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Behavior2Vec: Generating Distributed Representations
of Users’ Behaviors on Products for Recommender Systems

HUNG-HSUAN CHEN, National Central University

Most studies on recommender systems target at increasing the click through rate, and hope that the number

of orders will increase as well. We argue that clicking and purchasing an item are different behaviors. Thus,

we should probably apply different strategies for different objectives, e.g., increase the click through rate, or

increase the order rate. In this article, we propose to generate the distributed representations of users’ view-

ing and purchasing behaviors on an e-commerce website. By leveraging on the cosine distance between the

distributed representations of the behaviors on items under different contexts, we can predict a user’s next

clicking or purchasing item more precisely, compared to several baseline methods. Perhaps more importantly,

we found that the distributed representations may help discover interesting analogies among the products.

We may utilize such analogies to explain how two products are related, and eventually apply different recom-

mendation strategies under different scenarios. We developed the Behavior2Vec library for demonstration.

The library can be accessed at https://github.com/ncu-dart/behavior2vec/.
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1 INTRODUCTION

Recommender systems are widely adopted nowadays to actively suggest useful, relevant, and in-
teresting events or objects from large amount of information. For example, a news website may
recommend articles based on the prediction of users’ interest (Liu et al. 2010). In academic circle,
researchers may rely on digital libraries and recommendation tools to discover suitable references
for a working paper (Huang et al. 2014), potential collaborators (Chen et al. 2011), or the domain
experts of a certain area (Chen et al. 2013, 2015; Tang et al. 2008). Among various types of rec-
ommender systems, the most typical kind is probably provided by the online retailers (such as
Amazon and Walmart) or online service providers (such as Netflix or Spotify). These online shops
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suggest products, movies, or other items that are likely to be of interest to the users, in the hope
that users may purchase more products or continue using their service for a longer period, and
eventually spend more money.

Among the recommendation algorithms, Collaborative Filtering (CF) is probably the most fa-
mous and widely adopted type of method (Breese et al. 1998; Sarwar et al. 2001). CF finds similar
users or similar items based on all (or many) users’ collective browsing and purchasing behaviors
on a website. This idea motivates many following works, such as Matrix Factorization (MF) (Koren
et al. 2009), neural network based CF (Salakhutdinov et al. 2007), MF based on Bayesian probabil-
ity (Salakhutdinov and Mnih 2008), and so on.

However, previous works mostly analyze users’ clicking (viewing) behaviors and target at in-
creasing the click through rate. Unfortunately, clicking and purchasing are different behaviors. As
recently shown in Chen et al. (2017), increasing click through rate may not necessarily increase
the number of orders. This motivates us to differentiate users’ behaviors (e.g., clicking and pur-
chasing) on items. In this article, we propose to generate the distributed representations of users’
clicking and purchasing behaviors on the products, based on the logs of a large e-commerce (EC)
website. We then recommend the products that may interest the user based on the cosine distance
between the generated distributed representations. Because we leverage on many users’ collective
browsing and purchasing history, our method can be categorized as one type of CF.

The central concept of our model — distributed representation — represents a many-to-many
mapping between two types of objects: an entity is represented by many (neuron-like) concept
elements, and a concept element is involved in representing many entities (Hinton et al. 1986).
Recently, researchers in the information retrieval (IR) community utilized the neural network
techniques to define the distributed representations of words (a.k.a. word embedding) (Mikolov
et al. 2013b) and the distributed representations of documents (a.k.a. document embedding) (Le
and Mikolov 2014). They discovered that word embedding reveals surprisingly precise semantic
and syntactic relationship among words. For example, they found that Paris − France + Italy ≈
Rome (Mikolov et al. 2013a) (semantic relationship),Kinд −Man +Woman ≈ Queen (Mikolov et al.
2013c) (semantic relationship),walkinд −walked + swam ≈ swimminд (Mikolov et al. 2013a) (syn-
tactic relationship),mouse −mice + dollars ≈ dollar (Mikolov et al. 2013a) (syntactic relationship),
and the like.

Encouraged by the success of the distributed representation in the IR domain, we are interested
in studying the distributed representations of users’ behaviors on an EC website. Conceptually,
we model users’ behaviors on products (i.e., viewing a product, buying a product, etc.) as different
events and generate the distributed representations of these events based on the Word2Vec model.
We found that, because we differentiate the behaviors, Behavior2Vec may recommend different
products under different scenarios. To infer the product analogy based on embedding, we post-
process the behavior embedding to form the distributed representations of the products. Such
a technique discovers better product analogy compared to the Prod2Vec model, which will be
introduced later.

We conducted extensive experiments based on the server logs on a large-scale EC website in
Taiwan and Southeast Asia. We found that, compared to several baseline recommendation meth-
ods, we better predict the next product a user is going to click or purchase, based on the cosine
distance between the learned distributed representations. Perhaps more importantly, we found
that product analogy can be inferred based on the distributed representations. For example, our
method can successfully discover the mapping of camera body and the corresponding kit lens of
five different brands (Canon, Nikon, Panasonic, Sony, and Pentax). We may further utilize such
analogy to infer a user’s intension and provide different recommendation strategies under differ-
ent scenarios.
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This article makes the following contributions:

—We argue that increasing the click through rate may not necessarily increasing the order
rate. We propose a simple yet effective Behavior2Vec model to generate the embedding of
the behaviors on the items, so that the model can recommend different items under different
objectives. We developed and open sourced the Behavior2Vec library.1

—We found that, compared to several popular baseline methods, the Behavior2Vec indeed
make better recommendations, especially, when the task is to predict the next purchased

item given previous clicked items. If there exists only one type of behavior (e.g., predicting
the next clicked item based on clickstreams) in the log, Behavior2Vec performs better than
some baselines and comparable to the strong baselines, such as the Prod2Vec model, the
session-based Recurrent Neural Network (S-RNN), and the Factorizing Personalized Markov
Chains (FPMC) model.

—By post-processing the embedding of the behaviors on items, we can infer the relationship
between different products. Based on case studies, our method better infers the relationship
between the products, compared to the Prod2Vec model.

The rest of the article is organized as follows. In Section 2, we review previous works on rec-
ommendation algorithms and recent progress of the distributed representations of texts in the IR
domain, especially about word embedding. Section 3 introduces the method to compute the dis-
tributed representations of the behaviors. Section 4 reports the experiments and results, including
(1) a comparison of various recommendation algorithms on predicting the next viewing or pur-
chasing products, and (2) case studies about the analogy of products inferred from the generated
distributed representations. Finally, we discuss our discoveries and future research directions in
Section 5.

2 RELATED WORK

This section reviews the classic recommendation algorithms, recent progress of the neural
network-based recommendation models, and the word embedding studies in the IR domain.

