Homework Assignment 1
Due: Thursday, September 6, 2001

Problems:

P1-2. Consider diodes with unity emission coefficients and negligible series resistance. Determine the reverse saturation current for

a) a p-n junction which exhibits a voltage drop of 0.7 V at a forward current of 1 mA; and
b) a Schottky diode which exhibits a voltage drop of 0.3 V at a forward current of 1 mA.

P1-3. Suppose a diode has a unity emission coefficient. Determine the change in the forward bias voltage which will cause a ten-fold increase in the forward current.

P1-4. Consider a Si p⁺-n junction at 300 K with \(N_a = 10^{18} \, \text{cm}^{-3} \) and \(N_d = 10^{16} \, \text{cm}^{-3} \). The junction area is \(10^{-5} \, \text{cm}^2 \). Determine

a) the built-in potential;
b) the zero-bias depletion width; and
c) the zero-bias depletion capacitance.

P1-6. Consider the p-n junction shown. \(T = 300 \text{K} \). The junction area is \(10^{-5} \, \text{cm}^2 \).

![Figure P1-6](image)

The material parameters are as follows:

\[\begin{align*}
p-Si & \quad n-Si
N_a & = 10^{15} \, \text{cm}^{-3} \quad N_d = 10^{18} \, \text{cm}^{-3}
D_n & = 25\text{cm}^2\text{s}^{-1} \quad D_p = 8\text{cm}^2\text{s}^{-1}
\tau_n & = 20\text{ns} \quad \tau_p = 3\text{ns}
\end{align*} \]

a) Determine the reverse saturation current.
b) Determine the bias voltage at a forward current of 1 mA, assuming the emission coefficient is unity.