
Lecture 2Wei 1

Lecture 2:

Review of Basic Circuit Analysis
(in time domain)

Gu-Yeon Wei
Division of Engineering and Applied Sciences

Harvard University
guyeon@eecs.harvard.edu



Lecture 2Wei 2

Overview

• Reading

• Supplemental Reading
– Nilsson: Chapters 6-8

(Most textbooks on Electric Circuits have this material)

• Background
– In this lecture, we will continue to review basic circuit analysis and 

focus on circuits that contain reactive elements inductors and 
capacitors. Inductors and capacitors are a little more tricky than 
simple resistors b/c their current/voltage relationship also depends 
on time.  For now, we will rely on differential equations to describe 
their transient behavior. In the next lecture, we will see how to use 
the Laplace transform to analyze circuits in the s-domain, which 
allows us to analyze circuit characteristics w.r.t. frequency.
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L and C

• The current and voltage relationship of an inductor and capacitor are governed 
by the following equations:

• Some intuitive properties:
– current through an inductor cannot change instantaneously, but voltage 

across one can
– voltage across a capacitor cannot change instantaneously, but current 

through it can
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Power and Energy in L and C

• Remember, p = vi and p = dw/dt (power is the rate of change of energy)
– notice, I used w to represent energy as opposed to E to avoid confusion with electric fields

• Inductors store magnetic field energy

– Integrate on both sides

• Capacitors store electric field energy
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Energy vs. Charge

• A classic E&M problem…
– Q = C*V and we just saw that w = ½ CV2

– Let’s assume we have two capacitors.  At t<0, C1 is charged by a
voltage source. At t=0+, the switch 1 (sw1) opens and switch 2 (sw2) 
closes to add an additional capacitor C2 in parallel with C1.  
Calculate the redistribution of charge and the redistribution of
energy at t>0.

– Conservation of energy vs. conversation of charge?
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Natural Response of RL Circuit

• We can use the concepts we’ve learned so far to solve for the natural response 
of RL circuits.

• Using KVL,

τ = time constant = L/R
I0 = i(0)

• A similar analysis can be done for an RC
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Step Response of an RC Circuit

• Now, let’s find the step response of an RC circuit using the following example 
circuit.

– Summing the current around node A gives…
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Natural Response of Parallel RLC

• Throwing all of the components into the mix leads to a more interesting problem.  
Let’s look at the natural response of a parallel RLC circuit.

• I0 and V0 are initial conditions. Solve for v (sum currents)
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General Solution for 2nd Order Differential Equation

• First, let’s assume the answer is of exponential form,     , then we can 
rewrite the differential equation as

• For the above equation to be a solution, A must equal 0 or the term in the 
parentheses must equal 0. A cannot equal zero since this means voltage is 0 for 
all time and that cannot be the case if there is some initial energy. Then, the 
characteristic equation of the differential equation is 

because the roots of this quadratic equation determine the mathematical 
character of v(t). The roots are…
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• So then, either of the following two are 
possible solutions 

and the sum is also a possible solution

then…

and combining the equations…

Each parenthetical term is 0 by definition, 
since s1 and s2 are roots of the characteristic 
equation. So, the natural response of the 
RLC circuit is…
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• The behavior of v(t) depends on
– s1 and s2 which depend on R, L, and C
– Initial conditions set A1 and A2

• Three possible forms of behavior of the solution depending the R, L, and C
– overdamped
– underdamped
– critically damped

• But first, let’s define some terminology
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Overdamped Response

• When the roots of the characteristic equation are real and distinct (α2 > ω0
2), the 

voltage response of a parallel RLC circuit is said to be overdamped. The 
solution is of the form 

• To solve for A1 and A2,

also, 

• Simultaneously solve the above equations.
• Substitute values to find v(t) for t>0
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Underdamped Response

• When α2 < ω0
2, the roots of the characteristic equation are complex, and the 

response is underdamped. Rewriting the characteristic roots equation 
conveniently gives…

• To solve, we use Euler’s identity (other trig identities (pdf)) à
• Going back to the general form of the solution, we get
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• Note that B1 and B2 are real for an underdamped response.  This is b/c A1 and 
A2 are complex conjugates of each other. Using B1 and B2 just makes the 
calculations easier. B1 and B2 are a function of the initial energy stored on the 
capacitor and in the inductor. The two simultaneous equations to solve B1 and 
B2 are…

• Some interesting characteristics…
– The answer is a damped sinusoid at a frequency set by ωd (where α sets 

how quickly the amplitude of the sinusoid diminishes)
– As the dissipative losses decreases (i.e., R à infinity), αà 0 and ωdà ω0

• The response is a sinusoid at the resonant frequency
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• An underdamped voltage response
� α sets the damping
� ωd sets the frequency of oscillation



Lecture 2Wei 16

Critically Damped Response

• When α2 = ω0
2 the RLC circuit is critically damped. This is the point when the 

circuit is on the verge of oscillating, but ωd=0. Let’s look at the solution for a 
critically damped response…

However, the solution cannot take the same form as before.  The equation 
below cannot satisfy two independent initial conditions V0 and I0

This is because when the roots of the characteristic equation are equal, the 
solution for the differential equation takes a different form…

Then, solve for D1 and D2
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• A critically damped response
– On verge of oscillating (but doesn’t)
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Step Response of Parallel RLC

• Now, let’s see what happens when we drive the parallel RLC with a step as 
shown in the figure

– KCL gives

– differentiate and get

– So, the solutions for the three forms of damped responses are the same as 
before (in the natural response), but now you must take the I into account 
when you solve for the coefficients.
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Example of Overdamped Step Response

• Assume α2 > ω0
2 and therefore the circuit is overdamped. 

So, solution is of the form (where s1 and s2 are real):

From KCL, we know that:

Then, using the above solution for v, we get the following relationship:

Let’s now answer a few questions
– What’s the initial value of iL?

• Initially it’s 0 since there is no energy stored and when the switch closes, still 0 since current 
through an inductor cannot change instantaneously

– What’s the initial value of v?
• Initially 0 and when switch closes, voltage across a capacitor cannot change instantaneously
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• Then, we get…

since we know s1 and s2, solve for k1 and k2.
• To solve for v(t)

• iL for three responses:
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Solutions for RLC circuits

• One can perform a similar analysis for series RLC circuits and get a 
similar set of solutions.
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Next lecture

• So far, we’ve developed a set of tools to analyze the response of circuits in time. 
Next lecture, we will pick up a set of tools that enables us to analyze circuits with 
respect to frequency. This requires a transformation of the equations that govern 
circuit operations from the time-domain to the frequency-domain.  We will see 
how Laplace transforms enable us to do so.

• Reading:

• Supplemental Reading:
– Nilsson Chapters 9, 12-13


