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ABSTRACT
Predicting an online user’s future behavior is bene�cial for many
applications. For example, online retailers may utilize such infor-
mation to customize the marketing strategy and maximize pro�t.
This paper aims to predict the types of webpages a user is going to
click on. We observe that instead of building independent models to
predict each individual type of web page, it is more e�ective to use
a uni�ed model to predict a user’s future clicks on di�erent types of
web pages simultaneously. The proposed model makes predictions
based on the latent variables that represent possible interactions
among the multiple targets and among the features. The experimen-
tal results show that this method outperforms the carefully tuned
single-target training models most of the time. If the size of the
training data is limited, the model shows a signi�cant improvement
over the baseline models, likely because the hidden relationship
among di�erent targets can be discovered by our model.
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1 INTRODUCTION
It has been reported that users’ online behavior may change before
and during holidays (e.g., Christmas or Singles’ Day [16]) or special
events (e.g., immediately before a purchase [20]). Discovering and
predicting such changes beforehand helps online retailers target
the right users at the right times and can, therefore, provide a
customized strategy of marketing to individuals.

This study proposes a new method – matrix factorization-based
multitask learning (MFMT) – to simultaneously predict changes
in users’ browsing behaviors on di�erent types of webpages. The
proposed method learns the relationship between all the features
and all the target variables to make predictions in one uni�ed frame-
work. As a result, MFMT can capture the hidden correlation among
the target variables and encode such information in the model.
Compared to most of the supervised learning algorithms, which
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Figure 1: Multitask learning through matrix factorization.

typically learn one target at a time, MFMT considers the distribu-
tion of the features and all the target variables. We believe that
such a model is especially useful if there are interrelated correla-
tions between various target variables. In our application scenario
– predicting a user’s future online browsing behavior – we believe
that a user’s clicks on one type of webpage may indicate her/his
preferences regarding other types of pages.

We compare MFMTwith several supervised learning approaches,
including the k-nearest neighbors classi�er (KNN), the logistic
regression classi�er, and support vectormachine (SVM).We observe
that our MFMT model better predicts user behavior changes on
several types of webpages. Perhaps more importantly, we observe
that if the size of the training data was limited, the advantage of
the proposed method is more apparent. We believe the reason is
that MFMT may utilize the hidden relationship among the multiple
target variables that cannot be discovered by the baseline methods
since they treat each target variable independently.

2 RELATEDWORK
Online users’ collective behaviors are recorded digitally and can
be used to for various studies, such as identifying friendship [23],
social in�uence [2], browsing habits [6], search intention [24], per-
sonality prediction [17], etc. Most studies have leveraged mathe-
matical formulas to model users’ behaviors. Popular models include
Markov chains [1, 28], matrix factorization (MF) [5, 12, 14], se-
quential pattern mining [22] and, recently, deep learning-based
approaches [19, 32]. Our proposed MFMT model can be integrated
with many of the abovementioned methods as long as there are sev-
eral target variables that need to be predicted. Later we will show
how the MFMT model can be integrated with the logistic regres-
sion classi�er. However, it is straightforward to apply other super-
vised learners, e.g., support vector machines, factorizationmachines
(FM) [25, 26], or �eld-aware factorization machines (FFM) [12].

MF and its variants are widely used by recommender systems. MF
decomposes the user-to-item interaction matrix into small matri-
ces [13, 14, 21]. MF is also applied to various tasks that canmodel the
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data in the matrix formwith unknowns in the matrix that need to be
predicted, such as coauthorship network [7, 29] and genetic disease
network [8, 10]. MF is shown to be a special form of FM [25, 26],
which incorporate both the features and the interactions between
each pair of features into the model. FM and its variants won several
click prediction competitions recently [11, 12, 31]. Our proposed
method is relevant to MF and FM because we decompose a large ma-
trix into small ones. However, FM models the hidden relationship
between features and predict only one target variable; in contrast,
our model captures the hidden relationship between the features
and between the multiple target variables.

Multitask learning is aimed at learning multiple tasks simul-
taneously. It has been observed that in many cases, letting the
models focus on learning one target variable is less e�ective than
learning multiple targets simultaneously [3, 4, 30]. Traditional mul-
titask learning algorithms commonly encourage sparse parameters
through regularizations, of which the `1/`q norm has probably
attracted the most interest [15, 18]. However, if these tasks do not
share many common features, the performance of such a regular-
ization is unsatisfactory [27]. MFMT is di�erent because we do not
encourage sparsity to reduce the number of parameters. MFMT can
also be viewed as a variation of neural network-based multitask
learning, which has been studied recently [9, 27]. However, previous
models mostly connect the shared layers with small independent
layers for each task, whereas our model uses only the shared layers.
Additionally, as far as we know, we are the �rst to predict a user’s
future browsing tendencies based on multitask learning.

