
Received July 2, 2021, accepted July 21, 2021, date of publication August 3, 2021, date of current version August 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3102005

Toward Building an Academic Search Engine
Understanding the Purposes of the
Matched Sentences in an Abstract
LI-YUAN HSU1, CHIA-HAO KAO2, I-SHENG JHENG3, AND HUNG-HSUAN CHEN 3
1Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
2Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
3Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan

Corresponding author: Hung-Hsuan Chen (hhchen@g.ncu.edu.tw)

This work was supported in part by the Ministry of Science and Technology of Taiwan under Grant 107-2221-E-008-077-MY3.

ABSTRACT This paper introduces an automatic approach to understand the purposes of each sentence
in the abstract of an academic document. Specifically, computers can label each sentence in the abstract
as being related to one or several of six aspects – ‘‘BACKGROUND’’, ‘‘OBJECTIVES’’, ‘‘METHODS’’,
‘‘RESULTS’’, ‘‘CONCLUSIONS’’, and ‘‘OTHERS’’. Experimental results obtained on a real dataset show
that the labeling methodology outperforms baseline methods. We also build a prototype academic search
engine to demonstrate the use of this new design. Users may search for articles containing keywords related
to any of these six aspects to better meet their search goals.

INDEX TERMS Bidirectional LSTM, hierarchical LSTM, document understanding, specialty search engine.

I. INTRODUCTION
With the popularity of academic search engines and biblio-
graphical databases, researchers have become largely depen-
dent on these tools for literature searches and surveys [12],
[25], [34]. These search tools efficiently discover and rank
articles relevant to a querier’s search keywords based on text
indexing and various ranking factors, e.g., TF-IDF, citation
count, and published date [2], [4], [31]. However, a search
index is essentially equivalent to a lookup table. In other
words, these tools simply search for documents containing
the query term without knowing the querier’s intention and
the document authors’ reasons for using this term. Conse-
quently, the querier has to read the titles, abstracts, sentences
near the matched term, and perhaps other sections in the
returned list of documents to determine the fitness of each
document relative to their search intention.

As an example, we searched for the term ‘‘KNN clas-
sifier’’ on Google Scholar. At the time of writing this
paper, the top 5 results included two papers applying the
k-nearest neighbors algorithm on certain application domains
[20], [21], two papers discussing strategies to improve the
k-nearest neighbors algorithm [11], [27], and an empirical
study that compares the naïve Bayesian classifier with the

The associate editor coordinating the review of this manuscript and

approving it for publication was Fu Lee Wang .

k-nearest neighbors classifier [15]. If a querier is interested
in investigating the details of the KNN algorithm, perhaps
the two papers proposing improvement strategies ([27] and
[11]) will better serve the querier’s needs. On the other hand,
if the querier wants to know the use cases of the KNN,
the two application papers ([20] and [21]) are likely better
choices. Consequently, one universal ranking list for different
queriers with different purposes is not enough. We should
allow queriers to specify their ‘‘purposes’’ and then rank
the documents accordingly, or perhaps the academic search
engines should list not only the snippets of the matched
sentences but also the purposes of these sentences so that the
queriers can efficiently judge the fitness between the returned
documents and their querying purposes.

Motivated by the above scenario, our first objective of
the paper is to propose a new model to automatically
label the purposes of sentences in the abstract of an aca-
demic document. We surmise that each sentence in the
abstract of an academic document may express certain
characteristics related to one of the following six aspects:
‘‘BACKGROUND’’, ‘‘OBJECTIVES’’, ‘‘METHODS’’,
‘‘RESULTS’’, ‘‘CONCLUSIONS’’, and ‘‘OTHERS’’. We
design amachine learning algorithm to tag each sentencewith
one or a few of these six aspects automatically. Experimental
results on a real dataset show that the Samples-F1 score
reaches 0.71, suggesting that our model can successfully

109344 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5137-4449
https://orcid.org/0000-0002-3976-0053

L.-Y. Hsu et al.: Toward Building Academic Search Engine Understanding Purposes of Matched Sentences in Abstract

label the purposes of a large portion of the sentences in the
abstract.

Our second objective is to prototype an academic search
engine that understands the purposes of the matched sen-
tences. The prototyped system contains 7, 000 academic doc-
uments collected from arXiv.org. Each abstract sentence is
automatically labeled by our proposed algorithm. The sys-
tem indexes all the sentences along with their corresponding
purpose labels. A querier may choose to search for sentences
of certain aspects that better serve her/his intention. Addi-
tionally, we show each sentence in the abstract along with its
purpose label(s) in the search result page so that readers may
review the structure of the sentences more easily.

The rest of the paper is organized as follows. In Section II,
we review various academic search engines, including
metadata-based academic search engines, crawling-based
academic search engines, and specialty academic search
engines. We also review previous works on automatic label-
ing of abstract sentences. Section III introduces the method-
ology used to predict the sentence labels. Section IV shows
the experimental settings and the results of our model and
several baseline models. We present a prototype system to
demonstrate the intention-based search system in Section V.
Finally, we conclude the work and discuss future work in
Section VI.

II. RELATED WORK
Academic search engines and bibliographical databases have
become essential tools for literature surveys in academia.
This section reviews two categories of academic search
engines — metadata-based academic search engines and
crawling-based academic search engines. Additionally, we
discuss certain academic search engines that provide unique
functionalities. Finally, we review previous studies on
abstract sentence classification.

A. METADATA-BASED ACADEMIC SEARCH ENGINES
Metadata-based academic search engines refer to search
engines that compile the metadata primarily from humans.
Since metadata collection, editing, and maintenance are
laborious tasks, metadata-based digital libraries are usually
related to the publishers, as they have the resources and
motivation for manual editing.

