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Overview

 Reading
— S&S: Chapter 7

« Skim sections since mostly described using BJT circuits. Lecture notes focus on
MOS circuits.

 Supplemental Reading

— Razavi, Design of Analog CMOS Integrated Circuits: Chapter 6
 Background

— So far, our treatment of small-signal analysis of amplifiers has been for low
frequencies where internal capacitances do not affect operation. However,
we did see that internal capacitances do exist and we derived the f; of
transistors. Moreover, we spent some time looking at amplifiers modeled
with a single pole. Now, we will see how these capacitances affect the
frequency response of amplifiers.

To fully understand and model the frequency response of amplifiers, we
utilize Bode plots again. We will use a technique called open-circuit time
constants (OCTs) to approximate frequency response calculations in the
presence of several capacitors and and Miller’s theorem to deal with
bridging capacitors.
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Amplifier Transfer Function
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» Voltage-gain frequency response of amplifiers seen so far take one of two forms
— Direct-Coupled (DC) amplifiers exhibit low-pass characteristics — flat gain from DC to
Oy
— Capacitively coupled amplifiers exhibit band-pass characteristics — attenuation at low
frequency due to impedance from coupling capacitances increasing for low frequencies
«  We will focus on the high-frequency portion of the response (o)
— Gain drops due to effects of internal capacitances of the device
« Bandwidth is the frequency range over which gain is flat
- BW=o,0r o o o, (o >> o)
+  Gain-Bandwidth Product (GB) — Amplifier figure of merit
- GB=A,04
where A,, is the midband gain
— We will see later that it is possible to trade off gain for bandwidth
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Gain Function A(s)

 We can represent the frequency dependence of gain with the following

expression:
A(S): AMFL(S)FH(S)

— Where F|(s) and F(s) are the functions that account for the frequency
dependence of gain on frequency at the lower and upper frequency ranges

— We can solve for A, by assuming that large coupling capacitors are short
circuits and internal device capacitances are open circuits (what we have
done so far for low-frequency small-signal analysis)
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High-Frequency Response

*  We can express function FH(s) with the general form:

_ (1+S/w21)(1+S/a)zz)"'(1+s/a)2nH)
) s w5 o) (5 o)

+  Where o, and o, represent the frequencies of high-frequency poles and zeros

» The zeros are usually at infinity or sufficiently high frequency such that the numerator > 1
and assuming there is one dominant pole (other poles at much higher frequencies), we can
approximate the function as... 1

FH (S) ~ 7 a)H = a)Pl

(1+s/a),,l)/v

— This simplifies the determination of the BW or o,

« If a dominant pole does not exist, the upper 3-dB frequency o, can be found from a plot of
|F,(jo)|. Alternatively, we can approximate with following formula (see S&S p593 for

derivation).
. _1/\/1 L2 2
=1/ | — R S
Wp O, w; @

— Note: if wp, is @ dominant pole, then reduces to o, =g,
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Open-Circuit Time Constant Method

It may be difficult to find the poles and zeros of the system (which is usually the
case). We can find approximate values of oy using the following method.

We can multiply out factors and represent F(s) in an alternative form:
l+as+a,s’+--+a,s"
FH( )_ :

o 2 nH
1+bs+by,s”+---+b,,s

Where a and b are coefficients related to the zero and pole frequencies

We can show that b1:L+ ! Feet 1

Wp,  Wp, WOp,py

and b, can be obtained by considering the various capacitances in the high-
frequency equivalent circuit one at a time while reducing all other capacitors
to zero (or open circuits); and calculating and summing the RC time
constant due to the circuit associated with each capacitor.

This is called the open-circuit time constant method (OCT)
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Calculating OCTs

The approach:

For each capacitor:
— set input signal to zero
— replace all other capacitors with open circuits
— find the effective resistance (R,,) seen by the capacitor C,

Sum the individual time constants (RCs or also called the open-circuit time
constants)

bl = Z CR,

i=1

This method for determining b, is exact. The approximation comes from using
this result to determine oy. 1
Oy = —

Z Ci Rio

i=1

— This equation yields good results even if there is no single dominant pole
but when all poles are real

We will see an example of this method when we analyze the high-frequency
response of different amplifier topologies
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Miller’'s Theorem

Before we begin analyzing the high-frequency response of amplifiers, there is an important
phenomenon that we should first investigate called “Miller Effect”

Consider the circuit network below on the right with two nodes, 1 and 2. An admittance Y
(Y=1/Z) is connected between the two nodes and these nodes are also connected to other
nodes in the network. Miller's theorem provides a way for replacing the “bridging”
admittance Y with two admittances Y1 and Y2 between node 1 and gnd, and node 2 and
gnd.

11, Y , 2 11, l, 2

+ + + +

V, v, - V, Y, Y, v,

. . - .

