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Abstract—Discovering similar objects in a social network has
many interesting issues. Here, we present ASCOS, an Asym-
metric Structure COntext Similarity measure that captures the
similarity scores among any pairs of nodes in a network. The
definition of ASCOS is similar to that of the well-known SimRank
since both define score values recursively. However, we show that
ASCOS outputs a more complete similarity score than SimRank
because SimRank (and several of its variations, such as P-
Rank and SimFusion) on average ignores half paths between
nodes during calculation. To make ASCOS tractable in both
computation time and memory usage, we propose two variations
of ASCOS: a low rank approximation based approach and an
iterative solver Gauss-Seidel for linear equations. When the target
network is sparse, the run time and the required computing
space of these variations are smaller than computing SimRank
and ASCOS directly. In addition, the iterative solver divides the
original network into several independent sub-systems so that
a multi-core server or a distributed computing environment,
such as MapReduce, can efficiently solve the problem. We
compare the performance of ASCOS with other global structure
based similarity measures, including SimRank, Katz, and LHN.
The experimental results based on user evaluation suggest that
ASCOS gives better results than other measures. In addition, the
asymmetric property has the potential to identify the hierarchical
structure of a network. Finally, variations of ASCOS (including
one distributed variation) can also reduce computation both in
space and time.

I. INTRODUCTION

Complex network analysis has been a useful tool to describe

the interaction and relations between pairs of objects. Studies

of complex networks include observing the statistical prop-

erties of real networks [5], community detection [26], link

discovery [4, 20, 21], etc. It has been applied on various

research domains, including name disambiguation [24], bio-

logical networks analysis [8, 28], and personalized search [12].

To calculate the similarity score between a pair of nodes,

one could use the attributes of nodes to infer their likeness.

For example, consider a social network formed by students

of an elementary school, two students are more likely to

become friends if they have attributes in common such as same

grade, same gender, interests, etc. This node attribute based

method usually requires a large number of features to define

a reasonable similarity score. However, collecting a good set

of features sometimes requires domain experts. In addition,

it could be difficult to define the similarity score when a

few attributes are missing. We are interested in inferring the

similarity between nodes based solely on structure context, i.e.,

the patterns of the edges. Structure context based similarity

measures are attractive because in many cases the relation-

ship between objects can be inferred without any domain

knowledge. For example, genetic diseases caused by common

genes can be inferred from the human disease network without

using expensive biological experiments [8]. Future coauthoring

behavior among scholars can be inferred by the coauthorship

network without specifying the scholars’ research interests

or their IDs [7, 9, 20]. In addition, it has been found that

structurally similar nodes on a social network are more likely

to have similar node attributes and have similar behavior [27].

Some even suggest that structure based methods better explain

user judgements than attribute based measures [23].

Among the structure context based similarity measures,

SimRank [15] is probably the most influential and popular.

Informally, SimRank defines the similarity score between two

nodes i and j by similarity scores between i’s neighbors and

j’s neighbors. This simple recursive definition makes it easy to

implement and indirectly considers the structure of the entire

network. Mathematically, SimRank is shown to be the same

as measuring how soon two random surfers from i and j are

expected to meet each other.

However, SimRank and its variations, such as P-Rank

and SimFusion, have a problem which has surprisingly been

neglected - they only measure the similarity between nodes

that can reach each other in an even number of steps. Thus,

for a large social network where two nodes in one connected

component can usually reach each other by different paths,

only the paths of even lengths contribute to the final SimRank

score. The problem manifests itself in certain types of net-

works. Let’s consider a simple network formed by two nodes

(i and j) and one edge between them. Although we don’t yet

introduce the SimRank formula, one could easily understand

that the SimRank score between i and j should be zero by the

random surfer model: two random surfers starting at i and j
would never meet each other because when one arrives i, the

other must arrive j. Another example is the bi-partite graph

formed by 2 sets of nodes V1 and V2 such that every edge

in the graph joins a vertex in V1 to a vertex in V2. SimRank

scores between neighbor nodes in the graph would always be

zero, even though they should be related as neighbors. Again,

one can easily see this with the random surfer analogy.