In the computing and information fields, the ACM and
IEEE are probably the two most important academic orga-
nizations. These two organizations each have their own dig-
ital libraries, namely, the ACM Digital Library1 and IEEE
Xplore.2 Since these two organizations can usually obtain
metadata directly from the organizers of academic confer-
ences or from journal editors, the metadata are usually pre-
cise and credible. Another popular service, the bibliography
reference DBLP,3 contains information on the titles, authors,

1https://dl.acm.org/
2https://ieeexplore.ieee.org/
3https://dblp.org/

conference or journal names, publication years, and several
other pieces of bibliographical information for more than
5 million academic documents, mostly in the domains of
computer science and information science [19]. Themetadata
of DBLP undergoes a strict editing and cleaning process
and thus is usually credible. However, DBLP provides only
metadata search and not full-text search.4 While the metadata
of the ACM digital library, IEEE Xplore, and DBLP are
highly accurate, they require laborious manual editing; thus,
the maintenance cost is very high.

B. CRAWLING-BASED ACADEMIC SEARCH ENGINES
Crawling-based academic search engines collect scientific
documents from the Internet and extract the contents
(e.g., title, author(s), abstract, references, and publication
date) from the documents based on various artificial-
intelligence-related technologies, such as natural language
processing, information extraction, information retrieval,
optical character recognition (OCR) techniques, and many
more [1], [32]. Representative crawling-based academic
search engines include Google Scholar [13], CiteSeerX [31],
and Microsoft Academic Search [26].

Since this type of system is highly autonomous and
requires littlemanual intervention during themetadata extrac-
tion process, it might be easier to scale. For example,
Khabsa and Giles estimated that Google Scholar owned 88%
(100 million out of 114 million) of the English scholarly
documents that were available on the Internet in 2014 [17].
However, because the extracted information could be less
precise, minimal corrections or editing might still be needed
[3], and some of these systems, e.g., Google Scholar, allow
authorized users (e.g., registered users or document authors)
to update the generated metadata. Some of these platforms
provide only an abstract search [5] because of various limita-
tions, e.g., copyright infringement issues.

C. SPECIALTY ACADEMIC SEARCH ENGINES
Specialty academic search engines provide unique search
services for special needs. For example, CollabSeer suggests
potential academic collaborators of specified domains within
a querier’s academic social circle [2]. CSSeer, AMiner, and
Microsoft Academic recommend experts of the target area
[4], [26], [28]. RefSeer recommends references based on the
given abstract text [14]. TableSeer extracts and indexes the
table captions and provides a unique table search function-
ality [22]. AlgorithmSeer identifies and indexes the pseu-
docodes and the captions of the algorithms in academic
documents [29].

While various academic search engines and biblio-
graphical databases are available, to the best of our
knowledge, there are no platforms that integrate sen-
tences and their corresponding computer-generated pur-
pose tags into the new functionality of ‘‘sentence intention
search’’.

4 https://dblp.org/faq/16154928.htmlPage

VOLUME 9, 2021 109345

L.-Y. Hsu et al.: Toward Building Academic Search Engine Understanding Purposes of Matched Sentences in Abstract

FIGURE 1. The sentence purpose identification Hierarchical LSTM-W2V model. The task-agnostic embeddings are obtained by applying CBOW on the
sentences in all abstracts. The predicted labels ŷk s are predicted by integrating the sentence embeddings gk s with a bidirectional LSTM layer. The
sentence embeddings gk s are generated by integrating the task-dependent embeddings f k

i s based on another bidirectional LSTM layer.

D. ABSTRACT SENTENCE CLASSIFICATION
Some previous works aim to classify abstract sentences into
proper headings [6]. Early works in the area require man-
ually defining sentence features as the input for supervised
classifiers. For example, SeCBLiS [33] utilizes the sentence
position, the presence of an auxiliary verb in a sentence, and
some other sentence features as the input of a support vector
machine.

Recent works mainly apply deep neural networks (DNNs)
for this task. Since certain types of DNNs (e.g., variants
of recurrent neural networks) allow us to use features with
variable lengths; we may use the word tokens or the features
generated from work tokens (e.g., word embeddings) as the
input even when each sentence has different numbers of word
tokens. We list two works whose designs are similar to our
design and point out the differences. First, bi-ANN [6], [7]
utilizes word embeddings as the input of an LSTM model
to generate sentence embeddings. To obtain the relationship
among different sentences, bi-ANN integrates the conditional
probability of the class of the current sentence given the class
of the previous sentence. However, such a design assumes
that the class of the current sentence is conditionally inde-
pendent of the classes of the future sentences and the pre-
vious n (n ≥ 2) sentences given the class of the previous
sentence. The other model, Word-BiGRU [10] employs word
embeddings within the same sentence to generate sentence
embeddings, which are further used to label the class of
the sentence. The Word-BiGRU model utilizes convolution
layers with filter sizes of 5 to integrate the words within
a sentence. However, such a setting enforces each word to
influence only the previous two words and the following two
words.

Our model is different from the above models mainly in
that we consider not only all words in a sentence to generate
sentence embeddings but also the relationship among all
sentence labels in an abstract. Additionally, previous methods
model the problem as a multiclass classification problem,
which presumes that each sentence belongs to precisely one
class. Instead, we model the task as a multilabel classification
problem so that each sentencemay belong tomultiple classes.
Although this is a trivial issue that can be easily solved by
changing the shape and the loss function of the output layer,
none of the abovementioned models did this.

III. SENTENCE PURPOSE PREDICTION MODEL
This section introduces the methodology used to predict the
purposes of a sentence. Each sentence may contain more than
one purpose; thus, we model the problem as a multilabel
classification problem, i.e., each instance may belong to one
or multiple purpose classes.We provide a sample abstract and
the purpose labels of the sentences in Table 1.

The entire prediction model consists of two parts: task-
agnostic word embedding generation and sentence purpose
label prediction. Figure 1 shows an overview of the entire
model.

A. TASK-AGNOSTIC WORD EMBEDDING GENERATION
To generate the task-agnostic word embeddings, we seg-
ment the abstract text into sentences S1, S2, . . . , Sk , . . ., SD

(assuming D total sentences in all abstracts). Each sentence
Sk consists of words tk1 , . . . , t

k
|Sk |

, where |Sk | is the word count
of the sentence Sk . Words within the same sentence are fed
into the standard continuous bag-of-words (CBOW) model
[23] (with the negative sampling strategy) to generate the

109346 VOLUME 9, 2021

L.-Y. Hsu et al.: Toward Building Academic Search Engine Understanding Purposes of Matched Sentences in Abstract

TABLE 1. A sample abstract and the corresponding sentence labels. The original paper can be downloaded from https://arxiv.org/abs/1110.1930.

word embeddings ek1, . . . , e
k
|Sk |

of the words in sentence Sk .
We call these embeddings ‘‘task-agnostic embeddings’’, as
these embeddings are trained in a self-supervised fashion,
i.e., they are independent of the downstream task. Con-
sequently, they are irrelevant to the target labels. Essen-
tially, the CBOW model predicts the current word based on
the neighboring context words within the specified window
size. Equation 1 shows the objective function. The optimizer
finds the word embeddings ekj s to maximize the objective
function J .