3 METHODOLOGY
3.1 Preliminary notes
Matrix factorization is widely used by recommender systems to
generate the low-dimensional latent factors for the users and the
items. Givenm users, n items, and users’ ratings of the items, MF
creates a large but sparse matrix C =

⇥
ci j

⇤
2 R

m⇥n to record
all the known ratings ci j from user i on item j. MF attempts to
decompose matrix C into two small matrices A = [ai`] 2 R

m⇥k

and B =
⇥
b`j

⇤
2 R

k⇥n (k ⌧ m and k ⌧ n) such that the sum of
the squared errors between the known ratings and the predicted
ratings is minimized, as shown in Equation 1.

loss =
’

8(i, j)2K

 
ci j �

k’
`=1

ai` · b`j

!2
, (1)

where K is the set of all known pairs (i, j) (i.e., user i rated item j).

3.2 MF-based multitask learning
Given an instance’s k features, a multitask learning algorithm pre-
dicts the n targets based on these features. A naïve implementa-
tion of a multitask learning model is to build n independent learn-
ers for each of the targets. Let F =

⇥
fi j

⇤
2 R

u⇥k be the fea-
ture matrix (for u training instances, each with k features) and
T =

⇥
ti j

⇤
2 R

u⇥n be the target matrix for u training instances,
each with n target variables; the naïve implementation trains n clas-
si�ers cp () (p = 1, 2, . . . ,n) such that, for the ath training instance,
cp (Fa ) = t̂ap ⇡ tap (where Fa denotes the ath row of matrix F ).
Here, we consider the generalized linear model as our predicting

function and let ��1
() be the link function for the generalized linear

model. For example, if we use the logistic regression classi�er, the
link function ��1

() is a logit function (therefore, � () is a logistic
function), and the predicting function cp is shown in Equation 2.

cp (Fa ) = �
⇣
Wp · FTa

⌘
=

1

1 + exp
⇣
�(Wp · FTa )

⌘ , (2)

whereWp =
⇥
wp1,wp2, . . . ,wpk

⇤
are the parameters to be learned

for the pth classi�er, and W = [W1,W2, . . . ,Wn ]
T =

⇥
wi j

⇤
2

R
n⇥k are the parameters to be learned for all the n independent

generalized linear models.
The prediction of the targets T̂ are obtained using Equation 3.

T̂ =

2666664

c1(F1) · · · cn (F1)
...

...
...

c1(Fu ) · · · cn (Fu )

3777775
= �e

⇣
F ·WT

⌘
, (3)

where the subscript e denotes that function � () is applied element-
wise to all the entries in the matrix.

The objective is to �nd the parameters such that the following
objective function is minimized:

O =
���T � T̂

���2 + �

2
k�k

2 , (4)

where k·k is the Frobenius norm of the given matrix or vector, � is
the vector of parameters to be learned, and � is a hyperparameter
that determines the relative importance of the training error and
the Frobenius norm of the learnable parameters.

However, such an approach may fail to capture the hidden rela-
tionship among the target variables. The reason is that the entries
in the ith column of matrixWT in Equation 3 only in�uence the
prediction of the ith target variable for all the instances. This means
that all the target variables are conditionally independent given
the training features. Unfortunately, the target variables may have
a certain dependency. For example, a tourist who has reserved a
ticket to Tokyo may also be interested in visiting nearby cities, e.g.,
Hakone. If we simply build two independent classi�ers to predict a
user’s intention to visit Tokyo and Hakone, we may not be able to
elicit the hidden relationship between the two targets.

We propose utilizing MF to learn multiple tasks simultaneously
in one model so the hidden relationship among the target variables
is likely to be captured. In other words, if the targets are indeed con-
ditionally dependent given the features of an instance, our model
may capture such dependency and make better predictions. Speci�-
cally, we propose decomposing matrixWT into two small matrices
P = [ps� ] 2 R

k⇥` and Q =
⇥
q� j

⇤
2 R

`⇥n . As shown in Figure 1,
instead of searching for a matrixW to minimize the objective func-
tion (Equation 4), we want to �nd P andQ to minimize the objective
function, so the predictive function can be written as in Equation 5.