2.1 Recommendation Algorithms

Researchers often categorize the recommendation algorithms into two paradigms: content-based
and CF (Lops et al. 2011). The content-based algorithms leverage on the product profiles and the
user profiles, mostly in text format, to define the distance between two products, between two
users, or between a product and a user. The widely used method includes TF-IDF (term frequency–
inverse document frequency), topic-modeling, and the variations of these methods (Pennacchiotti
and Gurumurthy 2011). However, the performance of the content-based recommendation relies
heavily on the quality of the content, which is not always clean or available in practice.

CF-based methods utilize many users’ collective interaction with the products to make rec-
ommendation. The most famous algorithm of this type is probably Amazon’s item-to-item CF,
in which two items are considered similar if they are purchased or clicked by a similar set of
users (Linden et al. 2003). Likewise, we may claim two users are similar if they purchased or clicked
a similar set of items, and recommend items to a useru based on the browsing behavior of the users
who are like u. This method is often called user-based CF.

Instead of recommending the top-k products that might be appealing to users, sometimes it
is desired to predict users’ ratings on items. This is often modeled by the MF techniques, which

1https://github.com/ncu-dart/behavior2vec/.
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approximate the missing values in a large user-by-product rating matrix based on the product
of the low-ranked matrices. This type of methods have shown successful results (Hu et al. 2008;
Koren 2008; Koren et al. 2009). Recently, Wu et al. (2017) showed that, instead of using fixed latent
factor vectors for the users and the items, varying the latent factors over time may improve the
prediction accuracy, especially, when the log contains the records of an individual for a long period,
e.g., months to years. For a short period, however, the latent factors of the users and the items are
unlikely to vary dramatically.

Although MF techniques dominated the user rating prediction tasks (Koren et al. 2009), stud-
ies have shown that MF-based method may not perform well in the top-k recommendation task
(Cremonesi et al. 2010), which might be a more realistic recommendation scenario. Association
Rules (AR) discovers the relationship between items based on their co-purchasing or co-viewing
frequency (Tan et al. 2006). The central idea of AR is very close to the item-to-item CF used by
Amazon. However, AR must specify the thresholds (the support and the confidence) to rule-out
the uninteresting rules. As a result, AR usually generate a few rules, but these rules might be pow-
erful. Another related method, FPMC (Rendle et al. 2010), generates personalized transition graph
of item clicks based on MF. The experimental results showed that FPMC performs better than MF
or the global transition graph. The main issue of behavior-based methods is the cold start problem
in which the recommender systems do not have enough clues to make a recommendation because
a new user just started using the EC website, or a new item just started to be sold. Recently, re-
searchers found that assigning non-uniform weights to the negative (missing) data may generate a
better model (He et al. 2016). Specifically, they set the weight of a negative instance to be positively
related to the popularity of the item. The argument is that, since users are more likely to be aware
of the popular items, these items are likely to be the true negatives if not clicked or purchased by
users. On the other hand, the less-popular items are ignored probably because users are unaware
of these items.

Our approach utilizes the browsing and purchasing logs from all users to generate the dis-
tributed representations. Thus, it can be regarded as a behavior-based approach.

2.2 Neural Network-Based Recommendation Models

The traditional MF assumes the interaction between a user and an item based on an inner product
operation. However, this probably over-simplifies the scenario. Recently, researchers have started
to utilize the (deep) neural network to model higher degree of interactions between users and
items (Hong-Jian Xue 2017; He et al. 2017). Such methods may also incorporate the explicit user
features or item features into the models. The time information and sequence information can
also be included by the neural network models. For example, the S-RNN model (Hidasi et al. 2016)
applied the RNN (specifically, Gated Recurrent Unit) model on sessions to predict the next item in
the clickstream. They found that such a mechanism outperforms item-to-item recommendation,
probably because S-RNN models the whole session instead of only the latest click. However, S-
RNN does not generate product embeddings. Thus, it could be difficult to produce the relationship
among the products based on the model. Recently, Wu et al. (2017) showed that the latent factors
of users and the items may vary over time. Thus, if the training data contain the logs for a long
period, e.g., months to years, it might be less effective to infer fixed latent factors for all the users
and items. They proposed to generate the latent factors for users and items continuously based on
the LSTM (long short-term memory) model.

The embedding-based approach can also be derived based on neural networks. Since the
embedding-based approaches are highly influenced by the Word2Vec model in the IR domain,
we introduce such approach in the next section.
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2.3 Distributed Representations of Words

In the IR domain, the distributed representations of words, sometimes called word embedding,
refers to a many-to-many mapping between the words and the hidden dimension, which typ-
ically represents the semantic and syntactic concepts of the words (Bengio et al. 2003; Hinton
et al. 1986). Researchers have developed several methods to transform the words from the one-
hot-encoding representations into the distributed representations, which are essentially dense
vectors of a lower dimension. Studies have shown that word embedding captures precise word
analogy in terms of both semantics and syntax. In addition, we may treat the word embed-
ding vectors as the features and feed supervised learning algorithms with these features. Such
a setting usually yields better results compared to the traditional word features using one-hot-
encoding.

Researchers may leverage on the neural networks to generate word embedding, because the
structure of a neural network fits naturally to the concept of distributed representation. Depend-
ing on the training objective, we can further categorize the neural network model into following
two types: the skip-gram model and the continuous bag-of-words (CBOW) model (Mikolov et al.
2013a). The skip-gram model predicts the surrounding words given the central (current) word,
whereas the CBOW model predicts the central word given the surrounding words. Both models,
in their original format, are inefficient in training. In practice, researchers usually utilize the nega-
tive sampling technique or the hierarchical softmax technique to address the computational issue.
The neural network-based methods are also called the prediction-based model, because the neural
network method aims at maximizing the accuracy of predicting the word usage in a sentence. The
word embedding vectors are the natural by-products of the optimization process – we adjust these
vectors during the training process to meet the objective.

In addition to the neural network (prediction-based) models, we may perform dimension reduc-
tion on the matrix of the word co-occurrence statistics to generate the word embedding (Bullinaria
and Levy 2012; Lebret and Collobert 2013; Pennington et al. 2014). Because this type of methods
relies on counting the co-occurrence of words, it is also called the count-based model. Researchers
have conducted experiments to measure the performances of both the prediction-based and the
count-based models (Baroni et al. 2014; Pennington et al. 2014). Although these two models look
different, careful studies have shown that fundamentally they are very similar (Levy and Goldberg
2014; Pennington et al. 2014). Recently, researchers have applied the concept of embedding on
longer texts to discover the sentence embedding and the paragraph embedding (Le and Mikolov
2014).

Recent studies have started to apply word embedding technique on other domains. The closest
work to our study is Yahoo Inbox’s product recommendation (Grbovic et al. 2015). The work dis-
covers the distributed representations of the products (this is the Prod2Vec model we compared in
Section 4). Essentially, Prod2Vec can be regarded as treating each product as one word and each
clickstream as sentences. Our method, Behavior2Vec, on the other hand, differentiates clicking
an item from purchasing an item, so that the distributed representations are defined by not only
the items but also users’ behaviors. Compared to the Prod2Vec model, Behavior2Vec is capable
of recommending different products under different scenarios. Perhaps more importantly, Behav-
ior2Vec generates the embedding that better reveals the product analogy, which could be a more
fundamental contribution to the society of the recommender systems.

