
PHYSICAL REVIEW E 99, 012102 (2019)

Specific heat and partition function zeros for the dimer model on the checkerboard B lattice:
Finite-size effects

Chi-Ning Chen,1,* Chin-Kun Hu,1,2,† N. Sh. Izmailian,3,‡ and Ming-Chya Wu2,4,§

1Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
2Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

3Yerevan Physics Institute, Alikhanian Brothers 2, 375036 Yerevan, Armenia
4Research Center for Adaptive Data Analysis, National Central University, Zhongli, Taoyuan 32001, Taiwan

(Received 28 September 2018; revised manuscript received 26 November 2018; published 2 January 2019)

There are three possible classifications of the dimer weights on the bonds of the checkerboard lattice and
they are denoted as checkerboard A, B, and C lattices [Phys. Rev. E 91, 062139 (2015)]. The dimer model
on the checkerboard B and C lattices has much richer critical behavior compared to the dimer model on the
checkerboard A lattice. In this paper we study in full detail the dimer model on the checkerboard B lattice.
The dimer model on the checkerboard B lattice has two types of critical behavior. In one limit this model
is the anisotropic dimer model on rectangular lattice with algebraic decay of correlators and in another limit it is
the anisotropic generalized Kasteleyn model with radically different critical behavior. We analyze the partition
function of the dimer model on a 2M × 2N checkerboard B lattice wrapped on a torus. We find very unusual
behavior of the partition function zeros and the specific heat of the dimer model. Remarkably, the partition
function zeros of finite-size systems can have very interesting structures, made of rings, concentric circles, radial
line segments, or even arabesque structures. We find out that the number of the specific heat peaks and the
number of circles of the partition function zeros increases with the system size. The lattice anisotropy of the
model has strong effects on the behavior of the specific heat, dominating the relation between the correlation
length exponent ν and the shift exponent λ, and λ is generally unequal to 1/ν (λ �= 1/ν).

DOI: 10.1103/PhysRevE.99.012102

I. INTRODUCTION

The classical dimer model is one of the well-known models
of theoretical physics. It was first introduced in 1937 to ex-
plain the adsorption of diatomic molecules on a substrate [1].
Later, it became a general problem studied in various sci-
entific communities with a large spectrum of applications.
Dimer models have been a source of renewed interest in
mathematical physics [2–10], condensed matter physics [11],
computer science [12], and social science [13]. Dimer models
have regained interest because of the so-called quantum dimer
model, originally introduced by Rokhsar and Kivelson [14].
Besides, a recent connection between dimer models and D-
brane gauge theories has been discovered [15], providing a
very powerful computational tool.

From the mathematical point of view, the dimer model
is extremely simple to define. We take a finite graph L and
consider all arrangements of dimers (dominoes), so that all
sites of L are covered by exactly one dimer. This is the so-
called close-packed dimer model. Here we focus on the dimer
model on checkerboard lattices (see Fig. 1). The checkerboard
lattice is a two-dimensional (2D) system of great current
interest, a setup which provides a tool to study the evolution
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of physical properties as the system transits between different
geometries. The checkerboard lattice is a simple rectangular
lattice with anisotropic dimer weights x1, x2, y1, and y2. Each
weight xa is simply the Boltzmann factor e−εa/kBT for a dimer
on a bond of type a with energy εa . In what follows, for
simplicity we have chosen kB = 1. There are three possible
classifications of the dimer weights on the bonds of the lattice
shown in Fig. 1 and they are denoted as checkerboard A, B,
and C lattices, respectively [16].

It is interesting to note that the dimer model on the checker-
board lattices A, B, and C has different critical behaviors. For
x1 = x2 and y1 = y2 the partition function for all three models
reduces to that for the dimer model on the rectangular lattice
with uniform weights. The dimer model on the rectangular
lattice is critical with algebraic decay of correlators [17,18].
Such type of critical behavior can be consistently interpreted
in a conformal scheme based on two conformal descriptions
of the dimer model: one with c = −2 for the construction
of a conformal field theory using a mapping of spanning
trees [19–25] and the other with c = 1 for the height func-
tion description [26,27]. When one of the weights y1 or y2

is equal to zero, the dimer model on the checkerboard B
lattice reduces to the dimer model on the honeycomb lat-
tice (the Kasteleyn K2-model [28]), while the dimer model
on the checkerboard A model reduces to the dimer model
on the one-dimensional strip [10,28–30]. For the case when
one of the weights x1, x2, y1, or y2 is equal to zero, the dimer
model on the checkerboard C model also reduces to the dimer
model on the honeycomb lattice introduced by Kasteleyn
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FIG. 1. The unit cells for the dimer models on the 2M × 2N checkerboard lattices, M = N = 1.

(the Kasteleyn K1-model) [31], and again the dimer model
on the checkerboard A model reduces to the dimer model
on the one-dimensional strip. For the dimer model on the
anisotropic honeycomb lattice, which is equivalent to the five-
vertex model on a square lattice [32], the free energy exhibits
a potassium dihydrogen phosphate-type singularity [33,34],
which can be explained in the framework of the c = 1 con-
formal field theory. Thus we can see that dimer model on the
checkerboard B and C lattices has much richer critical behav-
iors in comparison with the dimer model on the checkerboard
A lattice.

The dimer model on the checkerboard A lattice was first
introduced by Kasteleyn [31], who showed that the model
exhibits a phase transition. Since Kasteleyn did not write an
explicit form of the partition function on a finite 2M × 2N

checkerboard A lattice with periodic boundary conditions, it
has been done in Ref. [16]. The finite-size effects of the dimer
model on the checkerboard A lattice have been studied in full
detail in Ref. [35]. The exact expressions of the partition func-
tion of the dimer model on the finite 2M × 2N checkerboard
B and C lattices with periodic boundary conditions have been
obtained in Ref. [16]. The exact solution for the dimer model
on the checkerboard C lattice recovers that of Cohn, Kenyon,
and Propp [36] in the case M = N .

