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ABSTRACT12

We introduce TTSwing, a novel dataset designed to analyze table tennis swings. The dataset was collected using custom
racket grips embedded with 9-axis motion sensors, which provide precise kinematic data on swings. In addition, we provide
anonymized demographic data for players. The dataset was collected from 93 participants, all of whom are elite table tennis
players from Taiwan. We detail the data collection and annotation procedures. These data are expected to improve the
understanding of player performance and facilitate the development of tailored training programs and biomechanical analyses,
offering practical benefits to both athletes and coaches. TTSwing has excellent potential to facilitate innovative research in
table tennis analysis and is a valuable resource for the scientific community. We release the dataset and the experimental
codes for reproducibility.
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Background & Summary14

Since its inclusion as an Olympic sport in 1988, table tennis has gained widespread popularity. It is enjoyed around the world15

as a competitive sport and a common recreational pastime among players of all levels and ages. Meanwhile, with advances in16

sensor technologies and machine learning algorithms, there is increasing interest in using data-driven approaches to analyze17

sports, including table tennis. Such approaches provide valuable insight into player performance and inform training programs18

for players.19

This paper introduces the TTSwing (Table Tennis Swing) dataset, a novel dataset that includes swing information collected20

by the 9-axis sensors embedded in the grips of customized paddles. The swing here refers to the powerful forehand smash21

movement. Since the sensor is embedded in the handler of a racket, perhaps a more precise term for swing information is racket22

kinematics. We use these two terms interchangeably in the following. TTSwing dataset accurately details racket kinematics,23

offering critical insights into player performance, shot quality, and technical differentiation among skill levels1–3. In addition24

to swing information, the dataset includes anonymized demographic details of players, such as age, gender, height, weight,25

racket-holding hand, and years of experience in the game. Combined with kinematic data, these demographic attributes allow26

for an in-depth analysis of the interplay between player characteristics and performance metrics, enabling the development of27

customized training programs and biomechanical studies. This comprehensive dataset provides a valuable resource for studying28

table tennis swings and can be used to develop new techniques and approaches to improve table tennis skills.29

Previous studies have taken advantage of advances in sensor technology to collect detailed information on athletes or30

user movements4–6. For example, researchers attached a DELSYS sensor to ten points in the right arm to collect muscle31

information7. They also analyzed the differences between professional and amateur players when stroking. A follow-up paper32

expanded the collected data by placing a hang3.0 sensor in nine different areas, e.g., hands, limbs, and waists8. The authors33

classified motions according to acceleration and angular velocity and used the results to improve the stroke posture of the34

players. Some studies have placed the smart device on the wrist of the player to collect acceleration and angular velocity data35

during stroke9–11. However, using excessive portable devices may make player movements less natural and may indirectly36

impact the player’s performance. Another work embedded sensors in the grip of the racket12 and predicted the spin of table37

tennis and stroke type13, 14. Compared to other collection methods, embedding sensors into the grip reduces the burden on the38



player and makes data collection easier. In addition, the embedded sensor in the grip captures the racket movement, allowing39

the detection of even subtle changes in racket movement. In our paper, we have chosen to utilize the last method for data40

collection. However, previous studies only collected swing information from a limited number of players, typically ranging41

from a few to a dozen12–14. In contrast, our dataset is a unique resource for future research, as we collected and analyzed42

information from nearly 100 elite players, providing a much larger sample size than in previous experiments.43

In summary, our work has the following contributions.44

• We present a new dataset, TTSwing, that captures professional table tennis players’ swings (racket kinematics) along45

with anonymized demographic information of players. We describe the collection and annotation process. To our46

knowledge, this is the largest open dataset for professional players’ swing information with their anonymized demographic47

information12–14.48

• The dataset provides a high-resolution record of racket movement, enabling future research in table tennis analytics,49

biomechanics, and player performance assessment. By offering structured and well-annotated swing data, TTSwing50

can serve as a valuable resource for studies on skill evaluation, training optimization, and data-driven sports science51

applications.52

• To support reproducibility, we openly release the dataset together with structured documentation detailing the data53

attributes, the collection process, and potential use cases. This dataset lays a foundation for future research in table tennis54

swing analysis and broader applications in sports technology.55

Methods56

Ethics Approval and Consent to Participate57

This work is approved by the Institutional Review Board of Jen-Ai Hospital in Dali, Taichung, Taiwan, under approval number58