3 GENERATING DISTRIBUTED REPRESENTATIONS FOR USER BEHAVIORS

This section introduces the method to generate the distributed representations for users’ behaviors
(in particular, we differentiate the clicking and the purchasing behaviors in this article). We first
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present the overview and the motivation of the model, followed by defining the terms that will be
used later. Finally, we formally introduce the model.

3.1 Motivation and Model Overview

In the IR community, several researchers believe that the context of a word can be defined by its
surrounding words (Chan 2014). Thus, two words are conceptually similar if the same or similar
set of words surrounds the two.

Partially motivated by this idea, we suspect two behaviorsb1 andb2 are similar if the surrounding
set of the behaviors of b1 is like the surrounding set of the behaviors of b2. Thus, if we are given
a model to predict the surrounding behaviors of a behavior, we can judge the similarity of two
behaviors based on the distance between their predicted surrounding behaviors.

Later in this section, we will formalize this idea by showing how to leverage on the skip-gram
model (Mikolov et al. 2013b) to predict the surrounding behaviors given a behavior.

The closest work we could find is Yahoo Inbox’s product recommendation (Grbovic et al. 2015),
which treats each item as one word and the item sequences as sentences. However, as shown
in Chen et al. (2017), clicking (viewing) and purchasing are different behaviors. For example, in-
creasing the click through rate may not necessarily increase the order rate. We empirically found
that differentiating the behaviors (i.e., purchasing or clicking) on the items can improve the result.
As far as we know, we are the first to apply the Word2Vec model to discover the behavior embed-
ding, which is later utilized to build the item embedding. In fact, the Prod2Vec model is a special
case of the Behavior2Vec model in which only one type of behavior (e.g., clicking items) exists.

Compared to the word usage in a sentence, it seems that the clicking or the purchasing
sequences of items could be noisier, as unrelated items can be viewed or clicked in one sequence.
However, it appears that users still managed to click or purchase the relevant items in a session
in many cases. For example, we found that users tend to click products of the same brand during
a session. Even though some viewing or the purchasing sequences are noisy, as the number of
training instances are enough, the learning models can still discover the patterns and filter the
noisy information. In fact, many successful recommendation strategies (e.g., association rules,
user-based or item-based CF, MF, and S-RNN) are applied on the noisy clickstreams, and the
models can still identify useful rules.

3.2 Terminology

For better explanation, here we define the terms that will be used later.
Given a user’s browsing and purchasing log as the following sequence of entries s = {e1,

e2, . . . , ei−1, ei , ei+1, . . .} and a pre-defined window size parameterw , we defineC (ei ) the surround-

ing entries of a behavior entry ei as the set of the behaviors shown in the following equation:

C (ei ) = {ei−w , ei−w+1, . . . , ei−1, ei+1, . . . , ei+w }. (1)

Figure 1 shows an example of the surrounding entries of the behavior entry e2, e5, and e9, with
the pre-defined windows size w = 3. For e5, the previous three products and the following three
products are {e2, e3, e4} and {e6, e7, e8}, respectively; thus,C (e5) the surrounding products of e5 are
{e2, e3, e4, e6, e7, e8}. On the other hand, there is only one product before e2; thus, the number of
surrounding products of e2 is only four: {e1, e3, e4, e5}. Similarly,C (e9) the surrounding products of
e9 are only {e6, e7, e8}.

The distributed representations of words are sometimes called “word embedding.” Following
this convention, we also use the term behavior embedding to refer to the distributed representations
of the behaviors. In addition, we use the term “surrounding behaviors” and “context behaviors”
interchangeably.
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Fig. 1. An example of the surrounding entries of e2, e5, and e9, given the pre-defined window size = 3. When

the window size exceeds the beginning or the end, the exceeding parts are ignored.

3.3 Behavior Embedding Model

Given a session that browses through a list of products of the sequence s = {e1, e2, . . . ,
ei−1, ei , ei+1, . . . , e |s | }, where |s | is the length of the sequence, we define the probability function of
observing such a sequence based on the skip-gram model (Mikolov et al. 2013b), as shown by the
following equation:

p (s ) =
|s |∏

i=1

��
�

∏

ej ∈C (ei )

p (ej |ei ;θ )��
�
, (2)

where C (ei ) returns the context products of the product ei , as defined in Section 3.2., and ei de-
fines the user’s behavior on the product i by a dense vector, which we call the behavior embedding.
Specifically, in this article, we assume that a user’s possible behaviors on a product i is either “view-
ing” (clicking) it or “purchasing” it. Thus, we may further define ei ∈ {vi (viewing),pi (purchasing)}
to differentiate the two different behaviors on product i . We callvi andpi as the viewing embedding

and the purchasing embedding of product i, respectively.
We define the objective function as the logarithm to the probability function (Equation (2)) to

remove the product operations. As a result, the goal is to obtain the parameter θ that maximizes
the log of the probability function, as defined by the following equation:

θ ∗ = argmax
θ

|s |∑

i=1

∑

∀ej ∈C (ei )

log(p (ej |ei ;θ )). (3)

In the typical setting of word embedding, the parameter θ is composed of w (I )
i and w (O )

i , which
represent the input vector representation and the output vector representation, respectively, for
each word i (Mikolov et al. 2013b). However, since we differentiate the “viewing embedding” and
the “purchasing embedding” of a given product i , the parameter θ in our case is composed of

v (I )
i (the input viewing embedding of the product i), v (O )

i (the output viewing embedding of the

product i), p (I )
i (the input purchasing embedding of the product i), and p (O )

i (the output purchasing
embedding of the product i).

We set e (I )
i ∈ {v

(I )
i ,p

(I )
i } and e (O )

i ∈ {v (O )
i ,p

(O )
i }. Thus, the probability p (ej |ei ;θ ) can be defined

based on the softmax function, as shown in the following equation:

p (ej |ei ;θ ) =
exp(e (O )

j · e (I )
i )

∑K
k=1 exp(e (O )

k
· e (I )

i )
, (4)

where K is the number of distinct possible behaviors on all the products. Equation (4) can be
treated as a proxy of the similarity score between the behavior ei and the behavior ej because of
the inner-dot product operation in the numerator.
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We may leverage on any optimization method to obtain θ the parameters that maximizes the
objective function (Equation (3)). Here, we take the derivative of the objective function to every

parameter (i.e., all the elements in the vectors e (I )
i and e (O )

i ) and apply stochastic gradient descent
to iteratively update all the parameters. Interested readers can refer to Rong (2014) for details.