Finite-size scaling and corrections for critical systems,
initiated more than four decades ago by Fisher and Bar-
ber [37] have attracted much attention in recent decades
(see Ref. [38,39] for reviews). Finite-size effects become of
practical interest due to the recent progress in fine processing
technologies, which have enabled the fabrication of nanoscale
materials with novel shapes [40–42]. The detailed study of the
finite-size effects for free energy of the dimer model began
with the work of Ferdinand [43] few years after the exact
solution, and has continued in a long series of articles using
analytical [19–26,30,44–51] and numerical methods [52–58]
for various geometries and boundary conditions. In the present
paper, we are going to study the finite-size effects of the dimer
model on the finite 2M × 2N checkerboard B lattice with
periodic boundary conditions. We will study the finite-size
effects for the specific heat C2M,2N (t ) with the temperature-
like variable t , such as the dimer weights xa’s or their com-
binations. In finite-size systems, the specific heat shows a
sharp peak, but it does not diverge. Finite-size properties of
the specific heat CL(t ) with a characteristic size of the system
L = √

4MN are characterized by (i) the location of its peak,
tpseudo, (ii) its height CL(tpseudo), and its value at the infinite-
volume critical point C∞(tc ). As the system size increases, the

height of the specific heat CL(tpseudo) grows as

C(tpseudo) ∼ L
2
ν
−d , (1)

according to the finite-size theory [59,60], where ν is the
correlation length critical exponent and d is the dimension of
the system. The peak position tpseudo, is a pseudocritical point
which typically approaches tc as the characteristic size of the
system L tends to infinity as

|tpseudo − tc| ∼ L−λ, (2)

where λ is the shift exponent. In a classic paper, Ferdinand
and Fisher [61] determined the behavior of the specific heat
pseudocritical point of the Ising model on a finite plane square
lattice. They found that the shift exponent for the specific heat
is λ = 1 = 1/ν. The equality of λ and 1/ν is accidental and
it is not a consequence of the finite-size scaling (FSS) [60].
Instead, the shift exponent is a free parameter [35,49,61–64]
and the property of λ is not yet understood. The actual value
of the shift exponent depends on the lattice topology [61–64]
and on the parity of the lattice sites [35,49]. For lattices with
a spherical topology, the two exponents were found to be
ν = 1.00 ± 0.06 and λ = 1.745 ± 0.015, significantly away
from λ = 1 = 1/ν [62]. Janke and Kenna [64] reported the
shift exponent λ = 2 = 2ν for the square-lattice Ising model
with Brascamp-Kunz boundary conditions, again completely
different from λ = 1 = 1/ν. Very recently, Kim [63] evalu-
ated exactly the density of states of the Ising model on a L × L

square lattice with self-dual boundary conditions up to L =
32 and obtained λ = 2 and ν = 1, clearly indicating λ �= 1/ν.
Izmailian and Kenna [49] have found that the shift exponent
can also depend on the parity of the number of lattice sites
N along a given lattice axis. They found for the dimer model
on the triangular lattice that the shift exponent for the specific
heat is equal to 1 (λ = 1) for odd N , while for even N the
shift exponent is equal to infinity (λ = ∞). In the former case,
therefore, the finite-size specific-heat pseudocritical point is
size dependent, while in the latter case it coincides with
the critical point of the thermodynamic limit. Quite recently
Izmailian, Wu and Hu [35] found for the dimer model on the
finite 2M × 2N checkerboard A lattice that the specific heat
shift exponent is equal to infinity (λ = ∞).

For anisotropic systems like the dimer model on the
checkerboard B lattice considered in this paper, the correlation
length critical exponent ν and the shift exponent λ are not
necessarily isotropic, and an intuitive conjecture is their values
vary with the lattice shape factor and hence Eqs. (1) and (2)
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FIG. 2. The relations between (a) the checkerboard B lattice and (b) the rectangular lattice, (c) the honeycomb lattice (K2-model), and (d)
the generalized K-model.

require a revision. One can assume that ν consists of two
distinct components νx and νy respectively associated with
the characteristic lengths 2N and 2M , and λ consists of
two independent components λx and λy . While the explicit
function forms of ν as a function of νx and νy , and λ as a
function of λx and λy are yet unknown, they are nontrivial
and not found in this study. We will approach the issue by
calculating numerically ν and λ according to Eqs. (1) and (2)
at different critical points instead to check their coincidence.

The finite-size behavior of the specific heat is related to
the properties of the complex temperature (Fisher) zeros of
the partition function. Considerable information about the
thermodynamical behavior of the system is encoded in the
zeros of the partition function. For a system of finite size,
the partition function Z can be written as

Z ∝
∏

i

(z − zi ), (3)

where z is an appropriate function of temperature and zi’s are
zeros. The specific heat of the system is a sum of the contri-
butions from the specific heat components corresponding to
the zeros. Hence, partition function zeros have attracted much
attention in recent decades (see Refs. [63–68] and references
therein). It has been observed that the specific heat usually ex-
hibits various anomalies such as the two-peak Schottky-type
anomaly in the low-temperature regime of the specific heat
capacity [69–72], and the multipeak structure of the specific
heat capacity in the frustrated magnetic system [73,74]. In this
paper we will show that for finite systems the number of the
specific heat peaks and the number of circles of the partition
function zeros increases with the system size.

Our objective in this paper is to study the finite-size prop-
erties of the dimer model on the plane checkerboard B lattice
using the techniques developed in Refs. [44] and [50] and
numerical calculations. In particular we are going to obtain
the patterns of the partition function zeros and the finite-size
behavior of the specific heat in the vicinity of the critical point.

II. DIMER MODEL ON CHECKERBOARD B LATTICE

Let us consider the dimer model on a 2M × 2N checker-
board B lattice, as shown in Fig. 2(a), under periodic boundary
conditions. The partition function can be written as

Z2M,2N =
∑

x
Nx1
1 x

Nx2
2 y

Ny1
1 y

Ny2
2 , (4)

where Na is the number of dimers of type a and the summa-
tion is over all possible dimer configurations on the lattice.
An explicit expression for the partition function of the dimer
model on the 2M × 2N checkerboard B lattice under periodic
boundary conditions is given by [16]

Z2M,2N = (x1x2)MN

2

( − Z2
0,0 + Z2

1/2,0 + Z2
0,1/2 + Z2

1/2,1/2

)
,

(5)

where Z2
α,β is given by

Z2
α,β = (x1x2)−MN

N−1∏
n=0

M−1∏
m=0

[∣∣x1e
i

φα,n
2 − x2e

−i
φα,n

2
∣∣2

− (
y1e

i
φβ,m

2 − y2e
−i

φβ,m

2
)2]

, (6)

where φα,n = 2π (n + α)/N and φβ,m = 2π (m + β )/M .
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FIG. 3. The phase diagram of the generalized K-model. Phase
I and II are separated by the critical line y = 1 − 2x, and phase II
and III are separated by the critical line y = 1 + 2x. The red dotted
line of y = 1 represents the dimer model on a square lattice. The
correlation length critical exponent ν and the shift exponent λ are
calculated in the vicinities of the critical points.

The dimer model on the checkerboard B lattice includes
three different types of lattices (see Fig. 2):

(A) Dimer model on the rectangular lattice: the case x1 =
x2 = x, y1 = y2 = y. The dimer model on the checkerboard
B lattice in the case x1 = x2 = x and y1 = y2 = y reduces
to the dimer model on the rectangular lattice [see Fig. 2(b)].
The dimer model on the rectangular lattice is critical and the
critical behavior can be consistently interpreted in a conformal
scheme based on two conformal descriptions of the dimer
model: one with c = −2 [19–25] and the other with c =
1 [26,27].