J (e) = log

 D∑
k=1

|Sk |∑
i=1

∑
−m≤j≤m,m6=0

P
(
eki
∣∣∣eki+j)

 , (1)

where D is the total number of sentences in all abstracts,
m is the user-specified window size, e =

[
eki
]
(i =

1, . . . , |Sk |, k = 1, . . . ,D), and P(eki |e
k
i+j) is the probability

of observing the target word tki (with embedding eki) given the
contextual word tki+j (with embedding eki+j). The conditional
probability is defined by Equation 2.

P
(
eki
∣∣∣eki+j)
= log σ

(
eki · e

k
i+j

)
+

∑
`∼p(w)

[
log σ

(
−e` · eki+j

)]
, (2)

where · is the inner product operator, σ (x) = 1/(1+exp(−x))
is the sigmoid function, and p(w) ∝ f (w)0.75 is the negative
sampling function (f (w) is the empirical frequency distribu-
tion of word w).

B. PREDICTING SENTENCE PURPOSE LABELS BASED ON
HIERARCHICAL LSTM
The sentence label prediction module contains three
parts: task-dependent word embedding generation, sentence
embedding generation, and finally sentence label prediction.
The task-dependent word embedding and sentence embed-
ding together form a Hierarchical LSTM. This structure may
look similar to a multilayer LSTM. However, it is different,
because in multilayer LSTM, the output of an LSTM layer is
the input of the next LSTM layer, whereas in Hierarchical
LSTM, the output of an LSTM layer is integrated before
being sent to the next LSTM layer. We explain the three parts
in the following paragraphs.

First, we feed the task-agnostic word embeddings ekj s into a
bidirectional LSTM layer. The outputs f kj s of the LSTM layer

are called the task-dependent word embeddings because these
word embeddings are influenced by the target labels. Specif-
ically, the task-dependent word embeddings are computed by
Equation 3:

f kj = o� tanh(cj−1), (3)

where� is the elementwise multiplication operator and o and
cj−1 are the output gate and the cell state, which are defined
in Equation 4 and Equation 5, respectively.

o = σ
(
wTo

[
hj−1
ekj

])
, (4)

where wo is a vector of the parameters to learn.

cj−1 = f � cj−2 + i� c̃, (5)

where f , i, and c̃ are the forget gate, input gate, and can-
didate cell state, which are computed based on Equation 6,
Equation 7, and Equation 8, respectively.

f = σ
(
wTf

[
hj−1
ekj

])
, (6)

where wf is a vector of the parameters to learn.

i = σ
(
wTi

[
hj−1
ekj

])
, (7)

where wi is a vector of the parameters to learn.

c̃ = tanh
(
wTc̃

[
hj−1
ekj

])
, (8)

where wg is a vector of the parameters to learn.
Next, we compute the elementwise maximum on

task-dependent word embeddings of the same sentence
(i.e., f k1 , f

k
2 , . . . , f

k
|Sk |

) to obtain the sentence embedding gk

for a sentence Sk . Specifically, if we use gk [`] to denote the
`th element in gk , then gk [`] is computed by Equation 9.

gk [`] = max
(
f k1 [`], . . . , f

k
|Sk |[`]

)
, (9)

where f km [`] denotes the `th element of the embedding from
the mth word in sentence Sk .

Finally, the sentence embeddings gks are fed into another
bidirectional LSTM layer that outputs ŷk to predict the multi-
hot-encoded output label yk . Multi-hot encoding is used
because a sentence may belong to multiple classes. We use
Adam (with a learning rate of 0.001) as the optimizer [18].

VOLUME 9, 2021 109347

L.-Y. Hsu et al.: Toward Building Academic Search Engine Understanding Purposes of Matched Sentences in Abstract

FIGURE 2. The computational graph used to generate task-dependent
embedding f k

j from the task-agnostic embeddings. This component
corresponds to one LSTM1 cell in Figure 1. The variables f , i, o, and c̃
correspond to the forget gate, input gate, output gate, and candidate cell
state. The variable cj represents the cell state at the j th word.
Consequently, the long-term information is memorized by the cell states
(i.e., cj s), and the short-term information is preserved by hj s.

We use the binary cross-entropy as the loss function, which
is defined by Equation 10

L
(
ŷ, y
)

=

d∑
i=1

m∑
`=1

[
−yi[`] log ŷi[`]−

(
1−yi[`]

)
log

(
1− ŷi[`]

)]
,

(10)

where ŷ = [ŷ1, . . . , ŷd]T , y = [y1, . . . , yd]T , and yi[`]
and ŷi[`] represent the `th element of yi and ŷi, respectively
(yk [`] ∈ {0, 1}, 0 ≤ ŷk [`] ≤ 1).
The entire training process is shown in Figure 1. The

task-agnostic word embeddings eki s are obtained through a
pretraining process, which was introduced in Section III-A.
The other parameters (wf ,wi,wg, andwo) are learned bymin-
imizing the binary cross-entropy loss shown in Equation 10.
Because there are many variables involved in the second

part (the prediction of sentence purpose labels), we show the
computation graph used to obtain f kj from ekj in Figure 2 for
better illustration. Figure 2 corresponds to one LSTM1 cell in
Figure 1. For the LSTM2 cell, one needs to replace only the
input and output from ekj and f

k
j with gk and ŷk , respectively.

Note that the parameters (wf , wi, wg, and wo) for LSTM1 and
LSTM2 are different.

IV. EXPERIMENTS ON PREDICTING SENTENCE PURPOSE
LABELS
This section introduces the experimental dataset, setup, and
compares the experimental results of predicting sentence pur-
pose labels.

