Computational and Applied Neuroscience Lab

Institute of Cognitive Neuroscience, National central University, Taiwan

認知歷程中大腦所展現的複雜性與和諧

Wei-Kuang Liang (梁偉光)

Institute of Cognitive Neuroscience, National Central University

Multiscale Entropy (MSE)

Quantify the complexity or the degree of variability for biological signals

Costa, Goldberger, Peng: Phys Rev Lett 2002, 2003, 2004; Phys Rev E 2005

- Originally developed for the analysis of heartbeat signals
- Measure the health status of heart

Which One is Healthy?

Physionet / Rey Institute of Nonlinear Dynamics in Medicine

• Loss of variability is bad.

Not all kinds of variability are good.

• For a biological system, what we want is a measure that can optimize at its healthy condition.

Sample Entropy

Conditional probability that subseries of length m that match pointwise within a tolerance r also match at the next point

Use Entropy as a Complexity Measure

Conventional Entropy Measure Expected Complexity Measure

Multiscale Entropy (MSE) is a quantitative measure to estimate the complexity of a system through examining the information richness of its output signal on multiple time scales.

Costa, Goldberger, Peng: Phys Rev Lett 2002;89:068102; Phys Rev Lett 2003;91:119802; Phys Rev Lett 2004;92:089804; Phys Rev E 2005; 71:021906

Multiscale Entropy (MSE)

- Coarse-grain the time series in various scales
- Calculate Sample Entropy for each coarse-each grained series
- Plot it as a function of scale factor
- Analyze the MSE curve profiles

MSE Analysis of Heart Rate in Healthy vs. Heart Failure vs. Atrial Fibrillation

Interim conclusions

We employ MSE to measure the brain's complexity and the tDCS facilitating effect during inhibitory control!

Liang et al., 2014. Neurolmage

Inhibitory control is important in our daily life

Inhibitory control

tDCS

- Transcranial Direct
 Current Stimulation
 - Non-invasive
 - Anodal (positive) increases activity
 - Cathodal (negative)
 decreases activity

Bindman et al. (1964) J Physiology 172, 369-382

Brain network of inhibitory control

Hsu et al., 2011

Courtesy of Duann et al., 2009

Stop-signal task and behavior result

How about MSE during inhibitory control?

Hypotheses before see the results

Higher MSE for Successful vs. unsuccessful stop

Higher MSE for Anodal-tDCS vs. No-tDCS

ANOVA of MSE: "Inhibition" (successful- vs. unsuccessful-stop) \times "SCALE" (25 scales) \times "tDCS" (No-tDCS vs. Anodal-tDCS)

Higher MSE for Successful vs. Unsuccessful stop (No-tDCS)

P<0.05 under a cluster-based permutation test

Higher MSE for Successful vs. Unsuccessful stop (Anodal-tDCS)

P<0.05 under a cluster-based permutation test

MSE for Anodal-tDCS vs. No-tDCS (Successful-stop)

P<0.05 under a cluster-based permutation test

Higher MSE for Anodal-tDCS vs. No-tDCS (Unsuccessful-stop)

Scheme for the MSE results

Anodal-tDCS vs. No-tDCS within Low/High performers

Within low performers

Within high performers

Conclusions

- In stop-signal task, MSE is higher for successful vs. unsuccessful stop trials.
- Anodal tDCS over pre-SMA can efficiently improve the performance of inhibitory control.
- From the perspective of MSE, Anodal tDCS can improve brain's adaptability to a fast environmental change.
- The anodal tDCS effect on MSE can provide a theoretical basis for clinical intervention via tDCS.
- MSE of EEG can be related to behavioral performance, because
 MSE reflects the adaptability of the brain in each trial.

MSE, Applied to Aging Study

Cognitive Aging

Anatomical

- Normal: PFC and backward
- Pathological: MTL and outward

Behavioral

- Intact crystalized knowledge, but declined fluid intelligence
- Intact verbal WM
- Poor visual WM

VWM and Cognitive Aging

Exercise for the elderly

 Aerobic exercise (close-skill) increases brain volume and improves processing speed

(Colcombe et al., 2003, 2004, 2006; Kramer et al., 1999; Stroth et al., 2009)

- What the current literature lacks:
 - Open-skill vs. Close-skill vs.
 Cognitive training
 - Can exercise improve VWM?