(B) The generalized K-model [29,30]: the case x1 = x2 =
x, y1 = y, y2 = 1. The dimer model on the checkerboard B
lattice in the case x1 = x2 = x and y1 = y, y2 = 1 reduces to
the generalized K-model [see Fig. 2(d)]. The phase diagram
shown in Fig. 3 for that model is very well known [29,30]. The
region I is separated from the region II by the critical line y =
1 − 2x, and the region III is separated from the region II by
the critical line y = 1 + 2x. In region I, the system is frozen in
the ground state where the dimers are on the edges of activity
1 (y � 1). Region III is also a frozen ground state where the
dimers are on the edges of activity y (y � 1). Region II is the
disorder phase. The dashed line corresponds to the rectangular
lattice model. Thus, we have two critical lines given by

(1) y = 1 + 2x,

(2) y = 1 − 2x.

(C) Dimer model on the honeycomb lattice (the Kasteleyn
K2-model [28]): the case y1 = y, y2 = 0. The dimer model
on the checkerboard B lattice, in the case when one of the
weights y1 or y2, say y2 is equal to zero and the other is a
free parameter, say y1 = y, reduces to the dimer model on the
honeycomb lattice [see Figs. 2(c) and 3(b)].

In 1963, Kasteleyn [31] introduced the dimer model on
an anisotropic honeycomb lattice, with activities x1, x2, and
x3 along the directions of three principle axes, respectively.
Later that model has been called the Kasteleyn model or
the K-model [75]. In 1986 Yokoi, Nagle, and Salinas [28]
considered a particular variant of the K-model, which they
called the K2-model [see Fig. 4(b)], while the original model

FIG. 4. The relation between (a) the K1-model, (b) the K2-
model, and (c) the honeycomb lattice I and (d) the honeycomb
lattice II.

studied by Kasteleyn, they called the K1-model [see Fig. 4(a)].
The main difference of these two models is that in the K2-
model the arrangement of activities of the dimers obeys a
rectangular symmetry rather than a hexagonal symmetry, as
in the K1-model. The dimer model on the checkerboard C
lattice, in the case when one of the weights x1, x2, y1, or
y2 is equal to zero, reduces to the original model studied
by Kasteleyn (the K1-model). The K1-model is equivalent to
the five-vertex model on a square lattice [32] and the critical
behavior can be fully explained in the framework of c = 1
conformal field theory. The known behavior of the phase
transition is that the specific heat has a square-root divergence
at critical point (T = Tc) as T approaches Tc from above (T �
Tc), while the specific heat is identically zero for all T smaller
than Tc. The K2-model can be mapped [28] to a particular
domain wall model of commensurate-incommensurate (CI)
transitions introduced by Villain [76].

The dimer model on all these lattices show different types
of critical behaviors, and we will consider all three cases
A, B, and C. For clarity, we remark that in additional to
the definition of the regular specific heat as a function of
temperature T ,

C(T ) = 1

S

1

T 2

∂2

∂ (1/T )2
ln Z2M,2N, (7)

where S = 4MN is the area of the lattice, in this paper we
will use its equivalent form, expressed by the temperaturelike
variable t ,

C2M,2N (t ) = (ln t )2

S

(
t

∂

∂t

)2

ln Z2M,2N . (8)
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FIG. 5. The specific heat C2M,2N (t ) of the dimer model on the 2M × 2N rectangular lattice in Fig. 2(b) for u = 1 and M = N , as a function
of t . Here t2 = (x1 − x2)2/(4x1x2) and u2 = y2/(4x1x2), and tc = 0. (b) The partition function zeros for the lattice of 2M = 2N = 32.

Exceptionally for the dimer model on the rectangular lattice,
we will use

C2M,2N (t ) = 1

S

∂2

∂t2
ln Z2M,2N, (9)

instead, to conveniently demonstrate the behavior of the spe-
cific heat curve.

III. DIMER MODEL ON THE RECTANGULAR LATTICE:
THE CASE x1 = x2 = x, y1 = y2 = y

One type of the critical behaviors occurs when the dimer
model on the checkerboard B lattice is reduced to the dimer
model on the rectangular lattice. Let us consider the critical
case where the partition function of the dimer model on the
checkerboard B lattice reduces to that of the dimer model on
the rectangular lattice. To do so, let us first take y1 = y2 = y

in Eq. (6). Then for Z2
α,β in Eq. (6) we obtain the following

expression:

Z2
α,β =

N−1∏
n=0

M−1∏
m=0

4

(
t2 + sin2 φα,n

2
+ u2 sin2 φβ,m

2

)
. (10)

Here for simplicity, we have introduced two variables t2 =
(x1 − x2)2/(4x1x2) and u2 = y2/(4x1x2). The critical point
corresponds to t = tc = 0 with an arbitrary value of u. The
analysis of the dimer model on the checkerboard B lattice
close to that critical point is quite similar to the analysis of
the dimer model on the checkerboard A lattice [35]. Here we
will consider the behavior of the specific heat and the partition
function zeros near the critical point. To allow negative values
of t , the specific heat C2M,2N (t ) for this case is defined as
the second derivative of the free energy with respect to t ,
following Eq. (9). The pseudocritical point tpseudo is the value
of t at which the specific heat has its maximum for a finite
2M × 2N lattice. One can determine this quantity as the point
where the derivative of C2M,2N (t ) with respect to t vanishes.
We take x1 = x2 = x to demonstrate the x-dependence of the
critical behavior. In Figs. 5(a) and 6(a), we plot, respectively,
the t- and x-dependence of the specific heat for the case of

u = 1 with different lattice sizes up to 1024 × 1024. We can
see from Fig. 5(a) that the position of the specific-heat peak
tpseudo is equal exactly to zero. Therefore, the maximum of the
specific heat (at tpseudo) always occurs at vanishing reduced
temperature for any finite 2M × 2N lattice and coincides with
the critical point tc in the thermodynamic limit (tpseudo = tc =
0). Hence, from Eq. (2) we find that the shift exponent is
infinity (λ = ∞), apparently different from the inverse of the
correlation length critical exponent (λ �= 1/ν).

Figures 5(b) and 6(b), respectively, show the distribution
of the partition function zeros in the complex t and complex x

planes for the lattice size 2M × 2N = 32 × 32 in Figs. 5(a)
and 6(a). The distribution of the zeros near Re(t ) = 0 in
Fig. 5(b) manifests the sharp peak of the specific heat curve
at the critical point tc = 0 in Fig. 5(a) even for small system
sizes. Similarly, the distribution of the partition function zeros
in a ring of radius 1 that intersects with the real axis at
Re(x) = 1 in Fig. 6(b) features the dominant contributions of
the zeros to the specific heat in the vicinity of the critical point
xc = 1 in Fig. 6(a) regardless of the system size.