A. EXPERIMENTAL DATASET
Our experimental dataset contains 7, 000 academic docu-
ments collected from the arXiv.org e-print archive. Each

TABLE 2. The distribution of the purpose labels. The ‘‘OTHERS’’ label
accounts for less than 2% of all labels.

TABLE 3. The distribution of the number of labels per sentence. While
most sentences have 1 or 2 labels, few sentences may have 3, 4, or even
up to 5 labels.

FIGURE 3. Number of sentences per document (the y axis is on the
square-root scale). While most documents have four to nine sentences in
their abstracts, few documents have very short or very long abstracts.

document includes the title, author name(s), abstract, cre-
ated date, and paper subject, e.g., networking and internet
architecture (cs.NI) and computer vision and pattern recog-
nition (cs.CV). Each sentence in the abstracts of these doc-
uments is labeled with one or several of the six aspects
(BACKGROUND, OBJECTIVES, METHODS, RESULTS,
CONCLUSIONS, AND OTHERS). For a sample abstract,
the label of each sentence is shown in Table 1. Table 2 shows
the appearance counts and the corresponding percentages
of the six labels. Because each sentence may have multiple
labels, we show the distribution of the number of labels each
sentence has in Table 3.

These 7, 000 documents contains 46, 867 sentences in
total, i.e., each document has 6.70 sentences on average.
Figure 3 shows the histogram of the number of sentences per
document. The y-axis is in the square-root scale.

109348 VOLUME 9, 2021

L.-Y. Hsu et al.: Toward Building Academic Search Engine Understanding Purposes of Matched Sentences in Abstract

We divide the dataset into a training dataset (including
6, 300 articles) and a testing dataset (including 700 articles)
to test the performance of our model. We further divide
the training dataset into training and validation sets if the
hyperparameters need to be fine-tuned.

B. EXPERIMENTAL METRICS
We use confusion matrices and the precision, recall, and F1
score to demonstrate the effectiveness of themodel. However,
because we are dealing with a multilabel classification prob-
lem, some of these evaluation metrics require adjustment, as
described below.

First, we cannot directly use a large confusion matrix to
represent the relationship between the predicted and the real
classes because a general confusion matrix allocates each
instance into one cell based on the predicted and actual class
of the instance, while in our scenario, sentences (instances)
may have multiple labels. Consequently, we use the one-vs-
rest approach to produce six confusion matrices; i.e., each
confusion matrix represents the result of treating one class
as positive and the other classes as negative.

Second, we show the precision, recall, and F1 score
for each class, again using the one-vs-rest approach. Once
we obtain the precision, recall, and F1 score for each
class, we compute the weighted precision/recall/F1 score
to represent the overall performance. The weighted preci-
sion/recall/F1 score can be regarded as an extension of the
macro-precision/recall/F1 score because the weighted ver-
sion utilizes the support of each class (i.e., the correct number
of instances for each class) to determine the relative weights.
Equation 11 shows the weighted metrics.

weighted 〈X〉 =
C∑
i=1

wi 〈Xi〉 , (11)

where wi is the support of class i dividing the number of
instances, 〈X〉 denotes a metric score (i.e., the precision,
recall, or F1 score in this paper), and 〈Xi〉 is the metric score
for class i.
We also report the micro-precision/recall/F1 score. Let

TPi, FPi, and FNi denote the numbers of true positives,
false positives, and false negatives, respectively, for class i.
The micro-precision/recall/F1 score are expressed as Equa-
tions 12, 13, and 14, respectively.

micro-precision =

∑6
i=1 TPi∑6

i=1 (TPi + FPi)
(12)

micro-recall =

∑6
i=1 TPi∑6

i=1 (TPi + FNi)
(13)

micro-F1 =
2×micro-precision×micro-recall
micro-precision+micro-recall

(14)

Although the weighted and micro-metrics assign proper
weights to each class, studies suggest that the samples-
precision/recall/F1 score are probably more appropriate for

TABLE 4. An example of the Position model for documents with 6
sentences. Consequently, when given an abstract with 6 sentences, the
Position model always predicts the labels of the six sentences as
BACKGROUND, BACKGROUND, METHODS, METHODS, RESULTS, and
RESULTS.

multilabel classification problems [9], [16]. The argument
is that the weighted and the micro-metrics may be highly
affected by the instances with many labels and that the sample
metrics treat each instance equally, as the sample metrics
first compute the precision, recall, and F1 score for each
instance individually and then compute the average across
all instances. We report the weighted average, micro-average,
and sample average, as eachmay have its own advantages and
disadvantages.

C. BASELINE MODELS
We compare our model with eight baseline methods. The first
twomodels are naïvemethods based on simple heuristics. The
third, fourth, and fifth models are previous methods that were
used for the same task. Finally, the sixth, seventh, and eighth
models are variations of our final Hierarchical LSTM-W2V
model. The performance of the last three baselines, along
with our final Hierarchical LSTM-W2V model, may help
determine the reasons why the Hierarchical LSTM-W2V
model works.

The first model is a naïve baseline, which computes the
most frequent label `i in the training data and always predicts
a sentence as `i. We call this simple baseline the ‘‘Majority
model’’, as this model always returns the majority label in the
training dataset.

The second baseline model, which we call the ‘‘Position
model’’, computes the label of a sentence based on two
factors – the number of sentences in the abstract and the
position of the sentence we want to label. During training, we
categorize a paper into group g(i) if this paper has i sentences
in the abstract. We further define g(i)j as the jth paper in

group g(i), g(i)j,k as the kth sentence in g(i)j , and `(i)j,k as the

label(s) of g(i)j,k . During prediction, when given a paper with
m sentences, we predict its nth sentence by the majority label
in
[
`
(m)
1,n, `

(m)
2,n, . . . , `

(m)
|g(m)|,n

]
(assuming there are |g(m)| papers

belonging to group g(m) in the training data). For instance,
Table 4 shows the most frequent label for each sentence posi-
tion in group g(6). Consequently, when given a new paper with
6 sentences in the abstract, the sentence labels are predicted as
‘‘BACKGROUND’’, ‘‘BACKGROUND’’, ‘‘METHODS’’,
‘‘METHODS’’, ‘‘RESULTS’’, and ‘‘RESULTS’’, respec-
tively, when using the Position model.