Several computational issues make the recursive definition

based similarity measures intractable in practice. First, an ap-



plication may only need to know the similarity scores of only a

few pairs of nodes. However, a recursive based definition needs

to compute the scores between all pairs of nodes because the

similarity between any pair of nodes depend on all other pairs

of nodes. Second, storing the similarity scores for all pairs

of nodes requires a large amount of memory. To compute the

scores of a mid size network containing 0.1 million nodes, one

would need 100, 000×100, 000×32bit≈ 40GB main memory

to store the similarity scores (assuming the score between two

nodes is floating point of 32 bits).

To deal with these issues, we propose ASCOS, an Asym-

metric Structure COntext Similarity measure. Similar to Sim-

Rank, ASCOS defines similarity scores recursively so that

the global network structure can be considered. Empirically,

ASCOS is shown to return a better score than SimRank

because ASCOS considers all paths between two target nodes,

whereas SimRank considers only the paths of even lengths.

To address the computational issues, ASCOS is reformulated

into a non-recursive form. Two variations of ASCOS scoring

and one distributed algorithm are proposed based on the non-

recursive representation.

One interesting property of ASCOS is its asymmetric nature,

i.e., similarity score from node i to node j may not equal the

one from node j to node i. Traditionally, similarity measures

are geometric: the target objects are projected into a multi-

dimensional coordinate space, and the similarity score is

proportional to the inverse of their geometric distance. Thus

the similarity score behaves like a distance function which

must be symmetric. However, Tversky discovered empirical

evidence that systematically violates the symmetry assumption

of similarity [31] and observed that the asymmetry appears to

be determined, at least in part, by the relative salience of the

objects to be compared. Users tend to select a more salient

object as the referent and the less salient one as the subject.

Here are a few examples that Tversky illustrated: We say

“the portrait resembles the person” rather than “the person

resembles the portrait.” We say “the son resembles the father”

rather than “the father resembles the son.” Thus the judged

similarity of portrait (son) to person (father) exceeds person

(father) to portrait (son). We will later discuss more about the

asymmetric nature and show how we introduce this salience

property into ASCOS.

This paper makes the following contributions.

1) We show that SimRank and several of its variations

suffer from the problem of considering only paths of

even lengths. Therefore, on average half of the paths

are excluded during the calculation.

2) We define a new similarity measure, ASCOS, which

recursively considers the global structure of a network

using all paths between nodes.

3) We propose two variations of ASCOS to address com-

putational issues, namely time and memory limitations.

4) One of the two ASCOS variations can be applied on

a distributed or multi-core environment, which is a

significant advantage. This is a difficult for SimRank

and the original ASCOS computation.

5) Among the popular similarity measures, ASCOS is one

of the few that has an asymmetric property that can be

useful for certain situations..

6) We conduct experiments on real networks using several

global structure based similarity measures. User evalua-

tion shows that ASCOS reports a better similarity score.

II. RELATED WORKS

Here we introduce local structure based similarity measures

and global structure based similarity measures.

Local structure based similarity measures utilize local net-

work structures to decide the similarity score between two

nodes. Similarity scores computed by this type of measures

are usually proportional to the number of mutual friends

between two target nodes and can be written as sij =
(|N(i) ∩N(j)|) /C, where N(i) is the set of neighbors of

node i, |X | returns the number of elements of set X , and

C is a normalizing constant whose value is determined by

the specified similarity measure. For example, by Jaccard

similarity the value of C is |N(i) ∪ N(j)| [30], by cosine

similarity the value of C is
√

|N(i)||N(j)| [29], by topol-

ogy overlapping the value of C is min(|N(i)|, |N(j)|) [28].

The Adamic-Adar measure [2] intentionally assigns more

weights to the vertices with fewer degrees, but it usually

cannot be normalized. Another local structure based similarity

measure, Preferential Attachment [5], defines the similarity

score between nodes by multiplying the degrees of two nodes.

Empirical studies show that Preferential Attachment usually

reports a poor performance. Comprehensive studies of local

structure based measures can be found in [11, 35].

Global structure based measures consider the structure of

the whole network to determine the similarity scores between

pairs of nodes. For example, the Katz similarity is based on

the total number of paths between two nodes where longer

paths are assigned lower weights [16]. Compared to two

low degree nodes, two nodes with very high degrees are

more likely to have one or several paths of a fixed length

ℓ between them. As a result, high degree nodes tend to

be more similar to every other node by Katz measure. To

address the problem, LHN [18] suggested normalizing the

number of paths of length ℓ by the expected number of such

paths given the degrees of nodes. SimRank [15] is probably

the most famous global structure based similarity measure.