IV. THE GENERALIZED K-MODEL: THE CASE
x1 = x2 = x, y1 = y, y2 = 1

Another type of the critical behaviors occurs when the
dimer model on the checkerboard B lattice is reduced to the
generalized K-model in the case x1 = x2 = x, y1 = y, y2 =
1. The partition function of the generalized K-model is given
by Eq. (5), whereas Z2

α,β reads as

Z2
α,β = x−2MN

N−1∏
n=0

M−1∏
m=0

[
4x2 sin2

(
φα,n

2

)

− (
yei

φβ,m

2 − e−i
φβ,m

2
)2

]
. (11)

The phase diagram for this model shown in Fig. 3 is very well
known [29,30]. To see the critical behaviors of this model,
we consider a particular situation with x = 1/4 and another
situation with y = 1/2, which, respectively, correspond to
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FIG. 6. The specific heat C2M,2N (x ) of the dimer model on the 2M × 2N rectangular lattice in Fig. 2(b) for u = 1 and M = N , as a
function of x. Here u2 = y2/(4x2) and xc = 1. (b) The partition function zeros for the lattice of 2M = 2N = 32.

varying y along the green dashed line of x = 1/4 and varying
x along the red dashed line of y = 1/2 in Fig. 3.

The specific heat and the partition function zeros for the
case x = 1/4 are shown in the Fig. 7. There are two peaks at
y = 1/2 and y = 3/2 in the specific heat curves of Fig. 7(a),
corresponding to the intersections of the line x = 1/4 with the
critical line yc1 = 1 − 2x at yc2 = 1/2 and with the critical
line y = 1 + 2x at y = 3/2 in the phase diagram of Fig. 3.
These two peaks have unequal heights as they are phase
transitions through different phase boundaries. This scenario
is also depicted by the distribution pattern of the partition
function zeros in Fig. 7(b) for the lattice of 2M = 2N = 48.
The two ends of the radial line distribution of zeros at the real
axis [i.e., Re(y)] in Fig. 7(b) correspond to the critical points
yc1 and yc2 in Fig. 7(a).

We determine the correlation length critical exponent ν

and the shift exponent λ using Eqs. (1) and (2) and d = 2.
We numerically calculate the specific heat C2M,2M (y) as a
function of y for various lattice sizes, collect the data of the
specific heat peak C2M,2M (ypseudo) and the pseudocritical point

ypseudo to plot ln C2M,2M (ypseudo) versus ln(2M ) and |yc −
ypseudo| versus ln(2M ), then use the linear fitting function in
Originlab Origin Pro to fit the data and estimate errors. Note
that yc − ypseudo changes sign as the system size increases,
and hence |yc − ypseudo| versus ln(2M ) is not linear. We fit
the linear regime closest to |yc − ypseudo| = 0 to determine λ.
Our results are ν = 0.796 ± 0.037 and λ = 0.406 ± 0.038 for
yc1 = 1/2, and ν = 0.775 ± 0.041 and λ = 0.446 ± 0.119
for yc2 = 3/2.

Furthermore, the specific heat and the partition function ze-
ros for the case y = 1/2 are shown in Fig. 8. The single peak
at x = 1/4 in Fig. 8(a) represents the critical behavior at the
intersection of the line y = 1/2 with the critical line y = 1 +
2x at x = 1/4. The dilute, radial, and ring distribution pattern
of the partition function zeros in Fig. 8(b) for the lattice of
2M = 2N = 48 is quite different from that of Fig. 7(b). The
location of the critical point is determined by the intersection
of the smallest ring with the real axis at Re(x) = 1/4, corre-
sponding to the peak in Fig. 8(a). For this case, we have ν =
0.800 ± 0.001 and λ = 0.948 ± 0.004. Remarkably, the shift

FIG. 7. (a) The specific heat C2M,2N (x ) as a function of x for the generalized K-model in Fig. 2(d) with x = 1/4. Here yc1 = 1/2 and
yc2 = 3/2. (b) The partition function zeros for the lattice of 2M = 2N = 48.
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FIG. 8. (a) The specific heat C2M,2N (x ) as a function of x for the generalized K-model in Fig. 2(d) with y = 1/2. Here xc = 1/4. (b) The
partition function zeros for the lattice of 2M = 2N = 48.

exponent λ is anisotropic at xc = 1/4, yc = 1/2, as shown in
Fig. 6. Again, the analysis of the correlation length critical
exponent ν and the shift exponent λ in this case suggests they
are not coincident (λ �= 1/ν).

V. DIMER MODEL ON THE HONEYCOMB LATTICE
(K2-MODEL): THE CASE y2 = 0

Next, we consider in full detail the case y2 = 0, when
the dimer model on the checkerboard B lattice turns to the
honeycomb lattice model or the K2-model [28,29]. Here, we
will consider two cases: the first case when the dimer activities
x1 and x2 are equal [Fig. 4(c)] is called the honeycomb lattice
I, and the second case when they are not [Fig. 4(d)] is referred
to the honeycomb lattice II. For the first case, we have set x1 =
x2 = x [see Fig. 4(c)] and for the second case without loosing
generality we choose x1 = 1 and x2 = x [see Fig. 4(d)].

A. The case x1 = x2 = x

For the first case (x1 = x2 = x) the partition function of the
model is given by Eq. (5), where Z2

α,β can be written as

Z2
α,β = x−2MN

N−1∏
n=0

M−1∏
m=0

(
x2

∣∣ei
φα,n

2 − e−i
φα,n

2
∣∣2 − y2eiφβ,m

)

=
N−1∏
n=0

M−1∏
m=0

4

(
sin2 φα,n

2
− y2

4x2
eiφβ,m

)
. (12)

It is easy to see from Eq. (12) that Z2
α,β is a function of the

new variable u:

u = y

2x
. (13)

With the help of the identity

M−1∏
m=0

[
a − bei

2π (m+β )
M

] = aM − bMei2πβ, (14)

the Z2
α,β can be transformed into a simpler form

Z2
α,β =

N−1∏
n=0

4M

[
sin2M π (n + α)

N
− ei2πβu2M

]

= (2u)2MN

N−1∏
n=0

[
e2Mω1( π (n+α)

N
) ± 1

]
, (15)

where + and − signs stand for β = 1/2 and 0, respectively.
Here we have introduced ω1(k) defined as

ω1(k) = ln

(
1

u
sin k

)
. (16)

Now the ln Zα,β can be written as

ln Zα,β = MN ln(2u)

+ 1

2
Re

N−1∑
n=0

ln
[
e2Mω1( π (n+α)

N
) ± 1

]
. (17)

The phase diagram of this case is shown in Fig. 9. The system
undergoes a phase transition at the critical line y = 2x or at
the critical point u = uc = 1.