202200001B0. All participants signed an agreement form stating that the data obtained from the experiment can be published59

in academic journals, with an ID that replaces their names.60

Challenges of Collecting Swing Data61

Collecting data on table tennis swings presents a variety of challenges. Commonly used methods, such as video recording or62

attaching sensors to the human body, have limitations. Video recording requires a fixed camera. It can be challenging to replicate63

the same environmental setup from one place to another, making it difficult to collect accurate data in different environments.64

Attaching sensors to the body using smartwatches, smartphones, or other sensors may influence players’ movements, creating65

interfering factors in the analysis. Embedding sensors into the equipment, such as the paddle, is a better option. However,66

previous studies that used this approach collected only data from a few players, typically no more than 2012–14. In addition, a67

significant workforce is required to split the continuous signals into stroke-based data.68

Given these limitations, we develop a new method that addresses the challenges of collecting swing data from table tennis.69

We embed sensors directly into the racket to collect data from more than 90 professional players, generating a dataset of70

over 90,000 strokes. Our approach allows for accurately collecting stroke information without significantly affecting players’71

performance. Additionally, we have developed an automated method to split the collected continuous waveform data into each72

stroking data, making data processing more efficient. By collecting data from many players, our method provides a more73

comprehensive understanding of the mechanics and nuances of table tennis swings. Our approach overcomes the limitations of74

previous studies, which only collected data from a few players. The resulting dataset opens up new possibilities for research75

and development in the field, allowing for the creation of more advanced applications and complex models.76

Hardware77

Figure 1 gives an overview of the entire system. Motion sensors are embedded in racket grips to collect data. We use the78

shakehand grip style racket as it is more prevalent among players. The data collected are transferred to the RF wireless receiver,79

which transfers the information to a computer through a USB port.80

Figure 2 shows how we embed the hardware in the table tennis racket. The embedded components include an inertial81

measurement unit (ICM-20948), a module for radio frequency (RF) wireless transmission (E01-ML01SP), and affiliated82

components such as the button and the RGB LED for simple I/O communications, as shown in Figure 3. A lithium battery83

powers the system, and a TPS2546 USB charging port is connected to a 5V DC external power supply to maintain the battery’s84

power. Eventually, the embedded racket weighs approximately 190 grams, which falls within the weight range of a regular85

racket.86

The motion sensor, ICM-20948, is critical to collecting swing data. The sensor integrates a 3-axis accelerometer, a 3-axis87

gyroscope, and a 3-axis compass, forming a 9-axis sensor that can effectively measure 3-axis acceleration, 3-axis angular88
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velocity, and 3-axis magnetic field data. The three axes are defined according to Figure 4: the positive x-axis is to the right, the89

positive y-axis is forward, and the positive z-axis is perpendicular to the red side of the racket.90

The motion sensors embedded in the racket grips are configured with a sampling rate of 80 Hz, ensuring sufficient temporal91

resolution to capture detailed kinematic data. Calibration is performed using a standard vibration exciter model 394C06 from92

PCB Piezotronics, ensuring the accuracy and reliability of the collected measurements.93

Swing Data Collection94

We invited 93 Taiwanese players from Group A to participate in the data collection process. The players in Group A are elite95

players who have majored in physical education or have won medals in important competitions. Participants were asked to96

perform at least one of three different swing modes using the proposed racket. The three modes include swing in the air, full97

power stroke, and stable hitting. Each mode requires the participants to swing the racket 50 times continuously to generate a98

complete set of waveforms. In the full power stroke mode, the serving machine sets three ball speeds for players to hit.99