The similarity score between two nodes i and j depends on

similarity scores between i’s neighbors and j’s neighbors, as

defined in Equation 1.

sij :=

{

c
|Nin(i)||Nin(j)|

∑

∀k∈Nin(i)

∑

∀ℓ∈Nin(j)
skℓ if i 6= j

1 if i = j,
(1)

where c is the discounted parameter to control the relative

importance between neighbors and in-direct neighbors, and

Nin(i) is the set of in-neighbors of node i. Several methods

are influenced by SimRank. For example, P-Rank [34] extends

SimRank by considering both in-neighbors and out-neighbors.

SimFusion [32] supports different intra-node relations and
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Fig. 1. The toy network.

different edge weights. The relationship between SimRank,

P-Rank, and SimFusion is discussed in [6].

Global structure based similarity measure usually requires a

great deal of computation. Several methods were proposed to

approximate these measures. For the Katz score, a truncated

spectral decomposition method was proposed [1]. For Sim-

Rank, an approximation measure [19] and a parallel computa-

tion [14] were investigated. Yu et al. proposed SimRank+ [33]

to prevent a divergence issue and faster computation. A

comprehensive survey on both local structure based and global

structure based similarity measures can be found in [22].

III. ASCOS FRAMEWORK

A. ASCOS Score Introduction

The SimRank measure states that two nodes i and j are

similar if the in-neighbors of i and the in-neighbors of j
are themselves similar. The recursive definition employs the

entire network topology in calculating the similarity scores.

However, such a definition fails to capture the relationship

between nodes that can only reach others in an odd number

of steps, as pointed out in Section I. In an extreme case,

two neighboring nodes can have zero similarity score. This

is counter-intuitive because neighboring nodes should have

something in common if directly connected.

Instead of defining the similarity score between nodes by the

relationship between both of the nodes’ in-neighbors, ASCOS

states that the similarity score from a node i to a node j is

dependent on the similarity score from node i’s in-neighbors to

node j. This statement has two interesting properties. First, the

out-neighbors are not involved. Second, the similarity score is

asymmetric because it considers the in-neighbors of i but not

the in-neighbors of j. We justify these settings below.

We consider only the in-neighbors because an object is not

defined by how it describes others but by how others describe

it. This idea is very similar to PageRank since the importance

of a page is determined by its incoming pages not by the ones

it points to. However, this definition can be easily extended to

consider both in-neighbors and out-neighbors.

Traditionally, a similarity measure defines the similarity

function to be proportional to the inverse of the distance

function, which is usually calculated by projecting the target

objects into a n-dimensional coordinate system and measuring

their distance. Thus, the similarity function should be symmet-

ric, i.e., sij = sji. By the definition, a statement of “a is like

b” and a statement of “b is like a” should be of equal value.

However, studies have shown that dimensional representations

are not appropriate for some objects, like faces, countries, or

personalities [31]. People tend to be more positive to “a is like

b” than “b is like a” when b is more salient or general than

Algorithm 1: Naı̈ve ASCOS calculation

Input: A: an adjacency matrix of size n by n; c: the

discounted parameter

Output: S = [sij ]: ASCOS similarity score matrix

1 S← initial guessing matrix of size n by n;

2 while S not converge do

3 for i← 1 to n do

4 for j ← 1 to n do

5 Update sij by Equation 2;

6 end

7 end

8 end

a [31]. For example, “an ellipse is like a circle” is more likely

to be true psychologically than “a circle is like an ellipse”.

Another way to look at the similarity of nodes in a network

is to measure the tendency to form a link between nodes.

As suggested in [7], when modeling the coauthoring behavior

as a coauthorship network, a young researcher is usually

more eager to establish connections with strong researchers

than the other way around. The similarity score, which is a

proxy to measure the tendency of link formation, is apparently

asymmetric because a young researcher is more willing to

establish a link to an experienced researcher than vise versa.

To make the asymmetry concept clearer, let’s examine node

1 and node 4 of Figure 1. Node 4 has only one neighbor node

1, but node 1 has four neighbors node 2, node 4, node 5, and

node 6. In such a scenario people tend to be more positive to

“node 4 is similar to node 1” than “node 1 is similar to node

4” because node 4’s only neighbor is node 1 but node 1 has

three other alternative options.