FIG. 9. The phase diagram of the K2-model honeycomb lattice I
of Fig. 4(c). The correlation length critical exponent ν and the shift
exponent λ are calculated in the vicinities of the critical points.
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One can define the density of horizontal dimers ρ2M,2N (x)
and the density of vertical dimers ρ2M,2N (y) as

ρ2M,2N (x) = x

S

∂

∂x
ln Z2M,2N, (18)

ρ2M,2N (y) = y

S

∂

∂y
ln Z2M,2N, (19)

and the definition of the specific heat follows Eq. (7). Let us
denote by Z(u),

Z(u) = −Z2
0,0 + Z2

1/2,0 + Z2
0,1/2 + Z2

1/2,1/2, (20)

then the partition function of the model can be written as

Z2M,2N = xS/2

2
Z(u). (21)

Now one can easily show that the density of horizontal
dimers ρ2M,2N (x), the density of vertical dimers ρ2M,2N (y),
and the specific heat C(T ) can be rewritten in the following
form:

ρ2M,2N (x) = 1

2
− u

S

∂

∂u
ln Z(u), (22)

ρ2M,2N (y) = u

S

∂

∂u
ln Z(u), (23)

and

C(T ) = (ln 2u)2

[
u

S

∂

∂u
ln Z(u) + u2

S

∂2

∂u2
ln Z(u)

]
. (24)

We found that in the thermodynamic limit (M,N → ∞), the
density of horizontal dimers ρ2M,2N (x), the density of vertical
dimers ρ2M,2N (y), and the specific heat C(T ) for u > uc

(uc = 1) are given by

ρx = lim
M,N→∞

ρ2M,2N (x) = 0, (25)

ρy = lim
M,N→∞

ρ2M,2N (y) = 1
2 , (26)

C∞ = 0, (27)

while for u < uc (uc = 1) we obtain

lim
M,N→∞

u

S

∂

∂u
ln Z = 1

2
− cos−1 u

π
, (28)

lim
M,N→∞

u2

S

∂2

∂u2
ln Z = −1

2
+ cos−1 u

π
+ u

π
√

1 − u2
, (29)

and

ρx = cos−1 u

π
, (30)

ρy = 1

2
− cos−1 u

π
, (31)

C∞ = u

π

(ln 2u)2

√
1 − u2

. (32)

Let us now, for example, consider three cases, namely,
the case y = 1 (εy = 0), the case x = 1 (εx = 0), and the
case x = 1/2. The first case (y = 1) has been considered in
Ref. [75]. The critical point (uc = 1) for that case corresponds

to xc = 1/2. From Eqs. (25), (27), (30), and (32) we can easily
reobtain the result of Ref. [75]. In particular, the density of
horizontal dimers ρx and the specific heat C∞(x) are given
by, for x � 1

2 ,

ρx = C∞(x) = 0, (33)

and for x > 1/2,

ρx = 1

π
cos−1

(
1

2x

)
, (34)

C∞(x) = 1

π

(ln x)2

√
4x2 − 1

. (35)

The equations above show that the system undergoes a phase
transition at the critical point x = xc = 1/2. The specific heat
C2M,2N of this case with y = 1, as a function of x is shown in
Fig. 10(a) for fixed 2M = 32, and in Fig. 11(a) for fixed 2N =
32. There are multiple peaks in the specific heat curves which
are associated with the distributions of the partition function
zeros in Figs. 10(b) and 10(c), and Figs. 11(b) and 11(c). The
partition function zeros plotted in the complex x plane for the
lattice of 2M × 2N = 32 × 128 has a structure made of con-
centric circles in a larger scale [see Fig. 10(b)] and radial line
segments in a smaller scale [see Fig. 10(c)]. Meanwhile, the
partition function zeros for the lattice of 2M × 2N = 128 ×
32 shows concentric circles in both large and small scales [see
Figs. 11(b) and 11(c)]. The peak in the specific heat is a result
of the ring distribution pattern of zeros, and the number of
peaks, corresponding to the number of the concentric rings,
is in principle proportional to the lattice size 2N , or more
precisely, equal to N . Meanwhile, the heights of the peaks
are associated with the lattice size 2M , due to the contribution
of 2M zeros in a ring. It follows that the height of the peak
closest to xc in Fig. 10(a) is limited by the fixed 2M = 32
and does not grow with the increasing 2N , while the peaks
far from xc are smeared out when 2N becomes larger. On the
contrary, the locations of the multiple peaks in Fig. 11(a) are
roughly fixed for the fixed 2N = 32 and the heights of peaks
grow with the increasing 2M . Hence, the lattice anisotropy
has strong effects on the behaviors of the specific heat for the
model on finite lattices. Interestingly, the hight of the peak
closest to xc does not grow more significantly.

The above scenario can be understood by considering the
arrangement of dimers on a honeycomb lattice which is equiv-
alent to a brick lattice. On the brick lattice, there is a constraint
that when a horizontal x dimer is placed, another two x dimers
must be placed in the row below and the row above. This
is due to the fact that the horizontal x dimer will block two
neighboring vertical y dimers, and the endpoints of the two
y dimers must be covered by another two x dimers. Thus,
the number of x dimers of a legal dimer covering state can
only be 0, 2M, 4M, . . . . When the weight of the ground state
is y2MN , the weight of the first excited state is x2My2M (N−1),
and the weight of the second excited state is x2(2M )y2M (N−2),
etc. All these terms will appear in the expansion of Eq. (3).
Therefore, when x value is fixed, the expansion of Z(y) is an
N th degree polynomial of y2M , and when y value is fixed,
the expansion of Z(x) is an N th degree polynomial of x2M .
As a result, for the case of honeycomb lattice I (and II with
x fixed), the partition function zeros have a structure of N
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FIG. 10. (a) The specific heat C2M,2N (x ) of the K2-model honeycomb lattice I in Fig. 4(c) and y = 1, as a function of x, for fixed 2M = 32.
Here xc = 1/2 and C∞(x ) is defined in Eq. (35). (b) The partition function zeros for the lattice of 2M × 2N = 32 × 128. (c) The zoom-in
of (b).

concentric circles, each with 2M zeros distributed uniformly
in it. While these zeros look more like concentric circles with
large M and small N , they look more like radial line segments
with small M and large N . The associated specific heat in the
former case shows more peaks than in the latter case, and they
are distinct: When M goes to infinity and N is kept finite in
the former case, the first zeros of all N circles indeed touch
the real axis, which leads to N phase transitions. The uniform
distribution of zeros on the circles indicates the transitions
are first-order. The sequence of first-order transitions of the
K model has been studied for some time [30,77], while our
analysis of the partition function zeros provides a clear picture
for this intriguing property. When M is kept finite and N

goes to infinity in the latter case, the zeros do not touch
the real axis and there is no phase transition in the region
of the phase diagram for the disorder phase, except in the
phase boundary where the Kasteleyn transition takes place.
The zeros in radial line segments close to the phase boundary
are denser than the zeros away from the phase boundary.
Although no zeros touch the real axis, when N increases, the
accumulation of zeros near the phase boundary contributes to
a larger and larger specific heat, which is the indication of
the Kasteleyn transition [31]. Away from the phase boundary,
the contribution from close zeros to the specific heat always
cancels each other. Hence, in the thermodynamic limit when
both M and N go to infinity, the specific heat of the K model
shows only one peak, but not many peaks.

