Diode-Transistor Logic (DTL)
Diode Logic

- Diode Logic suffers from voltage degradation from one stage to the next.
- Diode Logic only permits the OR and AND functions.
- Diode Logic is used extensively but not in integrated circuits!
Level-Shifted Diode Logic

With either input at 0V, \(V_x = 0.7V \),
\(D_L \) is just cutoff, and \(V_{OUT} = 0V \).

With both inputs at 1V, \(V_x = 1.7V \) and \(V_{OUT} = 1V \).

With \(V_A = V_B = 5V \), both input diodes are cutoff. Then

\[
V_{OUT} = R_L \left(\frac{V_{CC} - 0.7V}{R_H + R_L} \right)
\]

- Level shifting eliminates the voltage degradation from the input to the output. However,
- the logic swing falls short of rail-to-rail, and
- the inverting function still is not available without using a transistor!
Diode-Transistor Logic (DTL)

If any input goes high, the transistor saturates and V_{OUT} goes low.

If all inputs are low, the transistor cuts off and V_{OUT} goes high.

This is a NOR gate.

“Current Hogging” is a problem because the bipolar transistors cannot be matched precisely.
Diode-Transistor Logic (DTL)

- If all inputs are high, the transistor saturates and V_{OUT} goes low.
- If any input goes low, the base current is diverted out through the input diode. The transistor cuts off and V_{OUT} goes high.
- This is a NAND gate.
- The gate works marginally because $V_D = V_{BEA} = 0.7V$.

Improved gate with reversed diodes.
Diode-Transistor Logic (DTL)

- If all inputs are high, $V_x = 2.2\text{V}$ and the transistor is saturated.
- If any input goes low (0.2V), $V_x = 0.9\text{V}$, and the transistor cuts off.
- The added resistor R_D provides a discharge path for stored base charge in the BJT, to provide a reasonable t_{PLH}.

Basic DTL NAND gate.
DTL VTC

The noise margins are more symmetric than in the RTL case.
DTL Power Dissipation

Scaling R_B and R_C involves a direct tradeoff between speed and power.

$P_L =$

$P_H =$

$P =$
DTL Fan-out

Good fanout requires high
β_F, large R_D/R_B.

$R_B=3.4k\Omega$

$R_C=4.8k\Omega$

$R_D=1.6k\Omega$

$\beta_F=50$

$\begin{align*}
I_{CS} &= \\
I_{BS} &= \\
I_{CS} &= \\
N_{\text{max}} &=
\end{align*}$
930 Series DTL (ca 1964 A.D.)

One of the series diodes is replaced by \(Q_1 \), providing more base drive for \(Q_2 \) and improving the fan-out \((N_{\text{max}} = 45) \).

Does \(Q_1 \) saturate?

<table>
<thead>
<tr>
<th>930 DTL Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{OH}} / V_{\text{OL}})</td>
</tr>
<tr>
<td>(V_{\text{IH}} / V_{\text{IL}})</td>
</tr>
<tr>
<td>Fan-out</td>
</tr>
<tr>
<td>Dissipation</td>
</tr>
<tr>
<td>(t_P)</td>
</tr>
</tbody>
</table>
930 DTL Propagation Delays

$$t_{PLH} >> t_{PHL}$$

$$t_{PLH} = t_S + t_r / 2$$

$$(\beta_F = 50, C_L = 5pF)$$

$$t_s =$$

$$t_r \approx$$
Transistor-Transistor Logic (TTL)
Why TTL?

- The DTL input uses a number of diodes which take up considerable chip area.
- In TTL, a single multi-emitter BJT replaces the input diodes, resulting in a more area-efficient design.
- DTL was ousted by faster TTL gates by 1974.
Basic TTL NAND Gate.

![Diagram of TTL NAND Gate]

- **ALL INPUTS HIGH.**
 - Q_I is reverse active.
 - Q_O is saturated.
 - $V_{OL} = V_{CES}$

- **ANY INPUT LOW.**
 - Q_I is saturated.
 - Q_O is cut off.
 - $V_{OH} = V_{CC}$

Multi-emitter transistor. Forward-biased emitter base junctions override reverse-biased junctions in determining the base and collector currents.
TTL Switching Speed: t_{PLH}

- The depletion capacitance of the Q_I EB junction must discharge;
- Base charge must be removed from the saturated Q_S;
- Ditto for Q_O; and
- The capacitive load must be charged to V_{CC}.

Multi-emitter transistor. Forward-biased emitter base junctions override reverse-biased junctions in determining the base and collector currents.
TTL Switching Speed: \(t_{PLH} \)

- The time required to discharge the \(Q_I \) depletion layers is \(< < 1\text{ns}.\)
- The time required to extract the \(Q_S \) base charge is also \(< < 1\text{ns}:\)
 - \(Q_I \) becomes forward active;
 - \(|I_{BR}|\) becomes large for \(Q_S \)

Removal of base charge from \(Q_O \) is similar to the DTL case. With \(R_D = 1 \, \text{k}\Omega, t_s = 10\text{ns} \) (these are typical values for 7400 series TTL).
Charging of the capacitive load can be slow with “passive pull-up.” e.g., with a 5kΩ pull-up resistor and a 15 pF load (ten TTL gates) \(RC = 75 \text{ ns} \) and \(t_r = 2.3RC = 173 \text{ ns} \)!
TTL with Active Pull-up

- In the previous example, the dominant switching speed limitation was the charging of capacitive loads through the pull-up resistor.

