pereira, F. C. N. 2001. Con-
ditional Random Fields: Probabilistic Models for Segment-
ing and Labeling Sequence Data. In Proceedings of the Eigh-
teenth International Conference on Machine Learning (ICML
2001), 282–289. San Francisco: Morgan Kaufmann.

Liu, Y.; Bai, K.; Mitra, P.; and Giles, C. L. 2007. Tableseer:
Automatic Table Metadata Extraction and Searching in Dig-
ital Libraries. In Proceedings of the 7th ACM/IEEE-Computer
Society Joint Conference on Digital Libraries (JCDL ’07), 91–
100. New York: Association for Computing Machinery.

Liu, Y.; Mitra, P.; Giles, C. L.; and Bai, K. 2006. Automatic
Extraction of Table Metadata from Digital Documents. In
Proceedings of the 6th ACM/IEEE-Computer Society Joint Con-
ference on Digital Libraries (JCDL ’06), 339–340. New York:
Association for Computing Machinery.

Madadhain, J.; Fisher, D.; Smyth, P.; White, S.; and Boey, Y.
2005. Analysis and Visualization of Network Data Using
Jung. Journal of Statistical Software 10(1): 1–35.

Peng, F., and Mccallum, A. 2006. Information Extraction
from Research Papers Using Conditional Random Fields.
Information Processing Management 42(4): 963–979.

Pham, M.; Klamma, R.; and Jarke, M. 2011. Development of
Computer Science Disciplines: A Social Network Analysis
Approach. Social Network Analysis and Mining 1(4): 321–340.

Seymore, K.; Mccallum, A.; and Rosenfeld, R. 1999.
Learning Hidden Markov Model Structure for Informa-
tion Extraction. In Machine Learning for Information
Extraction: Papers from the AAAI Workshop, ed. M. E.
Califf. Technical Report WS-99-11. Menlo Park, CA: AAAI
Press.

Teregowda, P. B.; Councill, I. G.; Fernández, R. J. P.; Khabsa,
M.; Zheng, S.; and Giles, C. L. 2010. Seersuite: Developing
a Scalable and Reliable Application Framework for Building
Digital Libraries by Crawling the Web. Paper presented at
the UNSENIX Conference on Web Application Develop-
ment (WebApps ’10), 23–24 June, Boston, MA.

Teregowda, P.; Urgaonkar, B.; and Giles, C. L. 2010. Cloud
Computing: A Digital Libraries Perspective. In Proceedings of
the 2013 IEEE Sixth International Conference on Cloud Com-
puting (Cloud ’10), 115–122. Piscataway, NJ: Institute for
Electrical and Electronics Engineers.

Treeratpituk, P., and Giles, C. L. 2009. Disambiguating
Authors in Academic Publications Using Random Forests.
In Proceedings of the 2009 ACM/IEEE Joint Conference on Dig-
ital Libraries (JCDL ’09), 39–48. New York: Association for
Computing Machinery.

Tuarob, S.; Bhatia, S.; Mitra, P.; and Giles, C. L. 2013. Auto-
matic Detection of Pseudocodes in Scholarly Documents
Using Machine Learning. Paper presented at the Twelfth
International Conference on Document Analysis and
Recognition (ICDAR 2013), 25–28 August, Washington,
D.C.

Tuarob, S.; Mitra, P.; and Giles, C. L. 2014. Building a Search
Engine for Algorithms. ACM SIGWEB Newsletter (Winter):
Article 5.

Williams, K., and Giles, C. L. 2013. Near Duplicate Detec-
tion in an Academic Digital Library. In Proceedings of the
14th ACM Conference on Document Engineering (Doceng ’13),
91–94. New York: Association for Computing Machinery.

Williams, K.; Li, L.; Khabsa, M.; Wu, J.; Shih, P.; and Giles,
C. L. 2014a. A Web Service for Scholarly Big Data Informa-
tion Extraction. In Proceedings of the 21st IEEE International
Conference on Web Services (ICWS 2014). Piscataway, NJ:
Institute for Electrical and Electronics Engineers.

Williams, K.; Wu, J.; Choudhury, S. R.; Khabsa, M.; and
Giles, C. L. 2014b. Scholarly Big Data Information Extrac-
tion and Integration in the Citeseerx Digital Library. In Pro-
ceedings of the 2014 IEEE 30th International Conference on
Data Engineering Workshops (ICDEW). Piscataway, NJ: Insti-
tute of Electrical and Electronics Engineers.

