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ABSTRACT

Recent studies show that vertex similarity measures are good
at predicting link formation over the near term, but are less
effective in predicting over the long term. This indicates
that, generally, as links age, their degree of influence dimin-
ishes. However, few papers have systematically studied this
phenomenon. In this paper, we apply a supervised learning
approach to study age as a factor for link formation. Ex-
periments on several real-world datasets show that younger
links are more informative than older ones in predicting the
formation of new links. Since older links become less useful,
it might be appropriate to remove them when studying net-
work evolution. Several previously observed network proper-
ties and network evolution phenomena, such as “the number
of edges grows super-linearly in the number of nodes” and
“the diameter is decreasing as the network grows”, may need
to be reconsidered under a dynamic network model where
old, inactive links are removed.

Categories and Subject Descriptors

G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory ; E.1 [Data Structures]: Graphs
and Networks; G.3 [Mathematics of Computing ]: Prob-
ability and Statistics—Correlation and Regression Analysis

General Terms

Theory, Algorithm

Keywords

Vertex Similarity, Network Revolution, Link Prediction, Link
Analysis, Densification Power-law, Graph Theory

1. INTRODUCTION
Several interesting statistical properties of networks and

network evolution have been observed in real-world net-
works. For example, real networks usually have high clus-
tering coefficients, small average shortest path lengths, and
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power-law degree distributions. As a network evolves, i.e., as
more nodes join the network and more links are established,
the number of edges usually grows faster than the number
of nodes, with the densification following a power-law pat-
tern (we use the terms “node” and “vertex”, and “edge” and
“link” interchangeably). Even more surprisingly, network
diameters often shrink as networks grow. Several network
generating models, which capture networks that follow some
of these properties, have been proposed.

These statistical observations and discoveries mostly as-
sume that links will always exist once they are established.
In several real networks, however, this assumption seems to
be näıve. For example, a Ph.D. student usually collaborates
with the faculty and other graduate students at the same
university. However, she/he may exclusively work with a
different group of scholars after graduating and moving to
another institute. When modeling coauthoring behavior via
a coauthorship network, the links between an individual and
“old” colleagues could become less prominent and even grad-
ually die out (become inactive). Most previous studies do
not consider link age as a factor influencing network evolu-
tion and new link formation. Thus, conclusions reached by
these studies may no longer hold if, to accurately reflect the
current “active” network, old (inactive) links are removed.

In this paper, we study how link age influences the evolu-
tion of a network at the finest granularity, i.e., the impact
of a link’s age on the formation of new links. Although we
are interested in studying the relationship between link age
and new link formation on many different types of networks,
most available data sets have no age information associated
with links. This is probably the reason why there is little
previous work systematically studying the age factor. In this
work, we analyze two networks with age values on edges: a
coauthorship network among computer scientists and a co-
starring network among actors. We observe the relationship
between the existing links’ ages and the formation of new
links, and quantify the relative influential power of young
links and old links via the parameters of a logistic regres-
sion classifier learned by gradient ascent on the training set
data log-likelihood. Although one could apply more sophis-
ticated models such as kernel-based support vector machines
or ensemble techniques to achieve higher link prediction ac-
curacy, these models are not used here because the influence
of individual parameters/features is less easy to infer in such
models.

Two main conclusions are highlighted here. First, on the
application domains considered here, the active periods of
links are usually short. Second, by modeling the link predic-
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tion problem as a logistic regression classification problem,
young links are shown to be more informative than old links
in predicting the formation of new links.

The rest of the paper is organized as follows. In Sec-
tion 2, we review previous work on the statistics, evolution
properties, and generating models of networks. Several link
prediction methods and vertex similarity measures are also
reviewed. Section 3 introduces the two network domains
considered in our experiments. Section 4 studies typical ac-
tive link periods for the two target networks. Section 5 ap-
plies supervised learning to quantify the relative influential
power of young links and old links. Finally, discussions and
future work appear in Section 6.

