Lecture 13:

MOS Circuits

Gu-Yeon Wei
Division of Engineering and Applied Sciences
Harvard University
guyeon@eecs.harvard.edu
Overview

- **Reading**
 - S&S: Chapter 5.5~5.7

- **Background**
 - We continue our discussion of MOSFETs by looking at its operation as an amplifier. Like we saw for the BJT, there are three basic single-stage amplifier configurations – common-source, common-gate, and common-drain amplifiers. In order to operate as an amplifier, the MOSFET must first be biased in the saturation region. Once biased, we can again analyze the circuit with small-signal equivalent models.
DC Bias

- First bias MOSFET in saturation region (equivalent to active region in BJTs) to operate as an amplifier
 - set $v_{gs} = 0$ and find I_D (for now, assume $\lambda=0$)
 \[I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2 \]
 - To be in saturation,
 \[V_D > V_{GS} - V_t \]
 - Apply a small signal, v_{gs}, to the gate
 \[v_{GS} = V_{GS} + v_{gs} \]
 \[i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} + v_{gs} - V_t)^2 \]
 \[i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2 + \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)v_{gs} + \frac{1}{2} \mu_n C_{ox} \frac{W}{L} v_{gs}^2 \]
Three components of i_D

- First term = DC current
- Second term = current proportional to v_{gs}
- Third term = undesired nonlinear distortion

Make v_{gs} small to reduce effect of third term

$$\frac{1}{2} \mu_n C_{ox} \frac{W}{L} v_{gs}^2 \ll \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t) v_{gs}$$

This is the small-signal condition and let's us use the following approximation

$$i_D \approx I_D + i_d \text{ where } i_d = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t) v_{gs}$$

and we can again relate i_d to v_{gs} with a transconductance

$$g_m = \frac{i_d}{v_{gs}} = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)$$
- **Voltage Gain**

\[
v_D = V_{DD} - R_D i_D \quad \Rightarrow \quad v_D = V_{DD} - R_D (I_D + i_d) \quad \Rightarrow \quad v_D = V_D - R_D i_d
\]

\[
v_d = -R_D i_d = -g_m R_D v_{gs} \quad \Rightarrow \quad \frac{v_d}{v_{gs}} = -g_m R_D
\]

- This gain equation hold for small signals
- Notice that the output is 180° out of phase w.r.t the input

- Again, we can separate out the DC bias conditions and the small-signal operation of the circuit
 - Look at the small-signal equivalent circuit for a MOSFET biased in the saturation region
Small-Signal Equivalent Circuit

- A MOSFET operates like a voltage-controlled current source (for small signals)

\[V_A \approx \frac{1}{\lambda} \]

- Like the Early effect in the BJT, channel length modulation results in an output resistance, \(r_o \)

\[r_o \approx \frac{V_A}{I_D} \]

- where \(V_A = \frac{1}{\lambda} \)
Transconductance

• Let’s take a closer look at transconductance, g_m

$$g_m = \frac{i_d}{V_{gs}} = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)$$

• Depends on
 – process technology – $\mu_n C_{ox}$
 – physical geometry – W/L
 • make short and wide for high g_m
 – DC bias – V_{GS}
 • making V_{GS} large increases g_m, but can limit voltage range on drain

• Another way to write g_m …

$$g_m = \sqrt{2\mu_n C_{ox}} \sqrt{W/L} \sqrt{I_D}$$

 – g_m is proportional to the square root of the DC bias current
 – g_m is proportional to sqrt(W/L)
T-Model and Body Effect

- **T-Model**
 - Resistance looking into the source is $1/g_m$
 - Resistance looking into G is still ∞ since $i_g=0$

- **Body Effect**
 - We saw that the substrate bias V_{BS} affects V_t which has the effect of influencing current like another gate

\[
\begin{align*}
 g_{mb} &= \frac{\partial i_D}{\partial V_{GS}} \bigg|_{V_{GS}=\text{const}, V_{DS}=\text{const}} \\
 g_{mb} &= \frac{\gamma}{2\sqrt{2\phi_f + V_{SB}}} g_m
\end{align*}
\]
There are a variety of ways to bias the MOSFET amplifier. Instead, we will rely on a current source for active biasing and avoid using resistors which may not be available in some processes or discouraged.
The following circuits is called a current mirror b/c Q_2 mirrors the current flowing in Q_1