For the K2-model honeycomb lattice I, in the thermody-
namic limit (i.e., infinite system size on both M and N ), there
is only a single peak at xc, which is a result of gradual peak
reduction from the multipeak version of finite-size cases. For
finite systems, however, single-peak specific curves always
take place in the vicinity of the critical point when N is much
larger than M , and vice versa. The condition of M << N

can be conveniently achieved by considering particular system
shapes with the shape factor ξ defined as

ξ = M2

N
, (36)

and taking values of ξ � 1. The cases of the specific heat
of the K2-model honeycomb lattice I with y = 1 and ξ � 1
having a single peak are shown in Fig. 12(a) (ξ = 1/4) and
Fig. 13(a) (ξ = 1), and multiple peak cases are shown in
Figs. 12(b) (ξ = 4) and 12(c) (ξ = 64). The lattice anisotropy
further has effects on the correlation length critical exponent
ν and the shift exponent λ. For ξ = 1, we have numerically
calculated ν and λ according to Eqs. (1) and (2) and the result
is ν = 8.847 ± 0.003 and λ = 0.468 ± 0.023.

Figure 13(b) shows the density of horizontal dimers
ρ2M,2N (x) as a function of x for y = 1. Figure 13 shows the
consistency between numerical calculations and the exact ex-
pression of C∞(x) in Eq. (35), and ρx in Eq. (34). By recalling
that x = e−εx/T the critical temperature is Tc = εx/ ln 2. The
Eq. (35) demonstrates t

−1/2
r dependence of the bulk specific

FIG. 11. (a) The specific heat C2M,2N (x ) of the K2-model honeycomb lattice I in Fig. 4(c) and y = 1, as a function of x, for fixed 2N = 32.
Here xc = 1/2 and C∞(x ) is defined in Eq. (35). (b) The partition function zeros for the lattice of 2M × 2N = 128 × 32. (c) The zoom-in
of (b).
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FIG. 12. The specific heat C2M,2N (x ) of the K2-model honeycomb lattice I of Fig. 4(c) and y = 1, as a function of x for the shape factor
(a) ξ = 1/4, (b) ξ = 4, and (c) ξ = 64. Here xc = 1/2, and C∞(x ) is defined in Eq. (35).

heat as tr → 0+, where

tr = T − Tc

Tc

(37)

is the reduced temperature.
Let us now consider the second case, namely, x = 1 (εx =

0). The critical point (uc = 1) for this case corresponds to
yc = 2. From Eqs. (26), (27), (31), and (32) we can obtain that
the density of vertical dimers ρy and the specific heat C∞(y),
for y � 2,

ρy = 1
2 , C∞(y) = − 1

2 , (38)

and for y < 2,

ρy = 1

2
− 1

π
cos−1

(y

2

)
, (39)

C∞(y) = y

π

(ln y)2√
4 − y2

. (40)

FIG. 13. The specific heat C2M,2N (x ) of the K2-model honey-
comb lattice I in Fig. 4(c) for y = 1 and ξ = 1, as a function of x.
Here xc = 1/2, and C∞(x ) is defined in Eq. (35). (b) The density of
horizontal dimers ρ2M,2N as a function of x. ρx is defined in Eq. (34).
The inset shows the zoom-in near xc = 1/2.

These equations show that the system undergoes a phase
transition at the critical point y = yc = 2. By recalling that
y = e−εy/T the critical temperature is Tc = −εy/ ln 2. The
Eq. (40) demonstrates t

−1/2
r dependence of the bulk specific

heat as tr → 0+. The main difference from the first case is
that the energy of y dimers at the critical point is negative,
while in the first case the energy of x dimers at the criti-
cal point is positive. Figures 14(a) and 14(b), respectively,
show the specific heat C2M,2N and the density of vertical
dimers ρ2M,2N as functions of y for x = 1 and ξ = 1. The
small but sharp peaks near y = 0 for smaller lattices are
relics of competition of the horizontal dimers with a fixed
weight x = 1 and the vertical dimers with a varying weight
y. The numerical results show consistency with Eqs. (40)
and (39). The correlation length critical exponent ν and the
shift exponent λ for ξ = 1 have been calculated numeri-
cally, and the results are ν = 0.847 ± 0.003 and λ = 0.464 ±
0.023. This value of the shift exponent is the same as the
y = 1 case.

FIG. 14. The specific heat C2M,2N (y ) of the K2-model honey-
comb lattice I in Fig. 4(c) for x = 1 and ξ = 1, as a function of y.
Here yc = 2 and C∞(y ) is defined in Eq. (40). (b) The density of
vertical dimers ρ2M,2N as a function of y. ρy is defined in Eq. (39).
The inset shows the zoom-in near yc = 2.
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FIG. 15. The scaling function of the specific heat �(τ,N2/M ) as
a function of the scaled temperature τ for the K2-model honeycomb
lattice I in Fig. 4(c) with y = 1 and N 2/M = 128.

The finite-size effect for the critical point for the first
case of the model (y = 1) has been studied in Ref. [30].
The finite-size scaling function is a function of a scaled
temperature variable τ and a factor N2/M which is associated
with the argument in the asymptotic expansion of the partition
function. Here, we define the scaled temperature τ as

τ = MN2

M + N2
tr . (41)

According to Ref. [30], the specific heat C2M,2N (tr ) can then
be written as

C2M,2N (tr ) ≈ �

(
τ,

N2

M

)
M 1

2 , (42)

where �(τ,N2/M ) is the scaling function of the specific heat
and M is a size-dependent variable defined as

M = MN2

M + N2
. (43)

To demonstrate a well-behaved scaling function �(τ,N2/M ),
we choose the lattice with the specific heat curve having a
single peak in the vicinity of the critical point. Figure 15
shows the scaling function �(τ,N2/M ) as a function of the
scaled temperature τ for N2/M = 128. As the lattice size
increases, the scaling function �(τ,N2/M ) approaches to
a specified function form of infinite system size. The value
of the pseudocritical point tpseduo varies from tpseduo < tc for
smaller lattice to tpseduo > 0 for larger lattice and the scaling
function of a small lattice does not have a good match with
those of larger lattices. Also, unlike the finite-size scaling
function [78], the scaling functions defined in Eq. (42) for
different lattice sizes do not coincide at τ = 0 and their peaks
depart from τ = 0 with the increase of system size as a
result of the appearance of the scale variable M in the scaled
temperature τ defined in Eq. (41).