The third model is SeCBLiS [33]. This model defines
sentence features in an ad hoc manner. The sentence features

VOLUME 9, 2021 109349

L.-Y. Hsu et al.: Toward Building Academic Search Engine Understanding Purposes of Matched Sentences in Abstract

TABLE 5. A comparison of the micro-precision/recall/f1 score, weighted-precision/recall/F1 score, and samples-precision/recall/F1 score of different
methods. We highlight the highest score in each column in bold face and the second highest score in each column with an underscore.

include, for example, the sentence position, frequency of
selected terms, χ2 values of selected terms, and average tf-idf
score of the terms in the sentence. SeCBLiS uses a support
vector machine classifier with a linear kernel to predict the
class of a sentence. As the selected terms to compute the
frequencies and the χ2 scores are not reported in [33], we
used the position features and the average tf-idf scores as the
features in our experiment.

The fourth model is bi-ANN [6], [7]. This model generates
each sentence embedding by integrating the word embed-
dings within a sentence. The model further decides the label
of a sentence based on both the current sentence embedding
and the label of the previous sentence. However, such a design
presumes that the Markov property holds; i.e., the label of
a sentence is conditionally independent of the labels of the
following sentences and the labels of the previous n sentences
(n ≥ 2) given the previous sentence. Such an assumption is
over naïve.

The fifth model, Word-BiGRU [10], also generates each
sentence embedding by integrating the word embeddings
within each sentence. This model incorporates the relation-
ship among different sentences by a bidirectional gated recur-
rent unit (GRU). However,Word-BiGRU produces a sentence
embedding by applying a convolution layer with a filter size
of 5. As a result, each word is related to only the preceding
two words and the consecutive two words.

For the sixth baseline model, we regard each sentence as
one document to compute a matrix of the TF-IDF features
for each word. We build a random forest model that takes the
TF-IDF feature vector of a sentence as the input feature to
predict the purpose label(s) of this sentence.We call this base-
line the ‘‘RF-TFIDF model’’, as the model uses the random
forest model and the TF-IDF feature vectors of the words in
the sentences.

The seventh baseline model also uses the TF-IDF features
as in the previous model. However, we use a bidirectional
LSTMmodel to predict the label(s) of each sentence. We call
this baseline method the LSTM-TFIDF model, as it uses the
bidirectional LSTMmodel and the TF-IDF feature vectors as
the input.

In the eighth model, we generate the task-agnostic embed-
dings for each word, as introduced in Section III-A. For the
embeddings of the words in sentence Sj (i.e., e

j
1, . . . , e

j
|Sk |

),
we generate the sentence feature Xj for sentence Sj by

computing the elementwise average on ej1, . . . , e
j
|Sk |

. In other

words, Xj[p] =
(∑

i e
j
i[p]

)
/|Sk |, where Xj[p] and eji[p]

denote the pth element of vector Xj and vector eji, respec-
tively. We use Xj as the input features of the random forest
model to predict the label(s) of the sentence Sj. We call this
baseline method the RF-W2V model, as the model utilizes
the word2vec embeddings as the input of the random forest
model.

D. RESULTS
1) COMPARISON WITH BASELINE METHODS
Table 5 shows various precision/recall/F1 scores, includ-
ing the micro-precision/recall/F1 score, weighted-precision/
recall/F1 score, and samples-precision/recall/F1 score of our
model and the eight baseline models. We highlight the first
and the second place of each column by using bold face and an
underscore,
respectively.

Because we are dealing with a multilabel classification
problem with imbalanced target labels (as displayed in
Table 2), it is not straightforward to know what a decent
F1 score is. In this situation, the F1 score of the Majority
model (first row in Table 5) may give us a hint, since always
predicting the majority label can lead to the highest expected
value of the F1 score being obtained if we do not have any
information on the relationship between a sentence and its
labels.

The Position model, despite using the position of a sen-
tence as the sole clue to predict the corresponding label(s),
yields good predictions. In fact, if we simply compare the var-
ious F1 scores, the Positionmodel outperforms themore com-
plicated RF-TFIDF and RF-W2V models, probably because
the RF-TFIDFmodel and the RF-W2Vmodel do not consider
the positional information. This result suggests that sentence
position is an important factor of determining the purpose
labels of a sentence, probably even more important than the
word choices.

The three previously proposedmodels, SeCBLiS, bi-ANN,
and Word-BiGRU, perform better than the Position model,
probably because these models predict the sentence labels
based on the sentence features generated either by manually
defined features or by integrating the word embeddings.
Consequently, these models may discover the relationship

109350 VOLUME 9, 2021

L.-Y. Hsu et al.: Toward Building Academic Search Engine Understanding Purposes of Matched Sentences in Abstract

FIGURE 4. The confusion matrices of the six labels when using the Hierarchical LSTM-W2V
model. Since we are dealing with a multi-label classification task, we cannot use a large 6× 6
confusion matrix to denote the result. Instead, we use six 2× 2 matrices, each of which
regards one class as positive and the others as negative class.

TABLE 6. The precision, recall, F1 score, and support of each label when
using our Hierarchical LSTM-W2V model.

between the word choices and the purposes of the sentences.
However, the SeCBLiS model defines sentence features in
an ad hoc manner and does not consider the relationship
among different sentences. The bi-ANN model generates
sentence features systematically (specificaly, generating sen-
tence embeddings from word embeddings), but the model
considers only the label relationship between two consecutive
sentences and ignores all other labels. Finally, the Word-
BiGRUmodel examines the embedding of the target sentence
and the labels of all other sentences to decide the label of
the target sentence. However, the sentence embedding is gen-
erated by a convolution layer with a small filter size, which
simplifies computation but limits the influence of each word.

The best two models are the LSTM-TFIDF model and
the Hierarchical LSTM-W2V model (our model proposed in
Section III). We believe this outcome occured because these
two models consider the following three factors: (1) the word
choices, (2) the sentence positions, and (3) the relationship
among sentence labels. Among these two models, the word
embeddings in the Hierarchical LSTM-W2V model likely
capture the semantic relationship among the words and there-
fore could be better input features than the TF-IDF-based
features.