2. RELATED WORK
Network generation and evolution can be studied at both

macro and micro levels. At the macro level, scientists have
observed several statistical properties that commonly exist
in different kinds of networks. They have proposed mod-
els which, when simulated, at least partially match these
properties. A simulated network generated by the Watts-
Strogatz model [21] has short average path length and high
clustering coefficient. The Barabási-Albert model [2] gener-
ates a network with short average path length and power-law
degree distribution. The Community Guided Attachment
model [13] leads the network to follow a densification power
law. The Fire-Forest model [13] generates a network that
has heavy-tailed in-degree, high clustering coefficient, and
also follows a densification power law.

At the micro level, the node-to-node link formation can
be inferred by vertex similarity measures [4, 16]. It has been
shown that these measures are good at predicting link for-
mation over the near term but are less effective in predicting
over the long term [4, 5]. It is also very interesting that sim-
ple local structure based similarity measures, such as cosine
similarity or triadic closure based measures, usually better
predict future link formation than global structure based
measures such as SimRank [4, 11]. The link prediction prob-
lem can also be treated as a supervised classification prob-
lem in which the labels represent presence or absence of links
and the features can be both topological (such as the short-
est distance between a pair of nodes or the clustering index)
and non-topological (such as the intrinsic properties of the
nodes) [1]. Recently, Cukierski showed that using a large
number of network structure based features for link predic-
tion is promising [7]. Surveys of the link prediction problem
can be found in [10, 17].

Our work is motivated by supervised link prediction [1]
and the recently discovered observation that “younger links
seem to be more influential in future link prediction” [5].
However, there are substantial differences between our cur-
rent work and these publications. Unlike [5] which suggests
a relatively ad-hoc aging model, here we apply logistic re-
gression to quantify the relative importance of old links and
young links. Different from [1], we specially focus on study-
ing link age instead of general topological features or intrin-
sic features of nodes.

3. DATASET DESCRIPTION
This section describes the two data domains used in our

study. The first network, a coauthorship network among
computer scientists, was compiled using the DBLP Com-
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(a) Empirical probability
mass function on coauthor
periods for 10, 000 randomly
selected authors and all their
coauthors.
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(b) Empirical probability
mass function on coauthor
periods of 10, 000 randomly
selected authors who pub-
lished at least 5 papers with
coauthors who also published
at least 5 papers.

Figure 1: The empirical probability mass function
of coauthoring periods (y axis is on a square root
scale).

Table 1: Statistical summaries of coauthoring pe-
riods in years (Q1, Q2, Q3: the first, second, and
third quantiles).

min-pub-num min Q1 Q2 mean Q3 max

1 1 1 1 1.683 1 38
5 1 1 1 2.458 3 40

puter Science Bibliography1. Each node in the coauthor-
ship network represents one author, with two nodes con-
nected if the two authors coauthored at least one paper. At
the time we crawled the data, DBLP had collected more
than 2 million papers written by more than 1 million au-
thors. Although the author names are disambiguated using
coauthoring information [15], incorrect attributions still oc-
cur. In this work, we directly used the disambiguated result
from DBLP, since author name disambiguation is outside
the scope of this study.

The second network, a co-starring network among actors,
was generated using the IMDB movie database2. Each node
in the network represents an actor, and two nodes are con-
nected if they co-star in a movie. The dataset we have is
a collection containing movies before and inclusive of year
2007. Nevertheless, it is still a good example of a social
network that evolves over time.

Although a variety of network datasets have been collected
and shared34, we selected the two networks used in our study
because the ages of the links can be inferred from the inter-
action history between the nodes.

4. TYPICAL ACTIVE PERIODS OF LINKS
In this section, we study the typical active periods of links.

We calculate the active period of a link by the time dif-

1http://www.informatik.uni-trier.de/~ley/db/
2http://www.imdb.com/
3http://snap.stanford.edu/data/
4http://www-personal.umich.edu/~mejn/netdata/
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(a) Empirical probability
mass function on co-starring
periods for 10, 000 randomly
selected actors and all their
co-starring actors.
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(b) Empirical probability
mass function on co-starring
periods of 10, 000 randomly
selected actors who acted
in at least 5 films with
co-starring actors who also
acted in at least 5 films.