Wu, J.; Teregowda, P.; Ramírez, J. P. F.; Mitra, P.; Zheng, S.;
and Giles, C. L. 2012. The Evolution of a Crawling Strategy
for an Academic Document Search Engine: Whitelists and
Blacklists. In Proceedings of the 3rd Annual ACM Web Science
Conference, 340–343. New York: Association for Computing
Machinery.

Wu, J.; Teregowda, P.; Williams, K.; Khabsa, M.; Jordan, D.;
Treece, E.; Wu, Z.; and Giles, C. L. 2014. Migrating a Digital
Library into a Private Cloud. In Proceedings of the IEEE Inter-
national Conference on Cloud Computing (IC2E 2014). Piscat-
away, N.J.: Institute for Electrical and Electronics Engineers.

Articles

FALL 2015 47

Jian Wu is a postdoctoral scholar in College of Information
Sciences and Technology at Pennsylvania State University.
He received his Ph.D. in astronomy and astrophysics in
2011. He is currently the technical director of CiteSeerX. His
research interests include information extraction, web
crawling, cloud computing, and big data.

Kyle Williams is a Ph.D. candidate in information sciences
and technology at Pennsylvania State University. His
research interests include information retrieval, machine
learning and digital libraries. His work involves the use of
search, machine learning and text inspection for managing
document collections.

Hung-Hsuan Chen is a researcher at the Computational
Intelligence Technology Center at the Industrial Technolo-
gy Research Institute. He received his Ph.D. in 2014 at Penn-
sylvania State University. He is interested in information
extraction, information retrieval, data mining, natural lan-
guage processing, and graph analysis. He developed CSSeer
and CollabSeer.

Madian Khabsa is a Ph.D. candidate in computer science
and engineering at Pennsylvania State University. His
research interests are big data, information retrieval and
extraction, applied machine learning, and data mining. He
is also interested in building and contributing to large-scale
systems.

Cornelia Caragea is an assistant professor at University of
North Texas, where she is part of the interdisciplinary
Knowledge Discovery from Digital Information (KDDI)
research cluster, with a dual appointment in computer sci-
ence and engineering and library and information sciences.
She obtained her Ph.D. from Iowa State University in 2009.
Her research interests are machine learning, text mining,
information retrieval, social and information networks, and
natural language processing, with applications to scholarly
big data and digital libraries.

Suppawong Tuarob is a Ph.D. candidate in computer sci-
ence and engineering at Pennsylvania State University. He
earned his BSE and MSE in computer science and engineer-
ing from the University of Michigan–Ann Arbor. His
research involves data mining in large-scale scholarly data,
social media, and health-care domains.

Alexander Ororbia is a Ph.D. graduate student in informa-
tion sciences and technology at Pennsylvania State Univer-
sity. He received his BS in computer science and engineering
at Bucknell University, with minors in mathematics and
philosophy. His research focuses on developing connec-
tionist architectures capable of deep learning.

Douglas Jordan is a senior in the College of Engineering at
Pennsylvania State University majoring in computer science
and mathematics. He is in charge of transferring CiteSeerX
data.

Prasenjit Mitra is a professor in the College of Information
Sciences and Technology at Pennsylvania State University.
He serves on the graduate faculty of the Department of
Computer Sciences and Engineering and is an affiliate fac-
ulty member of the Department of Industrial and Manufac-
turing Engineering at Pennsylvania State University. He
received his Ph.D. from Stanford University in 2004. His
research contributions have been primarily in the fields of
information extraction, information integration, and infor-
mation visualization.

C. Lee Giles is the David Reese Professor at the College of
Information Sciences and Technology at Pennsylvania State
University, University Park, PA, with appointments in com-
puter science and engineering and supply chain and infor-
mation systems. He is a Fellow of the ACM, IEEE, and INNS
(Gabor prize). He is probably best known for his work on
estimating the size of the web and on the search engine and
digital library, CiteSeer, which he cocreated, developed, and
maintains. He has published more than 400 refereed articles
with nearly 26,000 citations with an h-index of 77 accord-
ing to Google Scholar.

Articles

48 AI MAGAZINE

Support AAAI Programs!
Thank you for your ongoing support of
AAAI programs through the continuation
of your AAAI membership. We count on
you to help us deliver the latest informa-
tion about artificial intelligence to the sci-
entific community, and to nurture new
research and innovation through our
many conferences, workshops, and sym-
posia. To enable us to continue this
effort, we invite you to consider an addi-
tional gift to AAAI. For information on
how you can contribute to the open
access initiative, please see www.aaai.org
and click on “Gifts.”