2) DETAILED RESULTS OF OUR MODEL
The confusion matrices of the six labels when using the
Hierarchical LSTM-W2V as the prediction model are shown

in Figure 4. We also show the precision, recall, F1 score,
and support (the true number of these labels) of each class
in Table 6. Our model makes excellent predictions except
for the ‘‘OTHERS’’ class. However, because the ‘‘OTHERS’’
class includes sentences that may have diverse and ambigu-
ous purposes, correctly predicting the ‘‘OTHERS’’ class is
naturally more challenging than correctly predicting the other
classes. In addition, only less than 2% of the sentences belong
to the ‘‘OTHERS’’ class. The overall performance in terms of
the weighted average, micro average, and samples average is
shown in the same table.

V. SYSTEM PROTOTYPE
This section introduces a prototype system to demonstrate an
academic search engine understanding the purposes of each
sentence and allowing users to submit queries alongwith their
search intentions. A live demonstration site is available at
http://139.59.243.203/.

A. SYSTEM OVERVIEW
The system is composed of an offline processing mod-
ule, which is responsible for labeling the sentences in the
abstracts and ingesting the extractedmetadata into an indexer.
The online module contains a web server to redirect user
requests to the indexer, obtains the returned documents, and
renders an output page to the users. An overview of the
architecture is shown in Figure 5. The details of the entire
system are given below.

1) OFFLINE MODULE
The offline module consists of a sentence purpose labeler, a
document ingestor, and an indexer. The labeler is the Hier-
archical LSTM-W2V model we introduced in Section III.
As shown in Figure 5, the offline module starts by training
the sentence purpose labeler based on the labeled documents
(step (1) in the offline processing module in Figure 5). After
training, the sentence purpose labeler labels the purposes of
each sentence for each abstract (step (2)). Next, the document

VOLUME 9, 2021 109351

L.-Y. Hsu et al.: Toward Building Academic Search Engine Understanding Purposes of Matched Sentences in Abstract

FIGURE 5. Architecture of the prototype system. The offline processing
modules include the Hierarchical LSTM-W2V model to label the sentence
purposes for each abstract and an indexer to digest the metadata. The
online processing unit takes users’ query terms, conducts online queries
to the indexed database, and returns a ranking list to the users.

ingestor takes the document metadata (e.g., titles, authors,
and categories), the full text abstracts, and the label(s) of each
sentence (step (3-a) and step (3-b)) and sends the information
to an indexer (step 4). The indexer builds indices to facilitate
the online queries. We use ElasticSearch as the indexing
server.

2) ONLINE MODULE
The online module contains a web server Nginx, which
receives the query term and the purpose fields from users and
redirects this information to the index server (ElasticSearch)
to perform a real-time query. Once the returned documents
obtained from ElasticSearch, Nginx renders the web page for
the users.

The user interface of the web pages are shown in Figure 6
and Figure 7. In addition to the search bar that appears in
virtually all search engines, the users may select one or
several fields from the six aspects to further specify their
search purposes. Our model ranks the documents based on
the ranking function introduced in Section V-B.
Once a user clicks on any link on the search result page,

the server lists the corresponding document’s title, category,
author(s), and, most uniquely, abstract and purpose(s) of each
sentence in the abstract. For better representation, we use a
table to indicate the relationship between a sentence and its
purpose(s). As shown in Figure 7, we attach an n-by-6 table
to the front of every sentence (n is the number of sentences in
the abstract). Each check mark in the table indicates the exis-
tence of one aspect of a sentence. We highlight the searched
terms (‘‘support vector machine’’ in our example) for better
visualization.

B. RANKING MODEL
This section introduces the ranking model of the proto-
type system. The ranking function is modified from Okapi
BM25 [24].

FIGURE 6. The interface for user search. We allow users to specify their
target aspects.

We define the ranking score of a query term q for a docu-
ment d with aspect a by Equation 15.

s(q, a, di) ∝
∑
∀w∈q

(ATF(w, di, a)+ TF(w, di))× IDF(w),

(15)

where w represents a word in query term q, ATF(w, di, a) is
called the aspect TF (ATF) score of word w in the sentences
belonging to the aspects a in document di (Equation 16),
TF(w, di) represents the TF score of word w in document di
regardless of the sentence aspects (Equation 17), and IDF(w)
is the IDF score of word w (Equation 18).

ATF(w, di, a) =
fw,di,a × (k + 1)

fw,di,a + k
(
1+ b

(
|di|
|D|avg

− 1
)) , (16)

where fw,di,a returns the appearance counts of w in the sen-
tences related to the aspects a in di, |di| is the number of words
in document di, |D|avg is the average number of words in a
document in the corpus, and k and b are the predefined param-
eters with values 1.2 and 0.75, respectively, as suggested in
Lucene.5

TF(w, di) =
fw,di × (k + 1)

fw,di + k
(
1+ b

(
|di|
|D|avg

− 1
)) , (17)

where fw,di computes the appearance counts ofw in document
di.

IDF(w) = log
(
N − nw + 0.5
nw + 0.5

)
, (18)

where N is the total number of documents and nw returns the
document frequency of a word w.

The ranking model ranks the documents based on the
ranking score (Equation 15) from large to small.

Compared to the classic TF-IDF measure or its variants,
e.g., Lucene’s practical scoring function,6 the new scoring
function (Equation 15) has several advantages. First, the
terms fw,di,a and fw,di in the denominators of Equation 16
and Equation 17 realize the concept of term saturation,
which is when a term is more related to a document if the

5https://lucene.apache.org/core/8_9_0/core/org/apache/lucene/search/
similarities/BM25Similarity.html

6https://lucene.apache.org/core/8_9_0/core/org/apache/lucene/search/
similarities/TFIDFSimilarity.html

109352 VOLUME 9, 2021

L.-Y. Hsu et al.: Toward Building Academic Search Engine Understanding Purposes of Matched Sentences in Abstract

FIGURE 7. The interface displaying the abstract sentences along with the corresponding label(s). This sample
abstract is downloaded from https://arxiv.org/abs/1805.11317.

term appears more frequently in the document; however,
the relevancy score saturates once the occurrence exceeds
a threshold, which is effectively decided by the parameter
ks in Equation 16 and Equation 17. Second, the |di|/|D|avg
term in the denominators of Equation 16 and Equation 17
accounts for the influence of the document length; that is, if
a term appears the same number of times in a long document
and in a short document, the short document is likely to be
more relevant to the term. The b parameters in Equation 16
and Equation 17 decide the decaying speed of the relevance
score as the document becomes longer. Finally, our ranking
function enlarges the influence of a user’s selected aspects by
the ATF score. Consequently, if a term appears in some of the
selected aspects of a document, the ranking score is greatly
increased.