Figure 2: The empirical probability mass function of
co-starring periods (y axis is on a square root scale).

Table 2: Statistical summaries of co-starring periods
in years (Q1, Q2, Q3: the first, second, and third
quantiles).

min-movie-num min Q1 Q2 mean Q3 max

1 1 1 1 1.433 1 44
5 1 1 1 2.056 1 49

ference between the first and last interactions between two
connected nodes.

To study the typical active periods of links in a coauthor-
ship network, we randomly selected 10, 000 nodes as seeds.
For each seed node, we compiled the active period with all
of the seed’s neighbors. The active period of a link is set as
1 plus the difference between the latest and the initial coau-
thoring years. The empirical probability mass function of
active periods of links in the coauthorship network is shown
in Figure 1(a). Note that the y axis is on a square root scale
so that the small density bars can be seen more clearly. As
shown, more than 80% of the coauthoring relationships end
within 3 years. In a similar manner, we set the active pe-
riod of a link in the co-starring network as 1 plus the dif-
ference between the latest and earliest release dates of their
co-starring movies. The empirical probability mass function
is shown in Figure 2(a). The typical active periods for the
co-starring network is even shorter: more than 95% of the
co-starring behaviors end within 3 years. This shows that
most of the links age-out relatively quickly.

One might suspect that such a skewed distribution stems
from the large number of authors who published only 1 or 2
papers, and from actors who performed in only 1 or 2 films.
To eliminate this confounding factor from the coauthorship
network, we randomly selected 10, 000 authors who pub-
lished at least 5 papers and picked all their coauthors who
also published at least 5 papers. The associated empirical
probability mass function of the coauthoring period is pre-
sented in Figure 1(b) and shows that approximately 80% of
the collaboration periods are still shorter than 3 years. In
a similar manner, we randomly selected 10, 000 actors who

performed in at least 5 films and picked all their co-starring
actors who also participated in at least 5 films; the results
are shown in Figure 2(b). Table 1 and Table 2 list statistics
of the collaboration periods and the co-starring periods, re-
spectively. Thus, even if we intentionally select nodes that
are more actively interacting with others, the typical active
periods of links are still short.

5. DIMINISHING INFLUENCE OF LINKS
In this section, we further study how a link gradually, over

time, loses its influence in determining which new links will
form in the network.

5.1 Predictive Model
Motivated by [1], we express this question as a supervised

learning problem, where the labels represent presence or ab-
sence of links. We apply a logistic regression classifier as
the model predicting new links for two reasons. First, this
model can be easily updated to take in new data using an on-
line gradient descent method. Although in our experiments
the size of the training dataset will be fixed, in practice the
network evolves over time, with newly formed links provid-
ing new supervising information, which can be exploited to
online adapt the classifier, making it both more accurate
and more up-to-date. Second, and most significantly for our
purposes here, the predictive power of individual features
in logistic regression models can be directly inferred from
the magnitude of the learned coefficients. Thus, the influ-
ence of young and old links (and their associated features)
is easily quantitated. Although applying ensemble super-
vised learning classifiers such as bagging and boosting [3, 19]
(or kernel-based SVMs) may improve link prediction perfor-
mance [1], it is difficult to infer the relative importance of
individual features in these methods. Since our main target
is to understand the relative importance of young and old
links instead of purely pursuing high prediction accuracy,
logistic regression is a better model choice here.

The conditional probability of the logistic regression model
is shown in Equation 1:

P (y = 1|θ0,Θ,X′) =
1

1 + exp(−(θ0 +ΘTX′))
, (1)

where y = 1 represents link presence, X′ = [x′
1, x

′
2, . . . , x

′
n]

T

are the n re-scaled features, and θ0 and Θ = [θ1, θ2, . . . , θn]
T

are the coefficients to be learned. A feature xi with ob-
served values Xi = {v1, v2, . . . , vm} is re-scaled to Xi′ by
Equation 2, with the range of the new values [0, 1].