B. The case x1 = 1, x2 = x

Let us consider in full detail the second case, namely x1 =
1, x2 = x. For this case, the partition function of the model is

FIG. 16. The phase diagram of the dimer model on the K2-model
honeycomb lattice II in Fig. 4(d). The correlation length critical
exponent ν and the shift exponent λ are calculated in the vicinities of
the critical points.

given by Eq. (5), where Z2
α,β can be written as

Z2
α,β = x−MN

N−1∏
n=0

M−1∏
m=0

(∣∣ei
φα,n

2 − xe
−iφα,n

2
∣∣2 − y2eiφβ,m

)

=
N−1∏
n=0

M−1∏
m=0

4

[
sin2 φα,n

2
+ (1 − x)2

4x
− y2

4x
eiφβ,m

]

=
N−1∏
n=0

4M

{[
sin2 π (n + α)

N
+ (1 − x)2

4x

]M

−e2πiβ

(
y2

4x

)M
}

=
(

y2

x

)MN N−1∏
n=0

[
e2Mω( π (n+α)

N
)−2πiβ − 1

]
, (44)

where we have introduced ω(k) defined as

ω(k) = 1

2
ln

[
4x

y2
sin2 k + (1 − x)2

y2

]
. (45)

Now the ln Zα,β can be written as

ln Zα,β = MN

2
ln

y2

x

+ 1

2
Re

N−1∑
n=0

ln
[
e2Mω( π (n+α)

N
)−i2πβ − 1

]
. (46)

The phase diagram for that model is also very well
known [29]. In the phase diagram of Fig. 16, the region I is
separated from the region IV by the critical line y = 1 + x,
the region II is separated from the region IV by the critical
line y = x − 1, and the region III is separated from the region
IV by the critical line y = 1 − x. Thus, we have three critical
lines given by

(1) y = x + 1,

(2) y = x − 1,

(3) y = 1 − x.
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FIG. 17. The specific heat C2M,2N (y ) of the K2-model honeycomb lattice II in Fig. 4(d) and x = 1/2 with the shape factor ξ = 1, as a
function of y. Here yc1 = 1/2 and yc2 = 3/2, and C ′

∞(y ) is defined in Eq. (47). (b) The partition function zeros for the lattice of 2M × 2N =
32 × 512. (c) The zoom-in of (b).

In regions I, II, and III, the system is frozen in the ground
state, where the dimers are on the edges of activity 1, x, and
y, respectively. Region IV is the disorder phase.

We analyze the thermodynamic properties of the system by
calculating the specific heat and the partition function zeros of
the lattice. Using Eqs. (5) and (44), we numerically calculate
the specific heat C2M,2N defined in Eq. (8) for ξ = 1, and the
results are shown in Figs. 17, 18, and 19, respectively, for x =
1/2, x = 1, and y = 1; that is, along the brown, green, and
red dashed lines in Fig. 16. The specific heat C2M,2N (y) for
the case with x = 1/2 and the shape factor ξ = 1 shown in
Fig. 17(a) has two peaks at the critical points yc1 = 1/2 and
yc2 = 3/2. Here the thermodynamic limit is plotted according
to C ′

∞(y) = 0 for y � 1/2 and for y � 3/2, and

C ′
∞(y) = 1

4π

(ln y)2√
4y2 − 1

+ 9y

4π

(ln y)2√
9 − 4y2

, (47)

for 1/2 < y < 3/2. The distribution of the partition function
zeros for the lattice of 2M × 2N = 32 × 512 is shown in
Figs. 17(b) and 17(c). It is a symmetric structure, made of
radial line segments. The zeros are distributed in 2M = 32
radial line segments, and each segment has N = 256 zeros.
The two ends of the segments on Re(y) axis correspond to the
two critical points. This feature is similar to that in Fig. 7(b),
while the difference is that here the distribution of the zeros
in the radial line segments are centered at the origin. The
correlation length critical exponent ν and the shift exponent
λ have been calculated numerically, and the results are ν =
0.854 ± 0.001 and λ = 0.568 ± 0.011 for yc1 = 1/2, and ν =
0.843 ± 0.003 and λ = 0.549 ± 0.023 for yc2 = 3/2.

The specific heat C2M,2N (y) for the case with x = 1 and
the shape factor ξ = 1 is shown in Fig. 18(a). There is a
critical point located at yc = 2. The thermodynamic limit of
the specific heat curve is the same as C∞(y) in Eq. (40). Near
y = 0, there are sharp but small peaks for smaller lattices,
originating from the competition of the horizontal dimers with
a fixed weight x = 1 and the vertical dimers with a varying
weight y, similar to the specific heat of the K2-model hon-
eycomb lattice I in Fig. 14(a). The partition function zeros of
this case also have a symmetric structure, consisting of radial
line segments. The zeros distribute in the radial line segments
from Re(y) ∼ 0 to Re(y) = 2, as shown in Fig. 18(b). Clearly

from the zoom-in of the zero distribution near the origin of the
complex y plane in Fig. 18(c), the zeros do not approach the
origin, thereby there is no peak at y = 0 in the thermodynamic
limit. For this case, the correlation length critical exponent
and the shift exponent are found to be ν = 0.848 ± 0.002 and
ξ = 0.563 ± 0.011.

The specific heat C2M,2N (x) and the partition function
zeros for the case with y = 1 and ξ = 1 are shown in Fig. 19.
The specific heat curve shown in Fig. 19(a) has a single sharp
peak at xc = 2, and the thermodynamic limit C ′′

∞(x) is the
same as C∞(y) of Eq. (40) with y replaced by x. The partition
function zeros of the lattice of 2M × 2N = 32 × 512 have
an interesting distribution pattern with arabesque structures
[see Fig. 19(b)] and the zeros do not approach the origin
in the complex x plane [see Fig. 19(c)]. These structures
have mirror symmetries with respect to the Re(x) and Im(x)
axes, and are more complicated than the other two cases.
Whether these structures are a deformation from simple circle
and line segmental geometries require further investigations.
Similar to the cases discussed above, the zeros at the end of
the distribution line at Re(x) = 2 contribute to the peak at
the critical point xc = 2. Using numerical calculations, the
correlation length critical exponent and the shift exponent
of this case have been found to be ν = 0.848 ± 0.003 and
ξ = 0.563 ± 0.015.