T̂ =
⇥
ti j

⇤
=

"
� (fis

’̀
�=1

ps�q� j )i j

#
i=1, ...,u ;j=1, ...,n

, (5)

where P andQ are the parameters to be learned.
We apply gradient-based optimization to obtain the learnable

parametersP andQ . Equation 6 and Equation 7 show the derivatives
of the objective function with respect to ps� and q� j , respectively.
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@O

@ps�
= �2d� 0

 
fis

’̀
�=1

ps�q� j

!
fisq� j + �ps� , (6)

@O

@q� j
= �2d� 0

 
fis

’̀
�=1

ps�q� j

!
fisps� + �q� j , (7)

where d =
Õ
(ti j � t̂i j ), and � 0

() denotes the derivative of the
respective function. For example, if we apply the logistic regression
classi�er, � 0

(x) = � (x) (1 � � (x)).

3.3 Model analysis
If we use the naïve implementation of multitask learning, i.e., train-
ing n independent models for the n targets, we will need to estimate
all the entries inW ; thus, the total number of parameters to be
learned will be kn. Our proposed MFMT model, on the other hand,
requires estimating matrices P andQ that have k` and `n entries,
respectively. Thus, the total number of parameters to be learned be-
comes `(k + n). If ` ⌧ k and ` ⌧ n, our proposed method involves
a much lower number of parameters. Therefore, it is less likely to
over�t the training data (especially when the size of the training
data is small) and requires a shorter training time.

The twomatrices P andQ�1 can be regarded as the functions that
encode the features and the target variables, respectively. Speci�-
cally, matrix P encodes an instance’s k features into a shorter vector
of length `, and matrix Q�1 encodes an instance’s n target vari-
ables ti1, . . . , tin (or, more precisely, ��1

(ti1), . . . ,��1
(tin )) into a

shorter vector of length `. Therefore, matrix P captures the hidden
relationship among the features, whereas matrixQ obtains the hid-
den relationship among the target variables. As a result, the MFMT
model captures the relationships among not only the features but
also among the target variables simultaneously.

4 EXPERIMENTS
4.1 Future browsing tendency prediction

Table 1: Statistics for users’ numbers of page views

min Q1 Q2 mean Q3 max

44 4, 239 13, 335 19, 103 26, 698 130, 992

4.1.1 Dataset. A recent study showed that users’ online shopping
tendencies varied before and during the shopping holidays [16].
Here, we would like to observe users’ browsing tendencies for other
types of pages. We model such a problem as a multitask learning
problem and apply the proposed MFMT model to it.

We recruited 672 users as target users. We recorded each user’s
online browsing history using a plug-in in Google Chrome. Eventu-
ally, we accumulated 12, 837, 216 browsing records. Table 1 shows
the statistics for the page views of these users.

We selected 6 types of pages as our target categories: shopping,
travel, restaurants and dining, entertainment, games, and educa-
tion. The users’ click ratio for each type of pages from August to
September 2016 is shown in Figure 2, where Figure 2(a) shows the
click ratios for shopping, travel, and restaurants and dining, and
Figure 2(b) shows the click ratios for entertainment, games, and
education. We use two sub�gures for better visualization.

(a) Click ratio of shopping, travel, and restaurant and dining pages.

(b) Click ratio of entertainment, game, and education pages.

Figure 2: Click ratio of various types of pages on di�erent
dates.

4.1.2 Features and targets. We use users’ demographic information
and regular browsing habits to generate the features. The demo-
graphic information includes user gender, age, and relationship
status. Browsing habits are represented by the user’s browsing
ratios for various types of pages. We de�ne the browsing ratio of
page category c for user i during period D based on Equation 8.

br (i, c,D) =
# user i’s visited pages of type c within D

# user i’s visited pages within D
. (8)

We use the page category instead of the URL or the domain
name to de�ne the browsing ratio because the distribution of users’
visited URLs is highly imbalanced. The most popular page, that
of Facebook (https://www.facebook.com/), accounts for 27.6% of
visits, which makes the browsing ratio of Facebook a nondiscrim-
inative feature. On the other hand, most URLs receive very little
visits, which makes these features almost useless because only a
small number of users visited these URLs. We mapped each URL
to the corresponding category based on a webpage classi�cation
service.1 For example, Facebook (https://facebook.com) is classi�ed
as “Social Networking”, Gmail (https://gmail.com) is classi�ed as
“Web-based Email”, and Amazon.com (https://amazon.com) is classi-
�ed as “Shopping”. Eventually, we obtained 88 classes of webpages,
among which “Social Networking”, “Search Engines and Portals”,
and “Web-based Email” were those with the highest browsing ratios.