Il 1
— The relationship between V, and V, is given by K=V_/V,
— TofindY,and,
L=Y(W-V,)=Y(=-1/) L=YW,-1)=1V,(-V/1,) Caveat:
I =YN (1—K) I, = YV2(1 _1/K) The Miller equivalent circuit is valid
I, =YYV, I,=YV, on_Iy as !ong as the conditions that
existed in the network when K was

Y, = Y(I_K) Y, = Y(I_I/K) determined are not changed.
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High-Frequency Response of CS Amp

Take the following circuit and investigate its high-frequency response
— First, redraw using a high-frequency small-signal model for the nMOS

Cea
NMN—2 O
+ T
VS Cgs —_— Vgs gmvgs o RL Vo
- - - - -
R

There are two ways to find the upper 3-dB frequency oy
— Use open-circuit time constant method
— Use Miller’s theorem
— Brute force calculations to find v /v,

Let’s investigate them all

ES154 - Lecture 17



Using OCT on CS Amplifier

Find the RC time constants associated with C4 and C in the following circuit

°
Cc

gd
| |
M B
+ ImVgs
v __C RIIr,

Vi gSm—— T gs

4, :V_Oz_gm(RL I ro)

i

[+ o

Replace C4q With an open-ckt and find the resistance seen by C

® R — vtst :R
ImYgs + . itst )

tst tst R ”r v

- -R,C, =RC,
. Replace C, W|th an open -ckt and find the resistance seen by C4
R i /R + Vgs + Vtst
. st 1. =—v I = %
AN | @ ) _T_ tst gs s tst Enm gs RL || r
= Ttst + mvgs .
\7!4_3 R'—”ro Vo Rgd :vtst/ltst_( L||r)+gm s( L||r)+R
= T :Rgdcgd :[(RL ||r0)+ngs(RL ||r0)+Rs]ng

10
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Using OCTs Cont'd

« Summing to two time constants yields oy

1

Z'gS-I—ng
1

RSCgs + [(RL || r0)+ngS(RL || r0)+Rs]ng

112

WOy

112

WOy

— From the above equation, it is not difficult to imagine that Cy4 has a more
significant effect on reducing BW

— The resulting frequency dependence of gain is...

A
A — M
() s/w, +1

« Let's compare this result with what we get using Miller's theorem
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Using Miller's Theorem on CS Amplifier

Redraw the high-frequency small-signal model using Miller’'s theorem

AW .
+ Cosl1+G,R.) IVge +
v, v Cys /:: R/ v,
- ng[1+1/(ngL')] -
CT
— Assuming a dominant pole introduced by C, in parallel with C

_ 1 1
wH:[CgS+C (+g,R R, "R,

Miller multiplication of ng results in a large input capacitance

Notice that this approximation for o, is close to the approximation found using OCT
assuming that R.C (1+g, R, ') dominates

Let’s verify our assumptions by deriving the exact high-frequency transfer function of the CS
amplifier
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ils) Ve _ VIR,
I O [ SR = SRR
v,(s) -

High-Frequency Response of CS Amplifier

Replace the input source and series resistance with a Norton equivalent

gd

SCy4(VgsVo) C
=

=
t\ -
i
i
i
i
1

1

VO(S)_ i _gm/ng .
= =-A4, 5
v.(s) 1+5[R.C, +R.C,(1+g,R,")+CyR,'|+5°C,.C.,RR,'

— The exact solution gives a zero (at a high frequency) and two poles
— Notice that the s term is the same as the solution using the OCT method

Unfortunately, the denominator is too complicated to extract any useful info...
So, assuming the two poles are widely separated (greater than an order of
magnitude), we can rewrite the expression for the denominator as...

ES154 - Lecture 17

13



HF Response of CS Amplifier

» Rewrite the denominator as:
D(S): (1+S/C‘)P1)(1+S/wpz): 1+S(1/a)1>1 +1/0)P2)+S2/0)P10)P2
D(s)=1+5s/w,, + 5>/ wp0,,

— And from the solution on the previous slide we can write...
a)Pl l
RC,+RC,(+g,R,')+RC,R,'/R
Cp+Cyol+g,R,")+Cy R,'/R,
C,C, R, “C

gs

m

Wp; =

» So the second pole is usually at a much higher frequency and we can assume a
dominant pole

* Using either Miller's theorem or OCTs enables a way to quickly find
approximations of the amplifier's high-frequency response
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Frequency Response of CG Amplifier

One way to avoid the frequency limitations of Miller multiplication of C, is to utilize
a CG amplifier configuration

||ng
[

J=— (9 9mp)Vy (9 9mp)Vy
—e ——C,<R, v — R,
R R Cp=Cyq*Cyp

D gd

gs
+ | = = + = =
VX T Csb Vx -1 CS=Cgs+Csb

U_sing OCT methbd, we find two time constants )

— Atthe input (source node) ;- / Cs
VR +g, +g,,

— At the output (drain node) r, =C,R,

The output usually drives additional load capacitance such that the output pole is
dominant

The frequency response of CG amplifiers is when combined with a CS stage to
build a cascode circuit
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Cascode Stage

 Cascoding enables high bandwidth by suppressing Miller multiplication of C,. Let’s
investigate how with the following high-frequency model of a cascode stage.