- A small pull-up resistance will improve the switching speed but will also increase the power and reduce the fan-out.

With active pull-up, we can achieve the best of both worlds:

- When the output is low, Q_P is cutoff, minimizing the power and maximizing the fan-out;

- when the output goes high, Q_P becomes forward active to provide maximum drive current for a quick rise time.
TTL with Active Pull-up

- With a high output,
 - Q_S is cutoff
 - Q_P is forward active
- With a low output,
 - Q_S is saturated
 - Q_P should be cutoff

The low output case is unsatisfactory with this circuit:

$$V_{BP} = \quad V_{EP} =$$

$$V_{BEP} =$$

The “Totem Pole Output” solves this problem.
TTL with “Totem Pole Output”

- During turn-off, Q_S switches off before Q_O.
- Q_P begins to conduct when
 \[V_{CS} = V_{CESO} + V_D + V_{BEAP} = 1.6V \]
- Initially,
 \[I_{BP} = \]

\[R_{CP} \text{ limits the collector current to a safe value.} \]
Typical 74xx Series TTL

1/3 T. I. 7410 triple 3-input NAND

12 ns
8 ns
10
10 mW
100 pJ

The anti-ringing diodes at the input are normally cutoff. During switching transients, they turn on if an input goes more negative than -0.7V.
Standard TTL: VTC

- $\beta_F = 70$
- $\beta_R = 0.1$
- $V_{CC} = 5V$
- $V_{OUT} = V_{CC} = 5V$
- Q_I is saturated; Q_S, Q_O are cutoff; Q_P is forward active.

- $V_{IN} = 0$

- $V_{OH} = (the\ drop\ in\ the\ base\ resistor\ is\ small)$

- **First Breakpoint.** Q_S turns on.

- $V_{IL} = (at\ the\ edge\ of\ conduction,\ I_C = 0)$

1/6 NSC 7404 Hex Inverter
Standard TTL: VTC

\[V_{CC} = 5V \]

- **Second Breakpoint.** \(Q_O \) turns on.

\[V_{IN} = \]

\[V_{OUT} = \]

- **Third Breakpoint.** \(Q_O \) saturates.

\[V_{IH} = \]

\(1/6 \) NSC 7404

Hex Inverter
Standard TTL: VTC

- **$V_{NML} =$**
- **$V_{NMH} =$**

- $\beta_F = 70$
- $\beta_R = 0.1$

- V_{OUT}
- $V_{CC} = 5V$

- 1/6 NSC 7404 Hex Inverter

- Q_I, Q_S, Q_P, Q_O, D_L

- $4k\Omega$, $1.6k\Omega$, 130Ω, $1k\Omega$
Standard TTL: Low State R_{OUT}

For the saturated BJT with $I_B = 2.4$ mA, the output impedance is

$$R_{OL} =$$

The very low output impedance means that noise currents are translated into tiny noise voltages. Thus only a small noise margin is necessary.
Standard TTL: Input Current

- I_{IH} (Q₁ is reverse active)

\[I_{BH} = \]

- I_{IL} (Q₁ is saturated)

\[I_{IL} = \]
Standard TTL: DC Fan-out

With high inputs,

- $I_{CI} = \quad$
- $I_{CS} = \quad$
- $I_{BO} = \quad$

To keep Q_O saturated,

- $N_{max} = \quad$

AC considerations usually limit the fan-out to a much lower number.
Standard TTL: DC Dissipation

1/4 TI 7400 Quad 2-input NAND

- $V_{CC} = 5V$
- $P_H =$
- $P_L =$
- $P =$

- $\beta_F = 70$
- $\beta_R = 0.1$
- $N = 10$
Advanced TTL Designs

- **Schottky Clamping.** Q_S and Q_O may be Schottky clamped, preventing saturation. This greatly improves t_{PLH}.

- **Darlington Pull-up.** The Darlington pull-up arrangement increases the average output drive current for charging a capacitive load. Although R_{CP} limits the maximum output current, this maximum drive is maintained over a wider range of V_{OUT} than with a single pull-up transistor.

- **Squaring Circuit.** Active pull-down for the base of the output transistor squares the VTC, improving the low noise margin. An added benefit is faster charge removal for the output transistor.

- **Improved Fabrication.** Smaller devices, and oxide isolation, have steadily reduced parasitic capacitances and reduced RC time constants.
Darlington Pull-up

- Q_{P2} is added, forming a Darlington pair with Q_P.
- The EB junction of Q_{P2} introduces a 0.7V level shift, so DL can be eliminated.
- Q_{P2} can not saturate, so Schottky clamping is not necessary.
- R_{EP} is needed to provide a discharge path for Q_{P2} base charge.

The Darlington emitter follower provides a very low output impedance, approaching R_C/β^2. This greatly reduces the rise time.
Squaring Circuit

- There is no path for Q_S emitter current until Q_D and Q_O turn on.
- Q_S and Q_O begin to conduct simultaneously.
- BP1 is eliminated from the VTC; in other words, the VTC is “squared.”
- V_{IL} is increased, improving the low noise margin.
Schottky TTL (74S / 54S Series)

Features:
- Schottky clamping
- Schottky anti-ringing diodes
- Darlington pull-up circuit
- Squaring circuit
- Scaled resistors

Performance:
- $P = 20 \text{ mW}$
- $t_P = 3 \text{ ns (15 pF)}$
- $PDP = 60 \text{ pJ}$