B. Naı̈ve ASCOS Calculation

We define the similarity value from i to j to be the

discounted cumulative similarity score from all i’s neighbors

to j. ASCOS score sij from i to j can be written as follows.

sij :=

{

c
|Nin(i)|

∑

∀k∈Nin(i)
skj if i 6= j

1 if i = j,
(2)

where Nin(i) is the set of in-neighbors of node i.
The relative importance parameter c is between 0 and 1. It

controls the relative importance between the direct neighbors

and indirect neighbors, i.e., neighbors’ neighbors. The smaller

the value, the less important the indirect neighbors are.

Algorithm 1 lists the pseudo code of ASCOS calculation

based on the recursive definition.

C. Analysis of Naı̈ve ASCOS

Let N̄in denotes the average in-degree of the target network

and k represents the required iteration for S = [sij ] to con-

verge, Algorithm 1 needs O(kN̄inn
2) ≈ O(n2) computation

time (assuming k ≪ n, N̄in ≪ n). Although the square

computation time is infeasible in real-time, in practice this is

a minor problem because the scores can be pre-computed off-

line. The more serious problem is the space complexity. The



recursive definition requires the computer to store all entries

of S during computation thus O(n2) space is needed. For

modern social networks which usually have tens to hundreds

of millions of nodes, allocating the space that is proportional

to the square of the number of nodes can be intractable.

IV. EFFICIENT ASCOS CALCULATION

Naı̈ve ASCOS calculation is inefficient in both time and

space. To conquer these problems, two efficient variations,

singular value decomposition based low rank approximation

and recursive solver for systems of linear algebraic equations,

are proposed. The later one can further be designed for a multi-

core or distributed environment. As a result, applying ASCOS

on a large scale social network is possible.

The root reason of keeping the entire S matrix is because the

recursive definition of ASCOS that makes each sij be depen-

dent on every other similarity score. To break the dependency,

we redefine ASCOS as a non-recursive score and then propose

two algorithms to calculate it.

A. Non-recursive ASCOS Equation

Given a graph G and its adjacency matrix A = [aij ], we

calculate P = [pij ] as the column-normalized matrix of A,

i.e., pij = aij/
∑

∀k akj . When we iterate Equation 2 to a

sufficiently large number of times, it can be re-written as a

matrix form, as shown in Equation 3.

S = cPTS+ (1− c)I, (3)

where PT is the transpose of P.

The solution for Equation 3 can be computed by

S = (1− c)(I − cPT )−1. (4)

Now we turn ASCOS into a non-recursive equation. Note

there is a subtle difference between Equation 2 and Equation 4

because the diagonal entries of S in Equation 4 is not set to

one. However, this problem is trivial because it only effects

the absolute similarity scores but not the relative relationship

between similarity scores, i.e., if by Equation 2 we get sij >
sik, the relation still holds when using Equation 4 instead.

Although Equation 4 is in a non-recursive form and there-

fore breaks the dependency limitation, the space complexity

is still O(n2) and the time complexity even increases to an

intractable O(n3) because of the matrix inverse operation. We

now propose two methods to solve these problems.

B. Low Rank Approximation

Let Q = I − cPT . Although Equation 4 avoids recursive

calculation, solving the inverse of matrix Q is challenging in

general. First, Q could be a singular matrix, i.e., it is non-

invertible. Second, calculating the inverse of a matrix requires

a cubic computation time. Third, although Q is usually a

sparse matrix, Q−1 is very likely to be a dense matrix. As

we discussed earlier it is impracticable to fit the entire n by n
matrix into the memory. In this section, we introduce low-rank

approximation to avoid calculating and storing Q−1 directly.

Algorithm 2: ASCOS calculation by low rank approxima-

tion

Input: A: an adjacency matrix of size n by n; c: the

discounted parameter

Output: S = [sij ]: ASCOS similarity score matrix

1 P← ColumnNormalize(A);
2 Q← I− cPT ;

3 Do SVD for Q to obtain Ũ, Σ̃, and ṼT ;

4 Calculate S by Equation 5;

By Singular Value Decomposition (SVD), the matrix Q

is factorized into UΣVT , where U and V are orthogonal

matrices and Σ is a diagonal matrix. An approximation matrix

Q̃ of Q can be derived by ŨΣ̃ṼT , in which Σ̃ is a diagonal

matrix by keeping the largest r singular values in Σ, Ũ is

the first r columns of U, and ṼT is the first r rows of

VT . Among all the matrices with rank r, Q̃ is the one with

minimum Frobenius norm difference to Q. The value of Q−1

is approximated by Q̃−1 = ṼΣ̃−1ŨT . In practice we use

Lanczos Algorithm [10] to perform SVD for such a large

sparse matrix Q . We can re-write Equation 4 to get S.