In practice, an EC website typically provides hundreds of thousands to millions of different
products. Thus, there is a huge number of combinations on the possible behaviors for all these
products. As a result, it is inefficient to obtain the denominator of Equation (4) for every possible
entry ek of every session. We apply hierarchical softmax and negative sampling to address the
issue. Hierarchical softmax obtains the probability distribution with a time complexity O (logK )
rather than O (K ) based on constructing a Huffman tree. Negative sampling samples a small set
of behaviors each time as the negative instances. Both methods are successfully applied in the IR
domain to efficiently generate the distributed representations of words (Mikolov et al. 2013b).

During the online recommendation phase, the model applies different recommendation strate-
gies based on the requested objective. If the target is to increase the click through rate, Behav-
ior2Vec recommends item whose corresponding output viewing embedding is closest to ei the
embedding of the current behavior, in terms of cosine similarity. On the other hand, if the tar-
get is to increase the order rate, Behavior2Vec recommends items whose corresponding output
purchasing embedding is closest. The recommendation formula is formalized as follows:

j = R (ei ) =
⎧⎪⎨⎪⎩

arg min∀k�i cos(e (I )
i ,p

(O )
k

) if the objective is maximize order rate

arg min∀k�i cos(e (I )
i ,v

(O )
k

) if the objective is maximize click through rate,
(5)

where the function cos() returns the cosine similarity between the two input vector parameters.

3.4 Time Complexity

Here, we discuss the time complexity of model training and online recommendation.

3.4.1 Model Training. The training process of Behavior2Vec model is based on the skip-gram
model, which uses the embedding of the current behavior on items to predict the surrounding
behaviors on the items. Like (Mikolov et al. 2013a), we use the hierarchical softmax and negative
sampling for faster computation. Thus, the time complexity isW (S + S log(BI )) ≈ S log(BI ), where
B is the number of behaviors (in this article, B = 2, since we only consider item clicking and pur-
chasing), I is the number of items,W is the size of the surrounding entries (usually much smaller
than BI and S), and S is the number of sessions. As a result, it takes only hours to train a model
with 1-month log as the input.

3.4.2 Online Recommendation. Given ei the embedding of the current behavior on an item,
we need to find the k closest embedding and make recommendation based on these embeddings.
However, it is challenging to locate the k closest embedding in real time. To bypass this issue,
we compute the k-nearest embedding for every embedding once a day, and store the information
in a relational database. Therefore, the online recommendation only involves of database lookup,
which is very efficient in practice. In fact, most recommender systems rely on similar techniques
for online recommendation, regardless of the training model.

4 EXPERIMENT

We measure the performance of Behavior2Vec in this section. First, we make recommendations
based on the Behavior2Vec generated embedding according to Equation (5). We compare the rec-
ommendation hit rate with several baselines based on several prediction tasks, as explained in

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 43. Publication date: April 2018.
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Table 1. The Information of the Training and the Test Datasets

ID Period # Sessions # Clicked Products # Unique Clicked Products

train Day1–Day 7 1,282,280 11,629,989 558,031
test-1 Day8 00:00:00–11:59:59 26,482 36,197 26,482
test-2 Day8 12:00:00–23:59:59 34,022 47,584 34,022
test-3 Day9 54,537 85,235 54,537

The numbers of the purchased and distinct purchased items are omitted to protect the business sensitive information.

Section 4.1.1. Next, we present case studies on the product analogy discovered based on the dis-
tributed representations of the behaviors.

4.1 Next Behavior Prediction

4.1.1 Evaluation Method. In this section, we report the performance of the following predic-
tion tasks, which are used to demonstrate different scenarios: Task 1: given the current viewing

item, what product will the user click (view) next? Task 2: given the current viewing product, what
product will the user purchase next? Task 3: given the item a user just bought, what will the user
click (view) next? Task 4: given the item a user just bought, what will the user buy next? We mea-
sured the correctness of several recommendation modules and utilized the correctness scores as
the proxy of the performance of each compared method. We measure the four tasks, because we
believe that some methods may have better performance only in certain scenarios. For example,
some recommendation modules may tend to recommend alternative products to the current brows-
ing item. This type of recommendation may receive a high click rate but not necessarily the order
rate.

Because a user can only have one action (i.e., viewing or purchasing an item in our study) at
a given time point, the common correctness measures, such as average precision, precision-at-
k , or mean average precision, may be inappropriate metrics. In addition, the EC website from
which we collected the logs shows the recommendation items by a row of items, which makes the
ranking-based measures (e.g., Discounted Cumulative Gain or Mean Reciprocal Rank) ill-suited.
As a result, we defined the average-hit-at-k as the evaluation metric. The metric hit-at-k returns 1
if the next clicked (or purchased) item appears in the top-k of the prediction list and 0 otherwise.
The average-hit-at-k is simply the average of the hit-at-k’s for each test case.

4.1.2 Experiment Data. We sampled sessions from the server log of seven continuous days
(Day1–Day7) to generate the training data. We compiled three datasets (test-1, test-2, and test-
3) for testing. These test datasets were sampled from the server log on Day8 (00:00:00–11:59:59),
Day8 (12:00:00–23:59:59), and Day9, respectively. Table 1 shows the information of the training
and the three test datasets. The number of the purchased items and the distinct number of the
purchased items are not shown to protect the business sensitive information.

4.1.3 Compared Baseline Methods. Here, we briefly introduce the compared baseline methods.
Note that we treat each session as a distinct user. In other words, if a user arrives at the website on
two different time points and the system regards the two arrivals as two different sessions, we treat
the two sessions as two different users. Thus, we use the term session and user interchangeably.

—Prod2Vec (Grbovic et al. 2015): The model learns the product embedding based on the
Word2Vec model by treating users’ clickstreams as the “sentences” and the products in the
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streams as the “words.” The model recommends the product j whose corresponding vector
is closest to the user’s current browsing product i . The window is set to 5, and the size of
the embedding is 300.

—Class Top Popular (ClassTP): We obtained the mapping of the products to the product cat-
egories that were manually organized by the employees of the EC website. Based on the
information, we computed the most popular items in each category. When a user is brows-
ing an item of a category, ClassTP recommends the 10 most popular items in this category.
Previous studies have shown that simple popularity-based recommendation, even without
class information, represents a strong baseline (Cremonesi et al. 2010; Jannach et al. 2015).
Including the class information, which indicates the content that may interest users, may
further boost the performance.

—Brand Class Top Popular (BrandClassTP): We observed that many users browse items of
the same or similar brands in a session. Based on this observation, we computed the most
popular items of each brand within the same category. BrandClassTP recognizes the brand
and the class of the current browsing item and recommends the most popular items of the
same brand within the category. Note that the products of the same brand may belong to
different categories. For example, the shoes and the shirts made by Nike may belong to
different categories.

—Association Rules (AR): We created the association rules between pairs of items based on
their co-purchasing frequency and their co-occurrence frequency. Due to the nature of the
algorithm, the generated number of rules is usually small. As a result, AR usually recom-
mends far less than 10 items, sometimes even recommends nothing.