VI. DISCUSSION
This paper fulfills the two objectives listed in the introduction.
First, we showed that it is feasible to apply machine learning
methods to recognize the purpose(s) of each sentence in
the abstract of an academic document. We compared our
proposed method with eight baseline models based on 7, 000
academic documents. The experimental results show that sen-
tence position, word usage, and label relationships are crucial
information for this task. Likely because our proposedHierar-
chical LSTM-W2V model can effectively integrate all these
types of information, the proposed model outperformed the
baseline models. Second, we prototyped an academic search
engine that understands the purposes of abstract sentences
and enables users to query sentences with specified purpose
aspects.

Initially, the task of sentence labeling may seem to fit
into sequential pattern mining [8]. However, abstract texts
naturally form a sequence of sequences—the word sequence

forms a sentence, the sentence sequence forms an abstract,
and the sentence labels are mutually influenced. Conse-
quently, general sequential pattern mining techniques are not
the best fit for this task. It should be interesting to explore
other applications that have a sequence of sequences structure
and apply our proposed model to them.

Recently, attention mechanisms [30] have had tremen-
dous success in various natural language processing tasks.
An attention mechanism is flexible because it dynamically
assigns weights to different parts of an input sequence. The
advantage of attention is more obvious, especially when the
input sequence is long, because LSTM may gradually forget
earlier inputs. Therefore, a natural extension of the current
model is to replace the LSTM layers with attention to form
a ‘‘Hierarchical attention’’ model. This is one of our ongoing
research directions.

Because our model can predict the purposes of each sen-
tence in the abstract, we are currently analyzing how authors
write and organize abstracts on a large scale. For example, we
are interested in learning whether authors tend to introduce
the background or describe the conclusion first. We also want
to know whether different conferences/journals or authors
from different regions prefer different writing styles in terms
of how sentence purposes are organized. Our model may help
answer some of these interesting questions on a large scale.

ACKNOWLEDGMENT
This work was done in part when Li-Yuan Hsu and Chia-Hao
Kao were with the National Central University.

REFERENCES
[1] C. Caragea, J. Wu, A. Ciobanu, K. Williams, J. Fernández-Ramírez,

H.-H. Chen, Z. Wu, and L. Giles, ‘‘CiteseerX: A scholarly big dataset,’’ in
Proc. Eur. Conf. Inf. Retr. Amsterdam, The Netherlands: Springer, 2014,
pp. 311–322.

VOLUME 9, 2021 109353

L.-Y. Hsu et al.: Toward Building Academic Search Engine Understanding Purposes of Matched Sentences in Abstract

[2] H.-H. Chen, L. Gou, X. Zhang, and C. L. Giles, ‘‘CollabSeer: A search
engine for collaboration discovery,’’ in Proc. 11th Annu. Int. ACM/IEEE
Joint Conf. Digit. Libraries (JCDL), 2011, pp. 231–240.

[3] H.-H. Chen, M. Khabsa, and C. L. Giles, ‘‘The feasibility of investing in
manual correction of metadata for a large-scale digital library,’’ in Proc.
IEEE/ACM Joint Conf. Digit. Libraries, Sep. 2014, pp. 225–228.

[4] H.-H. Chen, P. Treeratpituk, P. Mitra, and C. L. Giles, ‘‘CSSeer: An expert
recommendation system based on CiteseerX,’’ in Proc. 13th ACM/IEEE-
CS Joint Conf. Digit. Libraries (JCDL), Jul. 2013, pp. 381–382.

[5] B. B. L. P. de Vries, M. van Smeden, F. R. Rosendaal, and
R. H. H. Groenwold, ‘‘Title, abstract, and keyword searching resulted in
poor recovery of articles in systematic reviews of epidemiologic practice,’’
J. Clin. Epidemiol., vol. 121, pp. 55–61, May 2020.

[6] F. Dernoncourt and J. Y. Lee, ‘‘PubMed 200k RCT: A dataset for sequential
sentence classification in medical abstracts,’’ 2017, arXiv:1710.06071.
[Online]. Available: http://arxiv.org/abs/1710.06071

[7] F. Dernoncourt, J. Y. Lee, and P. Szolovits, ‘‘Neural networks for joint sen-
tence classification in medical paper abstracts,’’ 2016, arXiv:1612.05251.
[Online]. Available: http://arxiv.org/abs/1612.05251

[8] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas,
‘‘A survey of sequential pattern mining,’’ Data Sci. Pattern Recognit.,
vol. 1, no. 1, pp. 54–77, 2017.

[9] A. Fujino, H. Isozaki, and J. Suzuki, ‘‘Multi-label text categorization with
model combination based on F1-score maximization,’’ in Proc. 3rd Int.
Joint Conf. Natural Lang. Process., vol. 2, 2008, pp. 1–6.

[10] S. Gonçalves, P. Cortez, and S. Moro, ‘‘A deep learning classifier for
sentence classification in biomedical and computer science abstracts,’’
Neural Comput. Appl., vol. 32, pp. 1–15, Jul. 2019.

[11] G. Jianping, L. Du, Z. Yuhong, and X. Taisong, ‘‘A new distance-
weighted K-nearest neighbor classifier,’’ J. Inf. Comput. Sci., vol. 9, no. 6,
pp. 1429–1436, 2012.

[12] N. R. Haddaway, A. M. Collins, D. Coughlin, and S. Kirk, ‘‘The role of
Google scholar in evidence reviews and its applicability to grey literature
searching,’’ PLoS ONE, vol. 10, no. 9, Sep. 2015, Art. no. e0138237.