S ≈ (1− c)ṼΣ̃−1ŨT . (5)

Since Σ̃ is a diagonal matrix, Σ̃−1 can be easily calculated

by inverting the diagonal entries from σii to 1/σii.

Low rank approximation solves most of the problems we

may face when calculating Q−1. First, since every matrix

can be factorized by SVD, we don’t need to worry about the

singular matrix problem. Second, low rank approximation is

space efficient. Assuming r << n, the matrix ṼT and Ũ each

needs O(rn) space. The matrix Σ̃−1 is a diagonal matrix with

rank r that needs only O(r) space. Thus overall only O(n)
space complexity is required. In addition, the time complexity

is improved from cubic to square [13].

One assumption hidden behind the low rank approximation

is the existence of notable linear correlations in Q. The

assumption seems correct because real world networks tend

to have a high clustering coefficient, i.e., similar nodes tend

to connect to the same set of nodes. However, this assumption

cannot be guaranteed. Once the linear correlations are not

manifest in the matrix, a low rank approximation could be

less accurate. In addition, it is not straightforward to decide

the value of the parameter r.

C. Gauss-Seidel (GS) Approach

While low rank approximation approximates Q−1 effi-

ciently, obtaining Q−1 is not our final goal. We want Q−1

because it helps get S. In this section, we introduce the

approach to get S without calculating Q−1 and without the

assumption of existence of linear correlation in Q.

Let’s split S into n column vectors S = [S1,S2, ...,Sn] and

the identity matrix I into n column vectors I = [I1, I2, ..., In].
Equation 3 can be re-written into the following form.

(I− cPT )Si = (1− c)Ii, (6)



Algorithm 3: ASCOS calculation by Gauss-Seidel

Input: A: an adjacency matrix of size n by n; c: the

discounted parameter

Output: Si = [s1, s2, ..., sn]
T : ASCOS similarity score

of node i
1 P← ColumnNormalize(A);
2 Q← I− cPT ;

3 Si ← initial guessing vector of size n;

4 Bi ← (1− c)Ii;
5 while Si not converge do

6 for j ← 1 to n do

7 Update sj by Equation 8;

8 end

9 end

where i = 1, 2, ..., n.

This turns the problem into a classic systems of linear

algebraic equations, in which I − cPT , or briefly Q, is a

coefficient matrix of dimension n by n; (1 − c)Ii, or briefly

Bi, is a constant column vector of size n; Si is an unknown

column vector. Such transformation allows us to compute the

similarity score between two nodes by only calculating 1/n
of the adjacency matrix instead of the entire matrix.

To solve the systems of linear algebraic equations, a stan-

dard tool is Gaussian elimination. However, Gauss elimination

becomes inefficient and sometimes inapplicable when the

coefficient matrix is sparse and the number of unknowns is

large. Instead, we apply the Gauss-Seidel (GS) method, a

recursive algorithm that repeatedly improves the solution until

the unknown Si converges.

Let sj be the jth element of Si, qjk be the (j, k)th entry

of matrix Q, and bj be the jth element of Bi. Equation 6 in

scalar notation is written as

n
∑

k=1

qjksk = bj , (7)

where j = 1, 2, ..., n.

The value of sj in Equation 7 is solved by Equation 8.

sj =
1

qjj



bj −
∑

∀k 6=j

qjksk



 . (8)

The GS algorithm starts by randomly initializing the vector

Si, and then iteratively updates each element of Si by Equa-

tion 8 until Si converges, as shown in Algorithm 3.

Note that for GS algorithm, the convergence of Si is

guaranteed only if either the coefficient matrix Q is symmetric

positive-definite or Q is diagonally dominant, i.e., the magni-

tude of the diagonal entry in a row is no less than the sum of

the magnitude of the non-diagonal entries. To show that Q is

diagonally dominant, we re-write Q in the scalar notation.

qij =

{

1 if i = j
−cpji if i 6= j.