Split the Complete Waveform Set into Separated Stroke Waveforms100

This section details the methodology for dividing a raw waveform into stroke-based waveforms. Before diving into the specifics,101

we summarize the basic approach: the segmentation method involves integrating multi-axis signals into a single waveform,102

normalizing it to remove inconsistencies and noise, and detecting peaks and troughs to isolate individual strokes. This approach,103

based on a combination of trend removal and peak detection, does not follow a prenamed standard but adopts principles from104

signal processing tailored to this dataset. Table 1 shows the pseudocode of the split process. We describe the details in the105

following.106

As mentioned above, each participant in the study swung the racket 50 times continuously, resulting in a complete set of107

waveforms. For further analysis, we want to divide each complete waveform set into 50 separate stroke waveforms. However,108

this proved challenging, as different strokes exhibit different strengths and trajectories, generating unique waveforms. Figure 5a109

illustrates a portion of a complete waveform set comprising ten consecutive strokes, each stroke waveform showing a similar110

but distinct shape.111

First, we integrate the six waveforms from the accelerometer and gyroscope into a single f (t) by summing the absolute112

values of these waves, as shown by Equation 1.113

f (t) = |AX (t)|+ |AY (t)|+ |AZ(t)|+ |GX (t)|+ |GY (t)|+ |GZ(t)|, (1)

where AX (t), AY (t), AZ(t) are the 3-axis values from accelerometer at time t, GX (t), GY (t), GZ(t) are the values from gyroscope114

at t.115

We call the outputted waveform the integrated waveform. Figure 5b displays an example of the integrated waveform.116

We normalize the integrated waveform as follows. First, we remove the trend from the integrated waveform to remove117

the inconsistencies of each stroke from the same player. Next, we apply a low-pass filter provided by ICM-20948 to remove118

high-frequency noise. Finally, we scale the waveform to be within the range of 0 to 1. These steps help to speed up the peak119

detection process in the subsequent steps. Figure 5c shows an example of the normalized waveform.120

We segment the normalized waveform by stroke based on the following steps. We first plot a horizontal line y = 1, which121

interacts with the peak of the entire normalized waveform. Since the number of swings is known, we gradually move the122

horizontal line downward until the number of intersection points equals twice the number of swings. For example, in Figure 5d,123

the number of known stroking features is 10, and the search is stopped when 20 intersection points are found. The peak of each124

stroke is expected to be within two neighboring intersections.125

Based on the identified peaks, we further search for the nearest troughs to the left and right. These two troughs are split126

points for separating a complete stroke waveform. Figure 5e shows the two troughs found for each wave, and Figure 6 shows127

the 10 segmentation results.128

Data Records129

The dataset is available at Dryad15. This section introduces the released features and data statistics.130

Overview of the Released Data131

The data released includes swing and personal features integrated into a tabular (CSV) format file. Table 2 shows the column132

headings.133
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Released Swing Features134

Table 3 details the three types of features derived from the waveforms. The first type includes the mean, variance, and root135

mean square of the accelerations and angular velocities along the three axes (i.e., AX (t), AY (t), AZ(t), GX (t), GY (t), GZ(t)),136

which result in 18 features. The second type contains the mean, maximum value, minimum value, skewness, and kurtosis of the137

overall acceleration A(t) and angular velocity G(t), which generates ten features. Finally, we apply the Fourier transform to the138

acceleration and angular velocity waveforms and further derive the spectral density values and spectral entropy values for the139

acceleration and angular velocity, resulting in six features.140

By converting the continuous waveform signals into a finite number of features, it should be more convenient to apply141

various machine learning and deep learning models for further analyses.142

The unit of the accelerations (e.g., AX (t), AY (t), AZ(t)) is LSB/G (least significant bit per unit of G-force). By multiplying143

this value by 2/32768, the original G value can be obtained. The unit of angular velocities (e.g., GX (t), GY (t), and GZ(t)) is144

LSB/deg/s (least significant bit per unit of angular velocity). By multiplying this value by 250/32768, the original DPS (degree145

per second) can be obtained.146

Released Personal Features147

We provide anonymized personal information for each player, including gender, age, height, weight, handedness, racket-holding148

hand, and years of experience. These demographic details can be used for group comparisons, such as examining waveform149

characteristics across different groups of players based on factors such as gender, dominant hand, or skill level. Additionally, to150

prevent attackers from recognizing a player’s identity from unique numerical features, we categorized each numerical value151

into one of three labels – “low”, “medium”, or “high” – according to the feature’s distribution.152