Xi′ =

{

v1 −min(Xi)

max(Xi)−min(Xi)
,

v2 −min(Xi)

max(Xi)−min(Xi)
, . . . ,

vm −min(Xi)

max(Xi)−min(Xi)

}

(2)
By this re-scaling, quantitative evaluation of the predic-

tive power of individual features simply reduces to evalu-
ation of the magnitudes of the learned coefficients in Θ.
Specifically, letting odds represents the ratio of the proba-
bility that the edge exists to the probability that the edge
does not exist, the learned coefficients represent the change
in the log odds of edge existence for a unit change in the
feature. As a result, the relative influential power of two
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Table 3: A list of networks used for generating train-
ing features and labels.

year purpose

G1 2000-2002 generate training features for DBLP
G2 2003 generate training labels for DBLP
H1 1997-1999 generate training features for IMDB
H2 2000 generate training labels for IMDB

features xi and xj is estimated by the ratio of the exponen-
tial of the learned coefficients exp(θi) : exp(θj).

5.2 Link Feature Derivation
In this section, we explain in detail the creation of the

training network, testing network, and the selected features
for the new link prediction problem in a coauthorship net-
work. The information required for co-starring network link
prediction is created through a similar process, which will
be briefly introduced at the end of the section.

To obtain the training and testing features of the coau-
thorship network, we selected from the DBLP dataset pub-
lications over three consecutive years y, y + 1, and y + 2 in
the following seven conferences: ICDE, ICML, KDD, SIGIR,
SIGMOD, VLDB, and WWW. The authors of these papers
and all their coauthors are compiled to create a coauthorship
network G1. We limited to three consecutive years to gen-
erate the training features because 80% of the coauthoring
periods are no longer than 3 years.

Specifically, six features are generated for each pair of
nodes i and j in G1 by considering both local topology struc-
ture and the ages of the links. The six features x1, x2, . . . x6

are listed below:

x1 =
∑

∀k∈MutualNeighbor(i,j)

Weight(i, k, t = y), (3)

x2 =
∑

∀k∈MutualNeighbor(i,j)

Weight(i, k, t = y + 1), (4)

x3 =
∑

∀k∈MutualNeighbor(i,j)

Weight(i, k, t = y + 2), (5)

x4 =
∑

∀k∈MutualNeighbor(i,j)

Weight(j, k, t = y), (6)

x5 =
∑

∀k∈MutualNeighbor(i,j)

Weight(j, k, t = y + 1), (7)

x6 =
∑

∀k∈MutualNeighbor(i,j)

Weight(j, k, t = y + 2), (8)

where the MutualNeighbor(i, j) function returns the set of
mutual neighbors (coauthors) of i and j and Weight(i, k, t)
returns the number of coauthored papers between i and k

in year t.
Note that we do not include the full coauthoring history of

i and j because we are interested in how link age influences
the formation of “new” links, i.e., links that are not present
in G1.

We only pick the above six features because they are crit-
ical to our main research question: what is the relationship

between edges’ ages and the formation of new links. While
it is shown that performance of link prediction can be im-
proved by introducing a large number of features [7], most
of these features have nothing to do with links’ ages. Intro-
ducing many features may improve precision but will make
it difficult to isolate the effect of link age.

To get the training labels, we create a coauthorship net-
work G2 for year y+3. Note that the authors who appear in
year y+3 but not in the period [y, y+2] are disregarded since
their features cannot be obtained from G1. By setting y to
year 2000, the network G2 (representing the coauthorship
network of the year 2003) contains 460 nodes and 610 edges,
among which 245 of these edges have already appeared in
G1 (representing the coauthorship network for the period
[2000, 2002]). When training a model to predict the forma-
tion of “new” edges, these 245 edges should be disregarded,
i.e., they are neither positive nor negative instances. Thus,
the training examples contain 610 − 245 = 365 positive in-
stances and

(

460
2

)

− 610 = 104, 960 negative instances. A
logistic regression classifier C1 is trained by using the labels
derived from G2 and the features derived from G1.