(9)

Algorithm 4: Mapper of ASCOS Gauss-Seidel

Input: A: an adjacency matrix of size n by n; c: the

discounted parameter

1 P← ColumnNormalize(A);
2 Q← I− cPT ;

3 for i← 1 to n do

4 Si ← initial guessing vector of size n;

5 Bi ← (1 − c)Ii;
6 Emit(i, Q, Si, Bi) ; // i: key to Reducer

7 end

Algorithm 5: Reducer of ASCOS Gauss-Seidel

while Si not converge do

for j ← 1 to n do

Update sj by Equation 8;

end

end

Emit(Si);

The matrix Q is a diagonal dominant matrix because
∑

∀j 6=i |qij | =
∑

∀j 6=i | − cpji|

≤
∑

∀j 6=i | − pji| (∵ 0 < c ≤ 1)

≤ 1 (∵ P is column-normalized)
= qii.

(10)

Several properties make the GS method attractive for our

problem. First, since Q is usually a sparse matrix, in Equa-

tion 8 the time complexity for
∑

∀k 6=j qjksk calculation is sub-

linear in n. Second, only the non-zero entries of Q need to

be stored. Therefore, it is possible to store all the variables

in main memory even for a large networks with thousands

to millions of nodes. In addition, the iterative procedure can

self-correct the roundoff errors. These advantages allow the

GS method to be applied to large scale networks.

To obtain the similarity score between one pair of nodes,

Algorithm 1 and Algorithm 2 need to compute the similarity

scores between all node pairs in the network, whereas Algo-

rithm 3 only needs to calculate 1/n of the network. When

an application only requests the similarity scores between few

pairs of nodes, the GS method could be much faster.

D. Distributed Gauss-Seidel

Since the original task of calculating S (Equation 3) can

be split into n independent tasks, as shown by Equation 6,

the tasks can be assigned to n different machines for parallel

computation. We show a MapReduce version of Gauss-Seidel

algorithm that can calculate the similarity scores between all

pairs of nodes with time complexity O(n2/k) in Algorithm 4

and Algorithm 5 given k machines (k ≤ n). The algorithm

can be applied on a single machine with k-core as well.

In sum, to get the similarity score between a pair of nodes,

the time complexity is lowered from O(n2) (Algorithm 1)

to O(n) (Algorithm 3). To get the similarity score between



Fig. 2. The Les Misérables social network.

all pairs of nodes, time complexity is lowered to O(n2/k)
(Algorithm 4 and Algorithm 5). When n machines or n cores

are available, the equations can be fully parallelized such that

the computation time can further be improved to O(n). The

space complexity is reduced from O(n2) to O(n). Thus, it is

feasible to compute ASCOS for large scale complex networks.

Since Q is usually sparse, Equation 8 can further be

parallelized by distributing independent groups of constraints

for better efficiency in practice [3].

V. EXPERIMENTS

A. Similarity Scores of Different Measures

It is difficult to evaluate the similarity measures without

conducting extensive user studies [15]. To understand the

performance of ASCOS and other measures, we examine the

social network of the characters in Victor Hugo’s famous novel

Les Misérables. Each node represents a character in the book,

and two nodes are adjacent if they encounter each other [17].

This network is more complex than a toy network but the

relationship between the characters is visually understandable.

Thus, the outputs of different measures are easier to compare.

A snapshot of the Les Misérables social network is shown

in Figure 2. The red diamond at the center is Jean Valjean,

the main character of Les Misérables. The top-6 similar nodes

returned by ASCOS and SimRank are highlighted: the green

triangles are Valjean’s top-6 similar characters returned by

SimRank, and the blue circles are Valjean’s top-6 similar

characters returned by ASCOS. By only observing the network

structure, the top similar nodes obtained by ASCOS better

fit our intuition. Valjean’s most similar character calculated

by SimRank is Gribier, who doesn’t even directly connect

to Valjean. The next five similar characters, Judge, Brevet,

Champmathieu, Cochepaille, and Chenildieu, have the same

similarity score to Valjean. These characters are thought to
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Fig. 3. The score differences of neighbor words of “instrument” to itself.
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Fig. 4. The score differences of neighbor words of “fruit” to itself.

be similar with Valjean by SimRank mainly because they are

connected to one of Valjean’s neighbor Bamatabois, who has

only few neighbors except Valjean and the five characters.