The values of the correlation length critical exponent ν and
the shift exponent λ for the above three cases are summarized
in the phase diagram in Fig. 16. Despite small numerical
computation errors, it is apparent that λ �= 1/ν.

VI. SUMMARY

We considered the dimer model on a generalized finite
checkerboard B rectangular lattice that includes three different
types of lattices (see Fig. 2). We have studied all these three
cases. For the first case (namely, x1 = x2 = x and y1 = y2 =
y) the dimer model on the checkerboard B lattice reduces to
the dimer model on the rectangular lattice [see Fig. 2(b)].
For the second case (namely, x1 = x2 = x, y1 = y, y2 = 1)
the dimer model on the checkerboard B lattice reduces to the
generalized K-model [29,30] [see Fig. 2(d)]. And finally the
dimer model on the checkerboard B lattice, in the third case
when one of the weights y1 or y2, say y2 is equal to zero and
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FIG. 18. The specific heat C2M,2N (y ) of the K2-model honeycomb lattice II in Fig. 4(d) and x = 1 with the shape factor ξ = 1, as a function
of y. Here yc = 2, and C∞(y ) is defined in Eq. (40). (b) The partition function zeros for the lattice of 2M × 2N = 32 × 512. (c) The zoom-in
of (b).

the other is a free parameter, say y1 = y, reduces to the dimer
model on the honeycomb lattice (the K2-model [28]) [see
Figs. 2(c) and 4(b)]. Thus, we find out that the dimer model on
the checkerboard B lattice has two types of critical behaviors.
In one limit this model is the anisotropic dimer model on
rectangular lattice with algebraic decay of correlators and in
another limit it is the anisotropic generalized Kasteleyn model
with radically different critical behavior.

One type of the critical behaviors occurs when the
dimer model on the checkerboard B lattice is reduced to
the dimer model on the rectangular lattice. The analysis of
the dimer model in that limit is quite similar to the analysis
of the dimer model on the checkerboard A lattice [35]. We
have considered the behavior of the specific heat near the
critical point. The pseudocritical point tpseudo, which is the
value of the temperature at which the specific heat has its
maximum for a finite 2M × 2N lattice, approaches the critical
point tc = 0 as L → ∞ in a manner dictated by the shift
exponent λ; see Eq. (2). We find that the maximum of the
specific heat (at the pseudocritical point tpseudo) always occurs
at vanishing reduced temperature for any finite 2M × 2N

lattice and coincides with the critical point tc in the ther-
modynamic limit (tpseudo = tc = 0). Hence, from Eq. (2) we
found that the shift exponent is infinity, λ = ∞. This adds
to the catalog of anomalous circumstances where the shift
exponent is not coincident with the correlation length critical
exponent.

Another type of critical behaviors occurs when the dimer
model on the checkerboard B lattice is reduced to the model
on the generalized K-model. To see the critical behavior of this
model, we considered a particular situation with x = 1/4 and
another situation with y = 1, which, respectively, correspond
to varying the parameter y along the green dashed line of x =
1/4 and varying the parameter x along the red dashed line of
y = 1/2 in Fig. 6. The specific heat of the former has two
peaks [see Fig. 7(a)], while the latter has a single peak [see
Fig. 8(a)]. From the analysis of the heights and locations of the
peaks, we found that in this case the correlation length critical
exponent ν and the shift exponent λ are not coincident.

In addition, we have considered in full detail the third
case, namely, when the dimer model on the checkerboard
B lattice reduces to the dimer model on the honeycomb
lattice. The lattice anisotropy has strong effects on the be-
havior of the specific heat of a finite system: It has multiple
peaks, whose properties are anisotropic. It transforms to a
single sharp peak at the critical point accompanying with
other peaks gradually smeared out as the system size be-
comes larger. The thermodynamic limit of the specific heat
[Figs. 13(a), 14(a), 17(a), 18(a), and 19(a)] and the density
of dimers [Figs. 13(a) and 14(a)] of the dimer model on
the honeycomb lattice can be well described by analytical
functions, and the scaling function was depicted in Fig. 15.
From a finite-size analysis we have found that the lattice
anisotropy dominates the values of the correlation length

FIG. 19. The specific heat C2M,2N (x ) of the K2-model honeycomb lattice II in Fig. 4(d) and y = 1 with the shape factor ξ = 1, as a
function of x. Here xc = 2, and C ′′

∞(x ) is the same as C∞(y ) of Eq. (40) with y replaced by x. (b) The partition function zeros for the lattice
of 2M × 2N = 32 × 512. (c) The zoom-in of (b).
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critical exponent ν and the shift exponent λ, and λ is generally
unequal to 1/ν (λ �= 1/ν).

Finally, to further understand the properties of the critical
region, we have analyzed the partition function zeros of
2M × 2N finite lattices and depicted distributions of the zeros
in the complex plane. We have observed that the partition
function zeros for finite-size systems can have very interest-
ing structures, made of rings (Fig. 8), concentric circles or
radial line segments (Figs. 10, 11, 17, 18), or even arabesque
structures (Fig. 19). We found a general scenario that the
multiple peaks in the specific heat curves can be understood
from the distributions of the partition function zeros in ring,
concentric circle and radial line segments, as well as in
deformed patterns. A peak in the specific heat curve is a result
of the ring distribution pattern of zeros, and the number of
peaks is equal to the number of rings which is in principle
proportional to the lattice size 2N , or more precisely, equal to
N . Meanwhile, the heights of the peaks are associated with the
lattice size 2M , due to the contributions from the specific heat
components of the 2M zeros in a ring. This lattice anisotropy
characterizes the critical behaviors of the dimer model on
the checkerboard B lattice, crucially determining the values
of the correlation length critical exponent ν and the shift
exponent λ. It follows that the “effective” characteristic length
scale for direction dependent quantities, such as ν and λ, is
not necessarily equal to the system size

√
4MN . As there is

no connection between λ and 1/ν in the FSS theory, from

a theoretical perspective the discrepancy between them can
be originated from the characteristic length appearing in the
scaling forms of Eqs. (1) and (2). This point requires further
investigation. Besides, for the case of partition function zeros
distributing in radial line segments, ends of the line segments
at the real axis are corresponding to the critical points in
the thermodynamic limit. The transformation of the specific
heat curve from the multipeak version of finite-size cases
to the single-peak version in the thermodynamic limit is a
result of dominant and accumulative contributions from the
zeros at the two ends. This physical picture can be useful for
better understanding rich and complex critical behaviors of
the dimer model on the checkerboard lattices.
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