Data Statistics153

We recruited 93 players, comprising 53 males and 40 females, and 78 are right-handed while 15 are left-handed. The statistical154

summary for other numerical features is listed in Table 4.155

Based on the swings of the 93 players, we generate 97,350 records: 7,500 of them are mode 0 (swing in the air); 73,850 of156

them are mode 1(full power stroke); 16,000 of them are mode 2 (stable hitting).157

Technical Validation158

The TTSwing dataset was collected under controlled conditions to ensure the precision and reliability of the recorded data. The159

embedded 9-axis motion sensors were pre-calibrated, ensuring precise accelerometer, gyroscope, and magnetometer readings.160

Furthermore, real-time wireless transmission of swing data to a laptop helped minimize possible data loss or corruption.161

Demographic attributes such as gender, age, height, weight, and racket-holding hand were self-reported by participants,162

with verification when possible, such as verification from coaches or retired athletes. Since these attributes are inherently163

factual and do not involve subjective measurement, they can be considered ground truth within the dataset.164

Potential Sources of Error in Data Collection165

Several potential sources of error could affect the data collection process. First, variations in sensor calibration could introduce166

inconsistencies in the measurements. Although embedded sensors were calibrated before data collection, slight drifts in167

sensitivity or accuracy may occur over time. Second, placement of the sensor in the racket grip, while designed to minimize168

interference, can result in slight deviations due to minor changes during long-term use or repetitive impacts. Third, while efforts169

were made to automate waveform segmentation, algorithmic errors during stroke identification may occasionally misclassify170

strokes or omit key features, particularly for players with unconventional playing styles.171

Usage Notes172

We conduct experiments based on Python version 3.10. Packages and their tested versions are listed in Table 5.173

Once the code is downloaded from the repository, the users can use pip install -r requirements.txt to174

reproduce the experimental environment. To run the code, users can change the directory to the src folder and run the Python175

scripts in the folder to reproduce the results.176

Code177

The code and data are available on Dryad at https://datadryad.org/stash/dataset/doi:10.5061/dryad.0zpc8677f15.178
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Laptop RF Wireless 
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Embedded Motion 
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Embedded Motion 
Measurement 
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Data transfer 
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Figure 1. An overview of the entire system. The location of the sensor on the paddle is shown in Figure 2.

Figure 2. Embedding detection sensors and communication modules inside the paddle of a racket.

Table 1. Waveform Split Algorithm

Step Description
1 Compute the integrated waveform using Equation 1.
2 Normalize the integrated waveform:

a. Calculate the trend line by the combined signal.
b. Subtract the trend line from the combined signal.
c. Apply a low-pass filter to cutoff high frequencies.
d. Scale the signals to the range [0,1].

3 Segment the waveform:
a. While the current number of intersection points ×2 is less than the total number of strokes, move down
the horizontal line.
b. Search for troughs to the right and left.

4 Split the original waveform by the troughs.
5 Return the waveform for each stroke.
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M032SG8AE

Wireless module: 
E01-ML01SP

SPI

9-axis Motion 
Tracking device: 

ICM-20948

I2C

button

GPIO

LED

GPIO

Controller

Voltage 

Regulators: 
AP2112

Li Battery

VBat

USB Charging 

Port Controller: 
TPS2546

Charge

Power

3.3V

Table Tennis Racket

Wireless 
transfer

USB port

Figure 3. Hardware architecture of the sensor in the paddle of a racket.
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Figure 4. Definitions of the three axes.
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Figure 5. An example of finding the cutting points of the waveforms
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a. The 1st segmented waveform b. The 2nd segmented waveform

c. The 3rd segmented waveform d. The 4th segmented waveform

e. The 5th segmented waveform f. The 6th segmented waveform

g. The 7th segmented waveform h. The 8th segmented waveform

i. The 9th segmented waveform j. The 10th segmented waveform

Figure 6. Samples of the segmented waveforms.
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Field Name Description

id Unique ID of the player
date Swing test date
testmode Represents three different tests, including ’air swing’ (mode 0), ’aerobic swing’ (mode 1), and

’full-force swing’ (mode 2)
teststage Represents three different ball speeds 1, 2, or 3. teststage is used only when testmode=1