In addition, we create three other logistic regression clas-
sifiers, using different sets of features, for comparison. The
classifiers C2, C3, and C4 predict coauthoring events in year
y+3 using only the features derived from the coauthor net-
work in year y + 2, y + 1, and y respectively, i.e., C2 uses
features x3 and x6, C3 uses features x2 and x5, and C4 uses
features x1 and x4. The learned classifiers will be compared
with C1.

We select other consecutive 4-year periods to generate the
testing data. The first three years are used to generate the
testing features, with the fourth year used to obtain the
testing labels. The testing features are fed to C1, C2, C3,
and C4 for link prediction.

The training data, testing data, and features for the co-
starring network are generated in a similar manner. First,
we select 1, 000 actors of the highest degrees between 1991
and 2007 as set A. Next, we create a co-starring network H1

by the co-starring behavior among actors in A between 1997
and 1999. Six features, as listed from Equation 3 to Equa-
tion 8, are generated for each pair of nodes in H1, where
Weight(i, k, t) returns the number of co-starring movies be-
tween i and k in year t. Again, we use only the co-starring
network of three consecutive years because more than 90%
of co-starring behaviors are active for less than 3 years. The
co-starring behaviors among actors in A in the year 2000 are
used to generate the training labels.

Table 3 shows networks used for generating the training
features and labels for the coauthorship network and the
co-starring network.

5.3 Experimental Results
The learned coefficients of the classifier C1 on the coau-

thorship network are listed in Table 4. As shown, the later
coauthoring behaviors (essentially, the younger links) play a
more important predictive role than the earlier coauthoring
events (the older links). We can roughly think of the links of
the 1st, 2nd, and 3rd years as old, mid-age, and young links.
From the learned coefficients, the average influential power
of the old, mid-age, and young links to the odds of new
link formation are exp(0.7540) : exp(3.0010) : exp(4.0239).
Thus, the young links are almost 3 times more informative
than the mid-age links and 26 times more informative than
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Table 4: Coefficients of the learned logistic regres-
sion classifier when using the coauthorship network
over the years 2000-2002 to generate training fea-
tures and the coauthorship network of 2003 to gen-
erate the training labels.

Year 2000 Year 2001 Year 2002

i-k θ1 = 0.5181 θ2 = 2.6930 θ3 = 3.4582
j-k θ4 = 0.9899 θ5 = 3.3089 θ6 = 4.5895

Average 0.7540 3.0010 4.0239

Table 5: Coefficients of the learned logistic regres-
sion classifier when using the costar network over
the years 1997-1999 to generate training features
and the coauthorship network of 2000 to generate
the training labels.

Year 1997 Year 1998 Year 1999

i-k θ1 = 0.1193 θ2 = 1.4216 θ3 = 6.8277
j-k θ4 = 0.3026 θ5 = 0.8970 θ6 = 6.3317

Average 0.2110 1.1593 6.5797

the old links. The influential power of young links in co-
starring network is even more prominent: the young links
are 226 times more informative than mid-age links and 583
times more informative than the old links, as shown in Ta-
ble 5. Since typical active periods of links in the co-starring
network are usually shorter than links in the coauthorship
network, as shown in Figure 1 and Figure 2, it is not sur-
prising that the young links in the co-starring network are
more influential than the young links in the coauthorship
network.

Next, we show the performance of each classifier on pre-
dicting future active links. Because the two classes (link
presence and absence) are highly imbalanced, successfully
predicting a positive instance is very challenging. For ex-
ample, when predicting new links in the coauthorship net-
work for year 2004 using features derived from the period
[2001, 2003], the true positive rate of a näıve random guess
is only 0.2406629%. To make the metric more meaningful,
we show the “relative performance at n” for each classifier.
This is defined as the true positive rate over the first n pre-
dictions for a classifier divided by the true positive rate from
näıve random guessing.