—Association Rules Plus ClassTP (AR-ClassTP): If AR alone recommends 10 or more items,
AR-ClassTP returns the same recommendation list as AR. However, as explained above, AR
usually recommends far less than 10 items. In this case, we added ClassTP’s top recom-
mended items to the end of AR’s list to make the length of the recommendation list equals
10. This makes a fairer comparison.

—Item-based Collaborative Filtering on the Session-to-Item matrix (ICF-S2I): We created a
session-to-item (S2I) matrix M in which the entry mi j represents the number of times ses-
sion i visits the item j. We calculated the cosine distance between every pair of columns to
obtain the similarity scores between all pairs of products. When a user is browsing an item
x , ICF-S2I recommends the 10 most similar products to the target item x .

—Item-based Collaborative Filtering on Item-to-Item matrix (ICF-I2I): We created an item-to-
item (I2I) matrix N in which the entry ni j represents the number of times item i and item
j co-appear in a session. We calculated the cosine distance between every pair of rows to
obtain the similarity scores between all pairs of products. When a user is browsing an item
x , ICF-I2I recommends the 10 most similar products to the target item x .

—Non-negative Matrix Factorization on Session-to-Item matrix (NMF-S2I): We created a S2I
matrixM as in the method ICF-S2I. We performed non-negative MF onM with rankK = 300
based on a variant of the alternative-least-square optimization. As a result, each item is
eventually represented by a 300-dimensional dense vector. When a user is browsing an item
x , NMF-S2I recommends the 10 most similar items based on the cosine similarity scores
between the vector of the target item x and all the other items.

—Non-negative Matrix Factorization on Item-to-Item matrix (NMF-I2I): We created an I2I
matrix N as in the method ICF-I2I. We performed non-negative MF on N with rankK = 300
based on a variant of the alternative-least-square optimization. When a user is browsing an
item x , NMF-I2I recommends the 10 most similar items based on the cosine similarity scores
between the vectors of the target item x to all the other items.
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—Session-based RNN (S-RNN) (Hidasi et al. 2016): Like the Prod2Vec model, the S-RNN treats
each session as one sentence and each clicked item as one word, and apply the RNN model
to predict the next clicked item. As a result, this model does not need to compute the em-
bedding of each product. However, this property makes S-RNN difficult to discover the
relationship among products (which will be discussed in Section 4.2). We set the learning
rate to 0.001 and dropout rate 0.1 to train the model. The hit rate drops as we increase the
learning rate or the dropout rate.

—eALS (He et al. 2016): This method includes the unobserved clicks into the optimization
model and weights the items based on their popularity. The intuition is that users are more
likely to be aware of the popular items, and therefore if a popular item is never clicked, users
are more probable to be uninterested to the item. Specifically, ci , the variable that determines
product i is a true negative instance to a user, is determined by ci = c0 f

α
i /(
∑

j f
α
j ). We

set α the popularity exponent variable to 0.5, as suggested in He et al. (2016), and c0 the
overall weight of the missing data to 512, based on a small varification set. The embedding
size is set to 300, the same as the settings in the other baseline methods. We modified the
implementation provided by the authors to perform the experiment.2

—FPMC (Rendle et al. 2010): This method generates the personalized Markov Chain transition
graph between items based on the MF approach, because the observations to estimate the
transition graph are usually sparse. As in the other baselines, we set the embedding size to
300 for all users, items in the previous step, and items in the current step. We modified the
implementation from Li.3

We did not include the Recurrent Recommender Networks (RRN) (Wu et al. 2017) into the base-
lines. The RRN model is especially useful when an individual’s browsing log is recorded for a long
period of time, e.g., months to years. In our scenario, since we treat each “session” as one individ-
ual, the typical length is only minutes to hours long. For such a short period, the latent factors of
users and items are unlikely to change dramatically. As a result, the RRN model has no obvious
advantage.

4.1.4 Performance of Task 1. Here, we show the performance of the first prediction task intro-
duced in Section 4.1.1 — predicting the next click item given the current viewing item. To pro-
tect business sensitivity information, we report the relative-hit-at-k , which divides each method’s
average-hit-at-k by ICF-S2I’s average-hit-at-k .

Table 2 reports the result of the task 1 on the first test dataset. Prod2Vec, S-RNN, and FPMC
performs better in terms of relative-hit-at-k for k = 1, 2, . . . , 10. These models have similar perfor-
mances, probably because they train the models based on continuous item clicks. The popularity-
based methods (ClassTP and BrandClassTP), AR, and their combination (AR-ClassTP) yield similar
performance when k = 1, but the performance of AR is clearly worse than the others when k > 1.
This is because AR mostly recommends a few (much less than 10) items. The CF, MF, and their
variations (ICF-I2I, ICF-S2I, NMF-I2I, and NMF-S2I) are popular techniques in predicting the rat-
ing of a user to an object (e.g., a movie or a song). However, previous study has shown that such
techniques may not be a natural fit to the top-k recommendation task, because they focus on min-
imizing the error of the predicted ratings, which probably cannot be directly translated into the
improvement of the precision of the top-k prediction task (Cremonesi et al. 2010). This is consistent

2https://github.com/hexiangnan/sigir16-eals.
3https://github.com/khesui/FPMC.
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Table 2. The Relative-hit-at-k of Various Methods for the Task 1 (Predicting the Next Click Based

on the Just Clicked Item) on the Test Data 1

k 1 2 3 4 5 6 7 8 9 10

Behavior2Vec 2.582 2.323 2.161 2.204 1.984 2.028 1.905 2.101 2.007 2.008
Prod2Vec 2.607 2.392 2.286 2.237 2.217 2.179 2.129 2.115 2.101 2.097
ClassTP 1.668 1.597 1.624 1.659 1.690 1.700 1.700 1.717 1.727 1.749

BrandClassTP 2.088 1.985 1.989 1.972 1.975 1.968 1.950 1.974 1.977 1.994
AR 1.553 1.396 0.912 0.893 0.877 0.837 0.808 0.785 0.755 0.741

AR-ClassTP 1.836 1.767 1.756 1.748 1.767 1.760 1.763 1.788 1.794 1.827
ICF-I2I 1.001 1.013 1.066 1.012 1.021 1.033 0.921 1.031 1.092 0.987
ICF-S2I 1 1 1 1 1 1 1 1 1 1
NMF-I2I 1.001 0.984 0.959 0.963 1.030 0.967 1.015 1.034 1.043 0.949
NMF-S2I 0.923 0.973 0.984 0.993 0.939 1.004 0.905 0.887 0.878 0.954
S-RNN 2.586 2.393 2.277 2.258 2.225 2.188 2.150 2.109 2.083 2.105
eALS 1.027 1.029 1.100 1.026 1.051 1.055 1.044 1.113 1.206 1.011
FPMC 2.585 2.353 2.243 2.276 2.118 2.083 2.035 2.114 2.080 2.115

The highest score of each k is highlighted in bold.