[13] A. Harzing and R. van der Wal, ‘‘Google scholar as a new source for cita-
tion analysis,’’ Ethics Sci. Environ. Politics, vol. 8, pp. 61–73, Jun. 2008.

[14] W. Huang, Z. Wu, P. Mitra, and C. L. Giles, ‘‘RefSeer: A citation rec-
ommendation system,’’ in Proc. IEEE/ACM Joint Conf. Digit. Libraries,
Sep. 2014, pp. 371–374.

[15] M. J. Islam, Q. M. J. Wu, M. Ahmadi, and M. A. Sid-Ahmed, ‘‘Investi-
gating the performance of Naive-Bayes classifiers and K-nearest neighbor
classifiers,’’ J. Converg. Inf. Technol., vol. 5, no. 2, pp. 133–137, Apr. 2010.

[16] H. Kazawa, T. Izumitani, H. Taira, and E. Maeda, ‘‘Maximal margin
labeling for multi-topic text categorization,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2005, pp. 649–656.

[17] M. Khabsa and C. L. Giles, ‘‘The number of scholarly documents on the
public web,’’ PLoS ONE, vol. 9, no. 5, May 2014, Art. no. e93949.

[18] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/
abs/1412.6980

[19] M. Ley, ‘‘DBLP: Some lessons learned,’’ Proc. VLDB Endowment, vol. 2,
no. 2, pp. 1493–1500, Aug. 2009.

[20] Y. Liao and V. Vemuri, ‘‘Use of K-nearest neighbor classifier for intrusion
detection,’’ Comput. Secur., vol. 21, no. 5, pp. 439–448, Oct. 2002.

[21] C.-L. Liu, C.-H. Lee, and P.-M. Lin, ‘‘A fall detection system using
K-nearest neighbor classifier,’’ Expert Syst. Appl., vol. 37, no. 10,
pp. 7174–7181, Oct. 2010.

[22] Y. Liu, K. Bai, P. Mitra, and C. L. Giles, ‘‘Tableseer: Automatic table meta-
data extraction and searching in digital libraries,’’ in Proc. 7th ACM/IEEE-
CS Joint Conf. Digit. Libraries, Jun. 2007, pp. 91–100.

[23] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[24] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to Information
Retrieval, vol. 39. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[25] S. Z. Shariff, S. A. Bejaimal, J. M. Sontrop, A. V. Iansavichus,
R. B. Haynes, M. A. Weir, and A. X. Garg, ‘‘Retrieving clinical evidence:
A comparison of PubMed and Google scholar for quick clinical searches,’’
J. Med. Internet Res., vol. 15, no. 8, p. e164, Aug. 2013.

[26] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J.-Hsu, and K. Wang,
‘‘An overview of Microsoft academic service (MAS) and applications,’’
in Proc. 24th Int. Conf. World Wide Web, May 2015, pp. 243–246.

[27] S. Tan, ‘‘An effective refinement strategy for KNN text classifier,’’ Expert
Syst. Appl., vol. 30, no. 2, pp. 290–298, Feb. 2006.

[28] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, ‘‘ArnetMiner: Extrac-
tion andmining of academic social networks,’’ inProc. 14th ACMSIGKDD
Int. Conf. Knowl. Discovery Data Mining (KDD), 2008, pp. 990–998.

[29] S. Tuarob, S. Bhatia, P. Mitra, and C. L. Giles, ‘‘AlgorithmSeer: A system
for extracting and searching for algorithms in scholarly big data,’’ IEEE
Trans. Big Data, vol. 2, no. 1, pp. 3–17, Mar. 2016.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ 2017,
arXiv:1706.03762. [Online]. Available: http://arxiv.org/abs/1706.03762

[31] J. Wu, K. M. Williams, H.-H. Chen, M. Khabsa, C. Caragea, S. Tuarob,
A. G. Ororbia, D. Jordan, P. Mitra, and C. L. Giles, ‘‘CiteSeerX: AI in a
digital library search engine,’’AIMag., vol. 36, no. 3, pp. 35–48, Sep. 2015.

[32] Z. Wu, J. Wu, M. Khabsa, K. Williams, H.-H. Chen, W. Huang, S. Tuarob,
S. R. Choudhury, A. Ororbia, P. Mitra, and C. L. Giles, ‘‘Towards building
a scholarly big data platform: Challenges, lessons and opportunities,’’ in
Proc. IEEE/ACM Joint Conf. Digit. Libraries, Sep. 2014, pp. 117–126.

[33] Y. Yamamoto and T. Takagi, ‘‘A sentence classification system for multi
biomedical literature summarization,’’ in Proc. 21st Int. Conf. Data Eng.
Workshops (ICDEW), 2005, p. 1163.

[34] P. Younger, ‘‘Using Google scholar to conduct a literature search,’’Nursing
Standard, vol. 24, no. 45, pp. 40–46, Jul. 2010.

LI-YUAN HSU received the bachelor’s degree
from the Department of Computer Science,
National Central University, in 2021. He is cur-
rently pursuing the degree with Texas A&M Uni-
versity. His research interests include machine
learning and search engines.

CHIA-HAO KAO received the bachelor’s degree
from the Department of Computer Science and
Information Engineering, National Central Uni-
versity. He is currently pursuing the degree with
the Department of Computer Science, National
Yang Ming Chiao Tung University. His research
interests include computer vision and deep
learning.

I-SHENG JHENG received the bachelor’s degree
from the Department of Computer Science and
Information Engineering, National Central Uni-
versity. His research interests include search
engine and network programming.

HUNG-HSUAN CHEN received the Ph.D. degree
from the Department of Computer Science and
Engineering, Pennsylvania State University, in
2013. He was a Researcher with the Industrial
Technology Research Institute. He is currently
an Associate Professor with the Department of
Computer Science and Information Engineer-
ing, National Central University (NCU). He is
interested in data-related research topics, such
as machine learning, deep learning, information

retrieval, text analysis, and graph analysis. He is also interested in applying
these techniques to various application domains, such as recommender sys-
tems, digital libraries, and social networks. He was a Core Member of Cite-
SeerX, a public search engine and digital library for academic documents.

109354 VOLUME 9, 2021