Coaz *Vour oV
C,,+C “Im2tImb2Vx out
db2 " ~L ::Cdb2+CL R|_

v, !
c = N

Cgaq 952 R, |C|:gd1

— A
R L ' v
S Cap1*Cop2 1 + Im gs1__Co|b1+Csb2+Cgsz
gs1 X
VIN Cgs1:|: L

— Use OCT method to find the time constants associated with each capacitor.
The time constant associated with C; is...

ngl

_ 1+ gmle + (ng + gme )Rv C ~ (1 + gml JR C NOTICE
o gdl — s~ gdl . T . .
8ot & gt &oio Miller multiplication is ~2
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Frequency Response of Source Followers

Start with a high-frequency small-signal model of the source follower circuit
T R

S
+ L

| W _

*Vo,r Vin Cs Cs VES 9mVgs
vINCt <¢> ——=C,

L - * Vout

— Directly solving for v /v, yields:
sC, y ¢
g, +sC, ™ Op, = z
( )Y ] ngngd + CL + Cgs
v, =R, vmngs + Wi Vg ng Vo TV

vout gm +SCgs
Seb)=7 (c.c 2
vin s gs L + Cgscgd +ngCL)y +(ngngd +CL +Cgsk+gm

VgsSCgs + gmvgs = VoutSCL - Vgs =

The zero is due to C that directly couples the signal from the input to the output
If poles are far apart, then the s term represents the dominant pole

Wei
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More on Source Follower

Other important aspects of a source follower are its input and output
impedances (since they are often used as buffers)

Let’s calculate the input impedance using the high-freq small-signal

models
Z, = ! +| 1+ Em !
sC SCy ) &y +5C,

g5

Now calculate the output impedance (ignoring g, for simplicity)
_RsC, +1

" g +5Cy

— Atlow frequency, Z = 1/g,,

— At high frequency, Z_, = R,

— Shape of the response depends on the relative size of R, and 1/g,

|Zout| |Zout|
N N
1g,, R,
Rs 1/gm
AN AN
L T
(0] ®
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19, CT
Rs
| + 1=
= ng:Vis <¢> nggS
i Vout
4

out

Z_ . can look inductive

out

or capacitive depending

on R, and 1/g,,

18



Wei

Differential Pair

We have seen that a symmetric differential amplifier can be analyzed with a
differential half circuit. This still holds true for high-frequency small-signal
analysis.

I?D RD
RS + Vout - RS ﬁgd
#vy/2 —\Wh—] - Wy ™ T :
R
-Vd/2 M Vd/2 Cgs__ C N RD Vout

— The response is identical to that of a common-source stage
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High-Frequency CMRR

number of factors. The most important is the increase in CM gain with

The CMRR of a differential pair degrades at high frequency due to a

frequency due to capacitance on the tail node.
Use the common-mode equivalent half circuit to understand how CM [®Vout.cm

gain increases with frequency

— Draw the small-signal equivalent model and see the effect of C.,,

on the v /v, transfer function 2r, | CraL /2

Vout - gmvgsRD and vgs = vin-vx and Vx - gmvgs (2V0| | 2/SCTAIL) %

b, - Vi Vo _ &uRo S
® 1+gm(2ro||2/SCTAIL) Vin 1+gm(2ro||2/SCTA1L)

Vout ( S) _& R (1 +57,Cryy ) Vin,CM._:_ OVes Vout,cm
Vin 1 + 2gmr0 + SroCTAIL Vgs RD

— Zero at o, = 1/r,C;,, (since r, is big, m, occurs at a low frequency)

— There are additional poles at higher frequencies due to C;,, and 0
other internal capacitances (that we have ignored)

The zero causes the CM gain to increase with frequency until the higher
frequency poles kick in > CMRR degrades due to the zero

Wei
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HF CMRR plots

* The impact of the zero in the CM gain on CMRR can A (dB)"
be illustrated as shown o
— Remember CMRR = A /A,
®z o (log scale)/
N
|A4l (dB) .
* There is a trade off between CMRR and voltage
headroom i
— Wider current source devices enable lower v N
— Wider current source device means larger Cr,, @ o(log scale)

N

CMRR (dB) . / -20dB/dec
| - / -40dB/dec

AN
7

z ®p o (log scale)
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Next Time

* Reading
— S&S Chapter 8

« Supplemental Reading
— Razavi: Chapter 8

« What to look forward to...

— Negative feedback for amplifiers was invented in 1927 by Harold Black to
stabilize the gain and correct the distortion of amplifiers used in long-
distance telephone networks. Negative feedback (as well as positive
feedback) is widely used in analog circuits today. In fact, we used negative
feedback when we constructed op amps with gain set using resistors.
Throughout the next lecture, we will investigate the general theory of
feedback and look at four basic feedback topologies. We will also learn
how to understand and analyze the stability of amplifiers.
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