Table 3. The Relative-hit-at-k of Various Methods for the Task 1 (Predicting the Next Click Based

on the Just Clicked Item) on the Test Data 2

k 1 2 3 4 5 6 7 8 9 10

Behavior2Vec 2.519 2.256 2.371 2.057 2.148 2.107 2.074 1.956 2.009 1.939
Prod2Vec 2.639 2.417 2.384 2.304 2.267 2.233 2.205 2.158 2.138 2.125

ClassTP 1.726 1.615 1.668 1.680 1.693 1.730 1.757 1.748 1.759 1.781
BrandClassTP 2.147 2.010 2.049 2.056 2.032 2.039 2.052 2.037 2.046 2.056

AR 1.650 1.457 1.371 1.293 1.210 1.144 1.094 1.043 0.998 0.967
AR-ClassTP 1.955 1.808 1.814 1.812 1.809 1.818 1.837 1.835 1.843 1.861

ICF-I2I 0.999 1.145 0.874 0.897 1.122 0.990 1.046 0.937 0.907 1.054
ICF-S2I 1 1 1 1 1 1 1 1 1 1
NMF-I2I 1.025 0.930 1.043 0.946 0.982 0.929 0.994 0.939 0.998 0.965
NMF-S2I 0.945 0.883 0.964 1.047 0.892 1.044 1.007 0.884 1.042 0.850
S-RNN 2.649 2.394 2.388 2.301 2.287 2.254 2.213 2.167 2.161 2.117
eALS 1.068 1.262 1.083 1.112 1.129 1.082 1.049 1.058 1.078 1.096
FPMC 2.570 2.390 2.337 2.267 2.172 2.227 2.185 2.140 2.182 2.100

The highest score of each k is highlighted in bold.

with our experiment result: these methods perform the worst compared to the other methods. The
eALS model performs slightly better than the MF-based approaches, probably because it assigns
weights to the unseen items based on popularity. Our proposed Behavior2Vec performs slightly
worse than the strong baselines Prod2Vec, S-RNN, and FPMC. This is probably because Behav-
ior2Vec tends to recommend the items the user may want to buy, but these items may not always
be the items that may attract users to click immediately. However, if the task is to predict the next
purchase item, as demonstrated later, Behavior2Vec tends to perform better.

We conducted the same experiment on the other two test datasets, as shown in Tables 3 and 4.
The results are consistent with the first test dataset.
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Table 4. The Relative-hit-at-k of Various Methods for the Task 1 (Predicting the Next Click Based

on the Just Clicked Item) on the Test Data 3

k 1 2 3 4 5 6 7 8 9 10

Behavior2Vec 2.477 2.320 2.273 2.264 2.229 2.113 2.135 2.066 2.100 2.093
Prod2Vec 2.569 2.431 2.386 2.330 2.290 2.265 2.239 2.223 2.190 2.165
ClassTP 1.766 1.749 1.785 1.787 1.794 1.807 1.821 1.839 1.842 1.853

BrandClassTP 2.322 2.185 2.194 2.187 2.169 2.169 2.185 2.189 2.186 2.180

AR 1.711 1.529 1.462 1.368 1.285 1.228 1.176 1.125 1.073 1.033
AR-ClassTP 2.025 1.939 1.965 1.957 1.951 1.962 1.968 1.975 1.971 1.981

ICF-I2I 1.086 1.118 1.063 1.106 1.138 1.005 1.035 0.974 1.089 0.933
ICF-S2I 1 1 1 1 1 1 1 1 1 1
NMF-I2I 0.925 0.937 0.904 1.023 0.904 1.043 0.923 0.935 1.050 0.963
NMF-S2I 0.873 0.862 0.869 0.927 1.026 1.047 0.987 0.980 0.851 0.893
S-RNN 2.557 2.425 2.383 2.321 2.287 2.282 2.247 2.246 2.205 2.175
eALS 1.124 1.174 1.141 1.106 1.219 1.068 1.045 1.003 1.126 1.019
FPMC 2.532 2.386 2.403 2.245 2.223 2.213 2.231 2.187 2.169 2.115

The highest score of each k is highlighted in bold.

Table 5. The Relative-hit-at-k of Various Methods for the Task 2 (Predicting the Next Purchasing

Item Based on the Just Clicked Item) on the Test Data 3

k 1 2 3 4 5 6 7 8 9 10

Behavior2Vec 3.532 3.583 3.541 3.581 3.731 3.818 3.699 3.686 3.601 3.527

Prod2Vec 3.331 3.362 3.398 3.305 3.374 3.369 3.347 3.344 3.247 3.221
ClassTP 2.359 2.362 2.345 2.280 2.278 2.250 2.187 2.178 2.080 2.060

BrandClassTP 2.369 2.365 2.350 2.285 2.282 2.254 2.196 2.187 2.085 2.066
AR 2.324 2.322 2.287 2.213 2.234 2.206 2.123 2.100 2.019 1.974

AR-ClassTP 3.214 3.210 3.177 3.079 3.101 3.105 3.023 3.000 2.853 2.792
ICF-I2I 0.745 0.754 0.742 0.720 0.715 0.712 0.688 0.683 0.654 0.650
ICF-S2I 1 1 1 1 1 1 1 1 1 1
NMF-I2I 0.861 0.869 0.859 0.848 0.847 0.844 0.835 0.832 0.826 0.822
NMF-S2I 0.863 0.873 0.870 0.849 0.844 0.855 0.836 0.842 0.820 0.822
S-RNN 3.318 3.337 3.399 3.310 3.373 3.362 3.314 3.324 3.262 3.229
eALS 1.105 1.065 1.074 1.137 1.001 1.004 0.993 1.138 1.140 1.160
FPMC 3.361 3.365 3.325 3.294 3.226 3.337 3.213 3.382 3.214 3.141

The highest score of each k is highlighted in bold.

4.1.5 Performance of Task 2. This section shows the performance of the second prediction
task— predicting the next purchasing item given the user’s current viewing item. We show only
the relative-hit-at-k of the test data 3, since the results on all the three datasets are very similar.