This is one typical case where SimRank returns counter-

intuitive results: given a target node t, SimRank usually

regards t’s similar nodes as those who can reach t in two

steps and the intermediate nodes have few neighbors. As for

ASCOS result, Valjean’s top-6 similarity characters, Javert,

Thenardier, Marius, Gavroche, Cosette, and Fantine, are all

directed connected to him. They are also closely connected to

other Valjean’s neighbors.

To quantitatively measure the performance of ASCOS and

other similarity measures, we asked 10 individuals who re-

ported that they know 80% or more of the story of Les

Misérables to score the returned lists for all methods. Out of

them 8 are drum corps performers who played musical songs

of Les Misérables before, 1 is a graduate student majoring

in Comparative Literature, and 1 a graduate student majoring

in Computer Science. The scorers were asked to assign 2

points to a character if they believe that the character is highly

relevant to Valjean, 1 point if they are somewhat relevant,

and 0 if they are minimally relevant. The average points are

presented in Table I where the names and average points are

highlighted in bold face if the average points are more than 1.5.

As shown, SimRank and LHN return characters who are not

very relevant to Valjean. Katz performs better than SimRank

and LHN. Our proposed ASCOS performs best among these

measures: all the top-6 returned characters are highly relevant.

The average score of ASCOS is 1.883.

B. Asymmetric Property of ASCOS

As discussed earlier, the ASCOS score sij from a node i
to a node j tends to be smaller than sji if i is judged to be

more salient or general than j. This asymmetric nature makes



TABLE I
A COMPARISON OF JEAN VALJEAN’S TOP SIMILAR CHARACTERS CALCULATED BY ASCOS, SIMRANK, KATZ, AND LHN. THE AVERAGE OF 10 SCORES’

GIVEN POINTS ARE LISTED (2: HIGHLY RELEVANT; 1: SOMEWHAT RELEVANT; 0: MINIMALLY RELEVANT). NAMES AND AVERAGE POINTS ARE IN BOLD

FACE IF THE AVERAGE VALUES ARE MORE THAN 1.5.

Seq
ASCOS SimRank Katz LHN

Name Avg. Pt. Name Avg. Pt. Name Avg. Pt. Name Avg. Pt.

1 Javert 2.0 Gribier 0.1 Javert 2.0 Gervais 0.4
2 Thenardier 1.9 Judge 0.3 Gavroche 1.6 MmeDeR 0.3
3 Marius 1.8 Brevet 0.4 Thenardier 1.9 Isabeau 0.1
4 Gavroche 1.6 Champmathieu 0.2 Marius 1.8 Labarre 0.2
5 Cosette 2.0 Cochepaille 0.4 Enjolras 1.0 Scaufflaire 0.2
6 Fantine 2.0 Chenildieu 0.4 Gueulemer 0.2 Marguerite 0.1

Average - 1.883 - 0.3 - 1.417 - 0.217
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Fig. 5. Efficiency comparison

it possible to identify the hierarchical relationship between

nodes in a network. To demonstrate this, we utilized the word

association norms of over 10, 000 words to generate a word

relationship network, in which two words are connected if they

are relevant based on a user survey [25]. We illustrate two

cases to show the potential of inferring additional semantics

between words without using any linguistics.

Figure 3 shows the first case: the ASCOS value difference

sji − sij given node i is the word “instrument” and node j is

one of the 37 neighbor words of the node i. A positive value

difference indicates that the word i is likely to be a super-class

of the word j. As shown, all the neighbor words representing

musical instruments (such as trombone and cello) or other

types of instruments (such as compass and stethoscope) have

positive value differences. This implies that they are likely to

be sub-classes of “instrument”. Figure 4 demonstrates another

example where node i is the word “fruit” and node j is one of

its 62 neighbors. All fruits, such as cherry, peach, and kiwi, are

successfully identified as the sub-classes of the word “fruit”.

However, there are a few words that are not sub-classes of node

i, (for example, “symphony” and “orchestra” are not a kind of

“instrument”, and “cream” and “vegetable” are not one type

of “fruit”). But in general most results are reasonable. Since

an ASCOS calculation involves no semantic information, the

results could be further improved by semantic approaches.

C. Efficiency Comparison

In this section, we empirically compare the run time and

space usage of naı̈ve ASCOS with its variations.