(i.e., ’aerobic swing’). When testmode is 0 or 2, the value of teststage is 0.
fileindex Represents the nth test performed by the same participant under the same mode and stage

conditions.
count The nth swing/stroke of a test
ax_mean Mean of X-axis acceleration (unit: LSB/G)
ay_mean Mean of Y-axis acceleration (unit: LSB/G)
az_mean Mean of Z-axis acceleration (unit: LSB/G)
gx_mean Mean of X-axis angular velocity (unit: LSB/deg/s)
gy_mean Mean of Y-axis angular velocity (unit: LSB/deg/s)
gz_mean Mean of Z-axis angular velocity (unit: LSB/deg/s)
ax_var Variance of X-axis acceleration (unit: the square of LSB/G)
ay_var Variance of Y-axis acceleration (unit: the square of LSB/G)
az_var Variance of Z-axis acceleration (unit: the square of LSB/G)
gx_var Variance of X-axis angular velocity (unit: the square of LSB/deg/s)
gy_var Variance of Y-axis angular velocity (unit: the square of LSB/deg/s)
gz_var Variance of Z-axis angular velocity (unit: the square of LSB/deg/s)
ax_rms Root mean square of X-axis acceleration (unit: LSB/G)
ay_rms Root mean square of Y-axis acceleration (unit: LSB/G)
az_rms Root mean square of Z-axis acceleration (unit: LSB/G)
gx_rms Root mean square of X-axis angular velocity (unit: LSB/deg/s)
gy_rms Root mean square of Y-axis angular velocity (unit: LSB/deg/s)
gz_rms Root mean square of Z-axis angular velocity (unit: LSB/deg/s)
a_max Maximum acceleration of a swing (unit: LSB/G)
a_mean Mean acceleration of a swing (unit: LSB/G)
a_min Minimum acceleration of a swing (unit: LSB/G)
g_max Maximum angular velocity of a swing (unit: LSB/deg/s)
g_mean Mean angular velocity of a swing (unit: LSB/deg/s)
g_min Minimum angular velocity of a swing (unit: LSB/deg/s)
a_fft Fast Fourier transform of acceleration (unit: LSB/G)
g_fft Fast Fourier transform of angular velocity (unit: LSB/deg/s)
a_psd Power spectral density of acceleration (unit: (LSB/G)2/Hz)
g_psd Power spectral density of angular velocity (unit: (LSB/deg/s)2/Hz)
a_kurt Kurtosis of acceleration (no unit)
g_kurt Kurtosis of angular velocity (no unit)
a_skewn Skewness of acceleration (no unit)
g_skewn Skewness of angular velocity (no unit)
a_entropy Spectral entropy of acceleration (no unit)
g_entropy Spectral entropy of angular velocity (no unit)
gender Player’s gender: 1 for males and 0 for females
age Player’s age: high/medium/low
play years Years of playing experience: high/medium/low
height Player’s height: high/medium/low
weight Player’s weight: high/medium/low
handness Dominant hand (i.e., hand used in daily life): 1 for the right hand; 0 for the left hand
hold racket hand Racket-holding hand: 1 for the right hand; 0 for the left hand

Table 2. Field descriptions in the dataset.
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Type Input Computation Number of generated features

1 Ax(t),Ay(t),Az(t),Gx(t),Gy(t),Gz(t) mean, variance, root mean square 18

2 A(t),G(t) mean, max, min, skewness, kurtosis 10

3 A(t),G(t) Fourier Transform, spectral density, spectral entropy 6

Table 3. A list of features extracted from a waveform

age (year) height (cm) weight (kg) BMI (kg/m2) exp years (year)

Q1 13.78 159.0 48.00 18.67 6.00
Median 15.70 165.0 56.00 20.24 7.25
Mean 16.84 164.9 55.97 20.48 8.15
Q3 19.70 170.5 60.00 22.08 10.00

Table 4. Statistical summary of players’ numerical features. Minimum and maximum values are omitted to prevent deducing
the players’ identities.

package name version number

numpy 1.22.3
pandas 1.4.2
sklearn 1.0.2
TensorFlow 2.8.3
keras 2.8.0
matplotlib 3.5.2
openpyxl 3.0.10
tqdm 4.65.0

Table 5. Python packages and tested versions to run the code.
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