As shown in Table 5, Behavior2Vec outperforms all the compared baselines, including the strong
baselines — Prod2Vec, the other embedding-based method, S-RNN, a neural network-based recom-
mendation strategy, and FPMC, a model to generate personalized transition graph. We believe this
is because Behavior2Vec separates the viewing embedding and the purchasing embedding of every
product and make recommendations based on the distance between the current behavior embed-
ding and every item’s purchasing embedding. As a result, Behavior2Vec tends to recommend the
items the users may purchase next. On the other hand, since Prod2Vec, S-RNN, and FPMC do not
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Table 6. The Relative-hit-at-k of Various Methods for the Task 3 (Predicting the Next Clicking

Item Based on the Just Purchased Item) on the Test Data 3

k 1 2 3 4 5 6 7 8 9 10

Behavior2Vec 4.532 4.693 5.124 5.022 5.020 5.309 5.571 5.366 5.201 5.210

Prod2Vec 4.343 4.258 4.359 4.702 4.757 4.792 4.938 5.030 5.010 4.680
ClassTP 3.322 3.391 3.588 3.798 3.571 3.686 3.889 4.184 3.833 3.797

BrandClassTP 3.602 3.767 3.977 4.085 4.191 3.948 4.158 4.266 4.240 4.096
AR 3.795 4.080 4.249 4.012 4.000 3.985 3.966 3.847 3.715 3.244

AR-ClassTP 3.995 4.230 4.379 4.207 4.403 4.346 4.541 4.771 4.773 4.352
ICF-I2I 1.110 1.102 1.223 1.220 1.221 1.246 1.330 1.295 1.343 1.225
ICF-S2I 1 1 1 1 1 1 1 1 1 1
NMF-I2I 0.966 1.120 1.121 1.093 1.154 1.207 1.255 1.291 1.251 1.146
NMF-S2I 1.025 1.028 1.068 1.130 1.159 1.168 1.168 1.203 1.182 1.145
S-RNN 4.253 4.151 4.288 4.705 4.775 4.764 4.940 4.970 5.054 4.715
eALS 1.173 1.158 1.288 1.328 1.222 1.249 1.321 1.442 1.487 1.330
FPMC 4.436 4.267 4.135 4.668 4.312 4.695 4.514 5.150 4.906 4.455

The highest score of each k is highlighted in bold.

differentiate the purchasing and the clicking behaviors, different behaviors, which may be valuable
clues in certain scenarios, do not play a role in the Prod2Vec model, S-RNN model, and the FPMC
model.

The ranking of the performance of all the other baseline methods is similar to the results of
Task 1. Overall, the popularity-based methods and the AR-based methods perform better than the
CF- and MF-based methods.

4.1.6 Performance of Task 3. This section shows the result of task 3 — predicting the next click-
ing item given the items a user just bought.

Table 6 shows the relative-hit-at-k of various methods on the test dataset 3. Behavior2Vec out-
performs all the compared baselines. As discussed in the last section, since Behavior2Vec considers
both the viewing embedding and the purchasing embedding, it is reasonable that Behavior2Vec
performs better than the other embedding method Prod2Vec, which recommends similar items
without differentiating the viewing and purchasing behaviors. Probably by the same reason, Be-
havior2Vec performs better than the other strong baselines — the S-RNN model and the FPMC
model.

Essentially, “similarity” is an ambiguous concept: two items could be similar because they are
alternative to each other, one is the affiliated product of the other, or even some other reasons. As a
result, we should probably recommend different types of “similar items” before and after purchas-
ing an item. For example, after purchasing a camera body, a user is probably more interested in
browsing the camera lenses that fit the body, but less likely to buy another camera body. However,
before the purchase, it is reasonable to recommend another body when a user is browsing a cam-
era body. Behavior2Vec can probably make better recommendation in these cases, but Prod2Vec,
S-RNN, FPMC, and other baseline approaches may have difficulties in discriminating them.

We show only the results on test-3 because the experiment results on all the three test datasets
are similar.

4.1.7 Performance of Task 4. Here, we show the experimental results of the task 4: given the
item a user just bought, what will the user buy next?
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Table 7. The Relative-hit-at-k of Various Methods for the Task 4 (Predicting the Next Purchasing

Item Based on the Just Purchased Item) on the Test Data 3

k 1 2 3 4 5 6 7 8 9 10

Behavior2Vec 4.455 4.682 4.556 4.694 5.062 5.253 4.732 4.685 4.441 4.707

Prod2Vec 3.858 4.132 4.336 4.200 4.542 4.497 4.159 4.581 4.311 4.243
ClassTP 3.055 3.401 3.300 3.158 3.337 3.559 3.270 3.349 3.250 3.637

BrandClassTP 3.873 3.677 3.984 3.954 3.580 3.185 3.771 3.734 3.491 3.286
AR 3.416 3.613 3.504 3.369 3.519 3.851 3.559 3.222 3.111 3.008

AR-ClassTP 3.748 3.861 4.137 3.704 4.090 3.978 4.276 4.407 4.296 4.053
ICF-I2I 1.028 1.108 1.074 1.124 1.056 1.099 1.026 1.054 1.260 1
ICF-S2I 1 1 1 1 1 1 1 1 1 1
NMF-I2I 0.859 0.944 1.002 1.037 1.027 1.032 1.034 1.075 1.027 1.101
NMF-S2I 0.939 0.977 0.948 1.003 1.009 1.019 1.026 1.025 1.072 1.022
S-RNN 3.737 3.861 3.913 3.981 4.010 4.118 4.228 4.163 3.998 3.826
eALS 1.157 1.103 1.164 1.158 1.175 1.129 1.290 1.214 1.271 1.173
FPMC 4.034 3.882 3.716 4.180 4.151 4.252 3.788 3.858 4.242 3.783

The highest score of each k is highlighted in bold.

Table 7 shows the relative-hit-at-k of various methods on the test data 3. Like the previous
results, Behavior2Vec outperforms all the baseline methods. We believe this is because Behav-
ior2Vec returns the closest purchasing embedding, which represents the hidden vector of buying a
certain product. As a result, Behavior2Vec is more likely to correctly predict the next purchasing
item.

The rankings of the other methods are very close to the previous tasks. In general, Prod2Vec,
S-RNN, and FPMC perform better among the baseline methods, followed by the popularity-based
methods (ClassTP and BrandClassTP) and the AR-based methods (AR and ARClassTP), and the
CF- and MF-based methods are even weaker.

Again, we show only the results on the dataset test-3, since all three test datasets yield similar
results.

4.2 Product Analogy

This section presents case studies of the product analogy discovered by Behavior2Vec.

4.2.1 Motivation of Product Analogy Inference. A user who is currently browsing a product p1

may click the next product p2 due to different reasons. We list three possible situations below.
First, the product p1 and the product p2 could be a substitution of each other (e.g., p1 and p2 are
two cell phones made by different manufacturers). Second, the product p2 could be an auxiliary
product of the product p1 (e.g., p1 is a camera and p2 is a tripod). Third, although p1 or p2 alone is
useful, together they might be even more convenient (e.g., p1 is a desk and p2 is a chair). Although
most recommendation algorithms can measure the distance between two products, they typically
cannot identify how two products are related.

Since Word2Vec was shown to discover the semantic relationship among words (e.g., Kinд :
Queen ≈ Man : Woman), we are interested to see whether we can discover the hidden relation-
ship among the products based on the distributed representations of the products and the be-
haviors on these products. Among the baseline methods introduced in Section 4.1.3, only the
Prod2Vec model generates the embedding. Thus, it is the only baseline approach we compared
here.
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4.2.2 Product Embedding Generating Based on Behavior2Vec. In Section 3, we introduced the

methodology to generate the (output) viewing embedding v (O )
i and the (output) purchasing em-

bedding p (O )
i of every product i . However, since we want to compare the relationship between

products, we need to generate the embedding of every product instead of every behavior. To do

so, we concatenate v (O )
i and p (O )

i to form a new vector c (O )
i (called the concatenated behavior em-

bedding) and treat such a vector as the embedding of the product i

4.2.3 Experiment Data. We generated the distributed representations of the products based on
a month-long log. We only report a few case studies because, unlike word analogy that has a
manually compiled ground truth dataset for evaluation (Mikolov et al. 2013b), we cannot find a
large dataset as the ground truth to evaluate the product analogy so far.