We de�ne a user’s browsing behavior before Dec. 12, 2016, as the
regular browsing behavior and the behavior from Dec. 12 to Dec. 25,
2016, as the holiday behavior. The regular browsing behavior is
included as part of the features. We generated 6 target variables
to indicate a user’s behavior change during the holiday seasons
according to 6 categories: shopping, travel, restaurants and dining,
entertainment, games, and education. For a certain page type c , if a
user i’s browsing ratio in the holiday period is larger than that in
1http://www.fortiguard.com/web�lter
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Table 2: F1 score of various models on di�erent page categories

model shopping travel restaurants and dining entertainment games education

KNN 0.574 0.615 0.528 0.440 0.492 0.484
Logreg 0.578 0.489 0.501 0.402 0.441 0.437
SVM 0.576 0.391 0.410 0.399 0.409 0.385
MFMT 0.584 0.570 0.561 0.479 0.531 0.515

Table 3: A comparison of logistic regression and MFMT

category proportion in log rc

shopping 7% 1.04%
education 5.4% 17.85%

entertainment 3.3% 19.15%
games 1.9% 20.41%
travel 1.2% 13.91%

restaurants and dining 0.3% 11.98%

the regular period, we de�ne it as a positive instance (i.e., �ic = 1);
otherwise, it is a negative instance (i.e., �ic = �1).

4.1.3 Results. We compared the proposed MFMT model with 3
baseline models: k-nearest neighbors, the logistic regression classi-
�er (Logreg), and support vector machine (SVM). For each method,
we carefully �ne-tuned the important hyperparameters of each
model using the grid search. We compared the performance of the
baseline models and our proposed method based on the F1 score,
which integrates both the precision and the recall in one number.

Table 2 shows the F1 scores of these models. Our proposed
MFMT better predicts a user’s future behavior in 5 out of 6 cate-
gories. MFMT performs better likely because the hidden relation-
ship among the targets are captured by MFMT but not by the
baseline models, which treat each target as an independent output.

Since both the logistic regression classi�er and MFMT are based
on the generalized linear model, it is worth investigating the per-
formance of the two methods. In Table 3, we list 6 target categories
and the proportions of pages belonging to each of these categories
in the log. We also list the improvement ratio for each category.
The improvement ratio is de�ned by Equation 9.

rc =
F1(MFMT, c) � F1(Logreg, c)

F1(Logreg, c)
, (9)

where F1(m, c) is the F1 score of methodm on target category c .
From Table 3, we observe that if the number of training instances

is limited, MFMT performs signi�cantly better than the logistic
regression classi�er. If the number of training instances increases,
MFMT still performs slightly better than the logistic regression
classi�er. It appears that MFMT should be used especially if the
size of training data is small.

4.2 Prediction results for various training sizes
We use a simulated dataset to compare the predictions of MFMT
and the general linear approach, as the training size varies. We gen-
erated 20 features for each instance; for each instance, we generated
12 target variables based on a linear combination of the features
together with some random factors.

Figure 3 shows the test RMSE (averaged over 12 target variables)
of the two methods (MFMT and general linear model) as the size

Figure 3: Relationship between the training size and the test
RMSE of our proposed model and the general linear model
based on the simulated dataset.

of the training data increases. With such an increase, the RMSE
scores of both methods decrease (i.e., the predictions become more
accurate). However, if the size of the training data is limited, our
proposed MFMT algorithm performs much better than the baseline
approach. Speci�cally, compared to the baseline approach, MFMT
requires only 1/5 of the training data instances to reach the same
level of test RMSE. Therefore, if the available training data is limited,
our method is a better choice.

5 DISCUSSION
A common rule-of-thumb for many e-commerce companies is that
during the special holidays, such as the Black Friday and Christmas
Day, the number of sales increases. However, our collected dataset
indicates that the increase in sales may be due to a few individuals.
As a result, identifying the appropriate users correctly beforehand
may provide a very large advantage to these companies.

Our proposed method can identify a user’s tendency to visit the
shopping websites based on her/his demographical information
and the usual browsing behavior. Thus, e-commerce companies
may use di�erent marketing strategies to better advertise to dif-
ferent types of users. Compared with most supervised learning
approaches, MFMT is excellent in simultaneously predicting users’
future browsing trends for various types of pages. Additionally,
when hidden correlations exist among the target variables, the
MFMT model may capture such relationship and therefore much
more e�ective if the size of the training dataset is limited.
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