NMOS Inverter w/ Saturated Enhancement Load

- A MOSFET replaces the resistive load, greatly improving the packing density.
- The two MOSFET's are fabricated with identical thresholds and process transconductance parameters, for simplicity and high circuit yield.
- The load has a positive threshold and has $V_{GS} = V_{DS}$; therefore it is always saturated.
- $V_{OH} = V_{DD} - V_T$.

![Diagram of NMOS Inverter with Saturated Enhancement Load]
NMOS Inverter w/ Depletion Type Load

- For the depletion type device,
 \[V_{GSL} = 0 \]
 This necessitates \(V_{TL} \leq 0 \) for conduction in the load. Also, linear or saturated operation of the load is possible:
 \[
 V_{DD} - V_{OUT} > -V_{TL} \Rightarrow \text{saturation}
 \]
 \[
 V_{DD} - V_{OUT} < -V_{TL} \Rightarrow \text{linear operation}
 \]

- This circuit achieves \(V_{OH} = V_{DD} \) without the need for two supply voltages.

- The disadvantage is fabrication complexity, because transistors with two different threshold voltages are required.
NMOS Inverter w/ Depletion Type Load: Design

- Suppose $V_{TO} = 0.6V$ and $V_{TL} = -0.3V$.

Consider the design for a desired value of V_{OL}:

For $V_{OL} = 0.3V$,

$$\frac{K_Q}{K_L} = \ldots$$

$t_{OX} = 70\text{Angstroms}$

$\mu_n = 580\text{cm}^2/\text{Vs}$

$k' = 0.29\text{mA}/V^2$
NMOS Inverter w/ Depletion Type Load: VTC

\[V_{DD} = 2.5V \]

\[V_{IN} \]

\[V_{OUT} \]

\[t_{OX} = 70\text{Angstroms} \]

\[\mu_n = 580\text{cm}^2/\text{Vs} \]

\[k' = 0.29\text{mA}/V^2 \]

Results of SPICE simulation, neglecting \(\gamma \) and \(\lambda \).
NMOS Inverter w/ Depletion
Type Load: \(V_{OH} \)

For the calculation of \(V_{OH} \), \(N_O \) is cut off and \(N_L \) is linear. Therefore

\[I_{DO} = \]

\[I_{DL} = \]

Now since \(I_{DL} = I_{DO} = \)

\[V_{OH} = \]
NMOS Inverter w/ Depletion
Type Load: \(V_{\text{IL}} \)

For the calculation of \(V_{\text{IL}} \), \(N_O \) is saturated and \(N_L \) is linear.

\[
I_{DO} =
\]

\[
I_{DL} =
\]

\[
I_{DO} = I_{DL}; \quad dI_{DO} = dI_{DL};
\]

\[
dV_{OUT} \frac{\partial I_{DO}}{dV_{IN}} = \frac{\partial I_{DL}}{\partial V_{OUT}}
\]
NMOS Inverter w/ Depletion Type Load: V_{IL}

Solving for $V_{OUT}(V_{IH})$,

$$V_{OUT} =$$

Substituting this into the equation $I_{DL} = I_{DO}$, we find

$$V_{IL} =$$

SPICE results:
NMOS Inverter w/ Depletion

Type Load: \(V_M \)

For the calculation of \(V_M \), both MOSFET’s are saturated.

\[
I_D = \ldots
\]

Solving for \(V_M = V_{IN} \),

\[
V_M = \ldots
\]

\(t_{OX} = 70 \text{Angstroms} \)

\(\mu_n = 580 \text{cm}^2 / \text{Vs} \)

\(k' = 0.29 \text{mA} / V^2 \)
NMOS Inverter w/ Depletion Type Load: V_{IH}

For the calculation of V_{IH}, N_O is linear and N_O is saturated.

$I_{DO} = \quad I_{DL} =$

$I_{DO} = I_{DL}; \quad dI_{DO} = dI_{DL}; \quad \frac{dV_{OUT}}{dV_{IN}} =$

Solving, we find

$V_{OUT} (IH) = \quad V_{IH} = $
NMOS Inverter w/ Depletion Type Load: Switching Speed

Assume that the fall time at the input is negligible.

t_{PLH} is determined by the time required to charge C_L through the load device.