We used each classifier to predict new links of the coau-
thorship network in years 2004, 2005, 2006, and 2007. The
accuracy measure being compared is the “relative perfor-
mance at n”, with n ranging from 1 to 500, since different
values of n affect the performance. As shown in Figure 3,
the classifiers that consider the younger links (C1 and C2)
generally perform better than the one considering only the
older links (C3 and C4). Figure 4 shows the relative perfor-
mance at n for predicting new links of co-starring network
in year 2001, 2002, 2003, and 2004. Again, the classifiers
considering younger links generally perform better.

6. DISCUSSION AND FUTURE WORK
A study on Facebook, the currently most dominant social
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(c) Predicting new coauthor-
ing behavior in year 2006.
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(d) Predicting new coauthor-
ing behavior in year 2007.

Figure 3: Comparison of the relative performance
at n of different classifiers for coauthorship network.

medium, shows that the average U.S. user was friends with
around 214 other U.S. users in May 2011 [20]. This number
is almost 1.5 times larger than the famous Dunbar’s Number,
which suggested that the cognitive limit to the number of
individuals with whom any one person can maintain stable
relationships is on average 147.8 [8]. This result implies that,
on average, approximately one third of the relationships in
an ego-network of a Facebook user are unstable. Although
this does not necessarily mean the old links are more fragile,
it does suggest that a large portion of links might gradually
become inactive and, to stabilize the network, these links
could be removed.

To study the influential power of old links and young links,
we separated links by their age, and studied how the age of
a link influences the formation of new links. Using one coau-
thorship network and one co-starring network as domains,
we found that younger links are more informative in predict-
ing the formation of new links. As far as we know, this is
the first paper to quantitate the relative importance of links
of different ages.

Since as links become older their predictive power gener-
ally diminishes, it might be most appropriate to disregard
or remove “sufficiently old links”. This leads to the follow-
ing research questions that are rarely discussed in previous
studies.

First, network evolution theory should consider not only
link/node addition, but also link/node removal as well. Al-
though we quantify the relative importance of young, mid-
age, and old links, how to appropriately age-out old links
(or even old nodes) is still an open question. We are inter-
ested in designing a network generation model to address
this problem.

Second, we are interested in observing the statistical prop-
erties of networks and network evolutions when links/nodes
do age-out. As a starting point, we could assume the age of
each link to follow the distribution of observed coauthoring
periods and examine both whether and how these statistical
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2004.

Figure 4: Comparison of the relative performance
at n of different classifiers for co-starring network.

properties change when these links are removed.
Third, applications based on network structures [9, 12,

14, 18] may be influenced as well. For example, one popular
research direction of social network based viral marketing
is to identify the key influencers to advertise to, with the
hope that these influencers can disseminate the information
to a larger group of individuals. The top influencers are usu-
ally estimated via degree-based measures [6, 12, 14] without
considering that links could become inactive, i.e., the in-
teraction between the targeted influencers and others may
break. Researchers may need to work on more generalized
models to capture the effect of inactive links.

One caveat on our results is that, while old links appear in
general to be less influential, the aging speed can be link or
node dependent. In particular, some old links may still be
powerful determinants. For example, consider researchers
A and B mentored by the same advisor, many years apart.
They may start collaborating at some point in the future,
mainly because they are former students of the same advisor.

We believe one reason that previous studies pay less atten-
tion to link/node removal when studying network evolution
is because such events are difficult to directly observe or to
definitively ascertain (e.g., long periods of link inactivity do
not preclude future activity). As a pioneering approach, this
paper uses the coauthoring or co-starring period to obtain a
proxy for the ages of the links. On the other hand, we are
certainly desirous to obtain networks that do have explicit
link or node removal behavior, as such networks could be
used to further validate our work and its main observations.
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