Tennis

Swim

Participants

• 48 Participants

- 24 male and 24 female
- 66-70 years of age
- 24 physically active elderly in ping-pong club (physical activity >5 hours per week)
- 24 physically inactive elderly from the photography and chess club (physical activity <2 hours per week)
- No signs of dementia, depression

Physicallyactive vs. inactive elderly adults Visuo-spatial attention & Visual working memory

Behavioral result

Normalized reaction time: RT/accuracy

- Although VWM declines w/ age, open-skill physical exercise has positive effects on elderly adults' VWM
- Behavioral improvement is accompanied by higher complexity (MSE) in signals from frontal areas
- To battle frontal decline, open-skill sports are better choice for elderly

Take home messages

- Variability is important for a biological system, but not all kinds of variability is good.
- The good variability can be revealed by MSE, which indicates adaptability of a biological system.
- Inhibitory control is a cognitive process requires our brain to adapt fast, higher MSE result in a successful inhibitory process.
- Anodal tDCS is a protocol of brain stimulation that can elevate the brain's MSE.
- Open-skill exercise is good for our brain, revealed by MSE.

Impulsive behavior is controlled by effective large-scale coordination

Wei-Kuang Liang, Jiaxin Yu, Yu-Hui Lo, Chi-Hung Juan

Stop-signal task and behavior result

during inhibitory control?

Source waveforms and their phase data in theta and beta band

• 16 participants, EEG signals were projected to *rIFG*, *preSMA* and *contralateral M1* (Maximum Likelihood Projection).

Beta: phase difference (No-tDCS)

Theta: phase difference (No-tDCS)

DCM for phase coupling (Penny et al. 2009)

Phase *dynamics* amongst preSMA, rIFG, and M1 follows the *HKB* (Haken-Kelso-Bunz) phase interaction function

Connection parameters.

Two modulations: (1) for successful stop; (2) for anodal tDCS application. Results: (1) preSMA is the source site to modulate M1 in theta band; (2) rIFG is the source to mediate M1 in beta band; (3) Anodal tDCS over preSMA can strengthen these connection in both the theta and beta bands.

Liang et al., Submitted to Journal of Neuroscience

Interim conclusions

- Anodal-tDCS over preSMA 促進抑制控制(inhibitory control)的機制,可以反映在不同腦區間相位同步 (phase coupling)的速度上
- 對於theta oscillations, DCM for phase-coupled response推斷:抑制控制成功或不成功與由preSMA往 rIFG,以及由preSMA到M1 phase coupling 的強度有關
- 對於beta oscillations, DCM for phase-coupled response 推斷:抑制控制成功或不成功與由rIFG往M1,以及由 preSMA到rIFG phase coupling 的強度有關
- Anodal-tDCS over preSMA可以進一步加強在theta及beta band上由preSMA往rIFG phase coupling 的强度,因此增加抑制控制成功的可能

Conclusions

- 在認知的歷程中,大腦的運作是既複雜又和諧的
- MSE是目前用來量化大腦運作過程複雜度最 powerful 的指標
- Large-scale integration (Dynamics of phase-coupling) 可以用來表達個腦區間和諧的程度,這種跨腦區的耦合,如同交響樂一般

Acknowledgements

感謝中大生醫理工學院 彭仲康院長(Chung-Kang Peng)

羅孟宗教授(Men-Tzung Lo)

榮總

楊智傑醫師(Albert C. Yang)

視覺認知實驗室

阮啟弘教授(Chi-Hung Juan)

曾祥非博士(Philip Tseng)

王駿濠博士(Chun-Hao Wang)

游家鑫(Jiaxin Yu)

人類記憶實驗室 鄭仕坤教授 (Shih-kuen Cheng)

Thank you for your attention.