- If $\lambda = 0$,

 $$I_O = \frac{1}{2} \mu_n C_{ox} \frac{W_2}{L_2} (V_{GS} - V_t)^2$$

 $$I_{REF} = I_1 = \frac{1}{2} \mu_n C_{ox} \frac{W_1}{L_1} (V_{GS} - V_t)^2$$

 $$\frac{I_O}{I_{REF}} = \frac{W_2/L_2}{W_1/L_1}$$

- If $\lambda \neq 0$, I_O varies with respect to V_O due to channel length modulation

Can have multiple devices connected to the diode connected Q_1 in order to generate multiple currents based on a single reference
Common-Source Amplifier

- Active load – uses current source instead of load resistor
 - Biasing so that Q_2 in saturation and i output resistance is the effective resistor load for Q_1
- Combine the I-V curves →
• Look at the Voltage Transfer Characteristics (VTC) of the circuit
 – Operates like a high-gain amplifier (steep slope) in region III
CS Amplifier low-frequency small-signal model

\[v_o/v_i = -g_m (r_{o1} || r_{o2}) \]

\[g_{m1} = \sqrt{2\mu_n C_{ox} (W_1/L_1) I_{REF}} \]

\[r_{o1} = \frac{|V_{A1}|}{I_{REF}} \quad r_{o2} = \frac{|V_{A2}|}{I_{REF}} \quad V_{A1} \approx V_{A2} \]

\[A_v = \frac{v_o}{v_i} \approx -\sqrt{\frac{1}{2} \mu_n C_{ox} (W_1/L_1)} \frac{V_A}{\sqrt{I_{REF}}} \]
Common-Gate Amplifier

- Bias the gate with a DC voltage and drive the source
 - small signal into the gate is effectively grounded
 - Need to consider body effect
• Small-signal model needs to include body effect
• Node equation at the output \(v_o \) can be written to calculate the voltage gain

\[
v_{bs1} = -v_i
\]

\[
\frac{v_i - v_o}{r_{o1}} + (g_{m1} + g_{mb1})v_i = \frac{v_o}{r_{o2}}
\]

\[
A_v = \frac{v_o}{v_i} = \left(g_{m1} + g_{mb1} + \frac{1}{r_{o1}} \right) r_{o1} \parallel r_{o2}
\]

\[
A_v = \frac{v_o}{v_i} \approx (g_{m1} + g_{mb1}) r_{o1} \parallel r_{o2}
\]

• To find the input resistance…

\[
R_{in} = \frac{v_i}{i_i} \approx \frac{1}{g_{m1} + g_{mb1}} \left(1 + \frac{r_{o2}}{r_{o1}} \right)
\]

– Input resistance increases \(\sim 2x \) due to \(r_o \)
Common-Source Amplifier

- Keep the source biased with a current source and drive the gate
 - Also called a source follower
- Basic characteristics
 - gain is less than unity
 - high input impedance
 - low output resistance (can drive low-impedance loads with low loss of gain)
 - Will see it has ability to extend high-frequency response by its impedance buffering action
- Small-signal model
 - replace Q_1 with small-signal model that includes body effect
 - Q_2 can be modeled by the output resistance
• Model Q_2 with its output resistance and include back body effect for Q_1
• Can simplify the model
 – $v_{bs1} = -v_o$ so the VCCS becomes a resistor $1/g_{mb1}$
 – Use a single lumped resistor R_s
• What is the voltage gain?

$$v_o = v_{s1} = g_{m1}R_s v_{gs1}$$
$$v_i = v_{gs1} + v_{s1} = v_{gs1} + g_{m1}R_s v_{gs1}$$

$$A_v = \frac{v_o}{v_i} = \frac{g_{m1}R_s}{1 + g_{m1}R_s}$$

– Can also be rewritten

$$A_v = \frac{g_{m1}}{g_{m1} + g_{mb1} + \frac{1}{r_{o1}} + \frac{1}{r_{o2}}} \approx \frac{g_{m1}}{g_{m1} + g_{mb1}}$$

$$R_S = \frac{1}{\frac{1}{g_{mb1}} || r_{o1} || r_{o2}}$$
• CD output resistance
 – Short the input to ground
 – Apply a test voltage to the output
 – Look to see R_o

 \[\frac{1}{g_{mb1}} \quad \frac{1}{g_{m1}} \quad r_{o1} \quad r_{o2} \quad V_x \]

 – The parallel combination results in a small R_o