Assume that the rise time at the input is negligible.

t_{PHL} is determined by the time required to discharge C_L through the output MOSFET.
At $t = 0$, V_{IN} decreases abruptly to cut off N_O; N_L is saturated with

$$I_{DL} =$$

Therefore

$$\frac{dV_{OUT}}{dt} =$$

V_{OUT} reaches $V_{DD}/2$ at $t = t_{PLH}$:

$$t_{PLH} =$$
NMOS Inverter w/ Depletion Type Load: t_{PLH}

Suppose that C_L is due to 10 similar gates on the same chip. Then

\[C_{OX} = \]

\[C_L \approx \]

\[t_{PLH} = \]

If instead C_L is a 15 pF off-chip load, then

\[t_{PLH} = \]
NMOS Inverter w/ Depletion Type Load: t_{PHL}

At $t = 0$, V_{IN} increases abruptly to turn on N_O. N_O is saturated and N_L is linear:

$I_{DO} =$

$I_{DL} =$

If we neglect I_{DL}, then*

$t_{PHL} \approx$

* For the example gate, $I_{DO} = 0.18 \text{ mA}$; I_{DL} increases from 0 (at $V_{OUT} = V_{DD}$) to 0.034 mA (at $V_{OUT} = V_{DD} / 2$).
Suppose again that the load is ten on-chip load gates so that $C_L = 36 \text{ fF}$. Then

$$t_{PHL} =$$

However, for a 15 pF off-chip load,

$$t_{PLH} =$$
NMOS Inverter: SPICE Transient Analysis

fanout = 10 \((C_L = 36 \mu F) \)

\(t_{OX} = 70 \) Angstroms

\(k' = 0.29 \text{mA/V}^2 \)

\((W / L)_O = 0.5 \mu m / 1.45 \mu m; \ V_{TO} = 0.6V \)

\((W / L)_L = 2 \mu m / 0.5 \mu m; \ V_{TL} = -0.3V \)

\(\gamma \) and \(\lambda \) were neglected in the SPICE analysis.
The input of an NMOS circuit presents a negligible DC load. Hence the fanout is determined by dynamic considerations alone.

\[C_{L,\text{MAX}} = \]

\[N_{\text{MAX}} \leq \]
The power dissipation for an NMOS gate includes both DC and dynamic contributions.

During a low to high transition,

\[P_{DC} \approx \int_{t_0}^{t_{PLH}} P dt = \]

Therefore, at a switching frequency \(f \),

\[P_{AC} = \]
NMOS Inverter w/ Depletion Type Load: Power Dissipation

\[V_{DD} = 2.5V \]
\[C_L = 10C_{OX} = 36fF \]
\[K_L = 1.16mA/V^2; \quad V_{TL} = -0.3V \]
\[K_O = 0.1mA/V^2; \quad V_{TL} = 0.6V \]
NMOS NOR Gate

- If any input goes high, the associated transistor turns on and brings the output low.
- If all inputs go low, N_A, N_B, and N_C are cut off and the output rises to V_{DD}.
- The MOSFET design is the same as for the inverter. V_{OL} is identical to the inverter case with one MOSFET on.
NMOS NAND Gate

- Here, the output is high as long as any MOSFET turns off.
- The output goes low only if all three input MOSFET’s are in the linear region of operation.
- The device design is not the same as for the inverter, because the three input MOSFET’s experience different values of V_{GS}, and because

$$V_{OL} = V_{DSA} + V_{DSB} + V_{DSC} < V_T$$

Hence

$$\left[\frac{K_Q}{K_L} \right]_{\text{NAND}} > \left[\frac{K_Q}{K_L} \right]_{\text{INVERTER}}$$
NMOS XOR Gate

- Conceptually, the NMOS XOR gate is similar to the TTL version. The circuit is much simpler, however.
- If \(V_A \) and \(V_B \) are different, then either \(N_{XA} \) or \(N_{XB} \) turns on. The gate-source bias for \(N_I \) drops below \(V_T \) and the output goes high.
- If \(V_A \) and \(V_B \) are both high or both low, then both \(N_{XA} \) and \(N_{XB} \) are cut off and the output goes low.
Complex Logic Functions w/ NMOS

Complex logic functions can be implemented in NMOS as follows:

- ANDing is performed by series NMOS pull-down branches.
- ORing is performed by parallel placement of NMOS pull-down branches.
- The output is inherently inverted, resulting in AOI-type functions. However, an NMOS inverter can be added to provide complimentary outputs.
NMOS: Complex Logic Functions
NMOS: Complex Logic Functions

\[(A + B)(C + D) + E(F + G)\]