4.2.4 Result 1. Table 8 shows several interesting product analogies inferred based on the em-
bedding. Overall, Behavior2Vec is very good at discovering the branding relationship, as shown in
the cases 1, 2, 3, 5, 6, and 8. This is probably because users often browse products of the same or
similar brands in a session, so we have enough training data to capture the brand relationship. Be-
havior2Vec also captures the substitution relationship (cases 2 and 5), auxiliary relationship (cases 1
and 3) and several other relationships among the products based on the concatenated behavior em-
bedding. Sometimes, Behavior2Vec makes mistakes, as shown in the cases 4, 6, and 8. However,
these cases still correctly capture certain relationship among the products.

4.2.5 Result 2. To compare the product embedding generated by Prod2Vec and the concate-
nated behavior embedding generated by Behavior2Vec, we visualize the embedding from the
selected camera body to the corresponding kit lens from five camera brands (Canon, Nikon,

Panasonic, Sony, and Pentax). We set the dimensionality ofv (O )
i ,p (O )

i , and Prod2Vec’s embedding to

300-dimensional. Thus, the dimensionality of the concatenated behavior embedding c (O )
i becomes

600. We mapped the original high-dimensional product embedding vectors into 2-dimensional vec-
tors by PCA. Figures 2 and 3 show the projected vector from camera body to the kit lens of the five
brands for the concatenated behavior embedding and the Prod2Vec’s embedding, respectively. It
appears that, both embedding-based methods can, at least partially, capture the relationship be-
tween a camera body and a camera lens, since the vectors from the camera bodies to the kit lenses
are similar on the five brands. However, our proposed Behavior2Vec appears to better capture such
a relationship, compared to Prod2Vec.

5 DISCUSSION AND FUTURE WORK

In this article, we proposed Behavior2Vec — a model to generate the distributed representation (we
called behavior embedding) for users’ online behaviors on the products. Based on Behavior2Vec,
we calculated the distance between the behaviors based on the cosine similarity between the em-
bedding vectors. We found that, in nearly all our test datasets and parameter settings, Behavior2Vec
better predicts users’ next purchasing product, compared to several popular recommendation ap-
proaches. However, when the task is to predict the next clicking (viewing) product based on the
current viewing product, strong baselines, such as Prod2Vec, S-RNN, and FPMC, perform slightly
better. We believe this is because the Behavior2Vec model differentiates the embedding of viewing

a product i and purchasing a product i , which are not considered in the Prod2Vec model, the S-RNN
model, and the FPMC model.

Perhaps more importantly, we found that the product embedding (generated by either Prod2Vec
or our Behavior2Vec) captures the hidden relationship between the products. The product rela-
tionship may help recommend products using different strategies under different scenarios. For
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Table 8. A List of Discovered Interesting Product Analogy

No. Analogy Explanation

1 EOS 700D (a Canon camera): EF 24-105mm
f/3.5-5.6 IS STM (a Canon lens) ≈ D7200 (a
Nikon camera) : AF-S NIKKOR 20mm
f/1.8G ED (a Nikon lens)

This reveals the auxiliary relationship
and the brand relationship

2 Brand’s Essence of chicken drink (6 jars):
Brand’s Essence of chicken drink (20 jars) ≈
May Flower’s toilet paper (12 packs) : May
Flower’s toilet paper (24 packs)

This reveals the package size, the brand,
and the substitution relationship

3 Brita kettle: Brita filter cartridge ≈ Toray
faucet filter : Toray filter cartridge

This reveals the auxiliary relationship
and the brand relationship

4 Zenfone 2: ZenPad 8.0 ≈ Galaxy phone J7 :
ZenPad 8.0 Wifi

This is a mixture of success and failure. It
reveals the relationship between a mobile
phone and a tablet PC. However, it fails to
capture the brand relationship (ASUS and
Samsung)

5 ASUS AC1200: ASUS AC66U ≈ DLink
AC750 : DLink DIR-619R

This reveals the substitution relationship
and the brand relationship. All the four
products are wireless routers

6 AB’s men shirt: AB’s men pants ≈ Fiore’s
women top 1 : Fiore’s women top 2

This reveals the gender relationship and
the brand relationship, but it fails to
capture the relationship between a shirt
and a pair of pants

7 Nikon P610 (a camera): TBC-405 (a camera
case) ≈ LJ’s grip wrench : LJ’s spring
compressor with a case

This partially captures that the latter
should be a container of the former
product

8 Lanew’s men casual shoes: Lanew’s men
leather shoes ≈Mom’s women casual
shoes: Mom’s women sport shoes

It captures the gender and the brand
relationship, but fails to capture the
relationship between casual and formal

We translated the product names from Chinese to English and added a few explanations. We skipped the detailed descrip-

tion of the products.

example, we can choose to recommend substitute products before any purchase happens and rec-
ommend the affiliated products after any purchase. This is very different from the traditional rec-
ommendation strategies that typically recommend the most similar products to the current brows-
ing product. Initial studies show that Behavior2Vec better captures the relationship between prod-
ucts, compared to the Prod2Vec model. This is probably because Behavior2Vec separates different
behaviors during the training process and concatenates all the behavior embeddings on a given
product as this product’s embedding. As a result, the concatenated embedding may better sep-
arate different types of similar products, e.g., the alternative products or the affiliated products.
The S-RNN model although can be modified to differentiate different behaviors during training,
the output contains no product embedding. As a result, it is not straightforward to generate the
product analogy by the S-RNN model.
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Fig. 2. The distributed representations generated by Behavior2Vec. Compared with the one generated by

Prod2Vec (as shown in Figure 3), this seems to better capture the relationship between a camera body and

the corresponding kit lens. The figure shows two-dimensional vectors (projected by PCA) from the camera

body to the camera lens of five different brands. The original concatenated behavior embedding vectors are

600-dimensional (by concatenating the 300-dimensional viewing embedding v
(O )
i

and the 300-dimensional

purchasing embedding p
(O )
i

).

Fig. 3. The distributed representations generated by Prod2Vec. The figure shows two-dimensional vectors

(projected by PCA) from the camera body to the camera lens of the five different brands. The original product

embedding vectors are 300-dimensional.

The current model recommends the product whose corresponding behavior embedding is most
close to the current behavior. The assumption behind such a mechanism is that the distributed
representation of the current behavior is a good representation of a user’s intension. However, if
we can discover the distributed representation of several recent behaviors or the entire behaviors
in the session, we can probably better predict the user’s intension. This is also one of the research
directions we are interested to continue.
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