Using DBLP Computer Science Bibliography dataset, we

construct a coauthorship network between authors who pub-

lished papers in 1998 in the following conferences: ICDE,

ICML, KDD, SIGIR, SIGMOD, VLDB, and WWW. In a
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Fig. 6. The relative time efficiency when allocating different number of
processes on an 8-core server.

similar manner, we construct 9 more coauthorship networks

for authors who have publications during 1998-1999, 1998-

2000, ..., 1998-2007. Only the giant components of these

coauthorship networks are used for analysis.

To empirically compare the efficiency, we measure the run

time of naı̈ve ASCOS and all its variations for these 10

different networks with different sizes. We set the run time

of naı̈ve ASCOS as the baseline. The relative time efficiency

r
(t)
x of a variation x is defined as r

(t)
x = tx/tn−ASCOS, where

tx and tn−ASCOS are the run time of one variation x and

the naı̈ve ASCOS respectively. The lower the value, the more

efficient the measure is.

Figure 5(a) shows the relative time efficiency of getting

the similarity scores between one pair of node for different

network sizes. Note that the y axis is logarithm scale. Each

point on the Figure is the average of 10 independent trials.

As shown, The naı̈ve ASCOS is slower than all its variations.

For low rank ASCOS, we set the rank r to be 1/10 of the

total number of nodes. Although r can be set to a smaller

number to get a faster run time, such a small number may

decrease the accuracy of the approximation. The run time of

both low rank ASCOS and GS ASCOS are both around 1/20
of naı̈ve ASCOS, and GS ASCOS is slightly better than low

rank ASCOS consistently.

In a similar manner we define the relative space efficiency

r
(s)
x of a similarity measure x as r

(s)
x = sx/sn−ASCOS,

where sx and sn−ASCOS are the required space for getting

the similarity score between one pair of nodes with similarity

measures x and naı̈ve ASCOS respectively. The result shown

in Figure 5(b) shows the GS method is much more memory

efficient compared to the rest, especially when the graph size

increases. Although the low rank approximation is not as good

as GS method, it is still better than naı̈ve ASCOS.

D. Multi-Core/Distributed Computation

Here we empirically compare the run time of the Gauss-

Seidel method with and without a distributed computation



environment. Specifically, an 8-core server is used. By varying

the requested number of processes from 1 to 16, twice the

number of cores, we show their relative time efficiency, which

is defined as rn = tn−processes/t1−process, where tn−processes

and t1−process are the run time when requesting n processes

and 1 process respectively.

Figure 6 shows the average of 10 independent experiments

with y axis in logarithm scale. The relative time performance

is roughly the inverse of the number n of requested processes

when n is not larger than the total number of CPUs. This

suggests that the distributed GS method is highly scalable.

When n is larger than the number of available CPUs, the

relative time performance still improves slightly as n grows.

This is because the original task is divided into many small

sub-tasks such that when a CPU finishes its current job, it

can take an unfinished sub-task from the task pool instead of

idling and waiting for other CPUs to finish their jobs.

VI. CONCLUSION AND FUTURE WORK

We have shown that the popular global structure based

similarity measure SimRank and its variations ignore in their

calculation the paths of an odd number of lengths. This can

generate counter-intuitive similarity scores, as demonstrated

by a synthetic toy network and the Les Misérables network.

Surprisingly, this problem is not discussed in the literature.

We proposed a new Asymmetric Structure COntext Sim-

ilarity Measure (ASCOS) to address the problem. Theo-

retically, ASCOS on average utilizes twice the number of

paths compared to SimRank and its variations. This extra

information can be used in calculating a better similarity

score. Empirically, we compared the similarity scores assigned

by ASCOS, SimRank, Katz, and LHN. The results by user

evaluation showed that our proposed ASCOS yields better

performance. The asymmetric feature of ASCOS was shown

to have the ability to identify the hierarchical structure of

a network. In addition, we proposed several variations of

ASCOS, including one distributed method where similarity

scores are more efficiently computed. Empirical experiments

on DBLP coauthorship network demonstrated these variations

are computationally efficient in both time and space.

Future work would test ASCOS on other types of networks.

ASCOS could also be applied to vertex similarity based

applications and research, such as link prediction, network

clustering, and network evolution. As an example the asym-

metric property of ASCOS could be applied to coauthorship

networks to infer the adviser-advisee between researchers.
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