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Experience: Analyzing Missing Web Page Visits
and Unintentional Web Page Visits from the
Client-side Web Logs
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Web logs have been widely used to represent the web page visits of online users. However, we found that

web logs in Chrome’s browsing history only record 57% of users’ visited websites, i.e., nearly half of a user’s

website visits are not recorded. Additionally, 5.1% of the visits recorded in the web log occur because of

unconscious user actions, i.e., these page visits are not initiated from users. We created a Google Chrome

plugin and recruited users to install the plugin to collect and analyze the conscious URL visits, unconscious

URL visits, and “missing” URL visits (i.e., the visits unrecorded in the traditional web log). We reported the

statistics of these behaviors. We showed that sorting popular website categories based on traditional web

logs differs from the rankings obtained when including missing visits or excluding unintentional visits. We

predicted users’ future behaviors based on three types of training data – all the visits in modern web logs,

the intentional visits in web logs, and the intentional visits plus missing visits in web logs. The experimental

results indicate that missing visits in web logs may contain additional information, and unintentional visits in

web logs may contain more noise than information for user modeling. Consequently, we need to be careful

of the observations and conclusions derived from web log analyses because the web log data could be an

incomplete and noisy dataset of a user’s visited web pages.

CCS Concepts: • Information systems → Web log analysis; Computational advertising; Electronic

commerce; • Applied computing→ Online shopping;

Additional Key Words and Phrases: Clickstream, user behavior, log analysis, user modeling

ACM Reference format:

Che-Yun Hsu, Ting-Rui Chen, and Hung-Hsuan Chen. 2022. Experience: Analyzing Missing Web Page Visits

and Unintentional Web Page Visits from the Client-side Web Logs. J. Data Inform. Quality 14, 2, Article 11

(March 2022), 17 pages.

https://doi.org/10.1145/3490392

1 INTRODUCTION

Web browsing has become essential in most people’s everyday lives. The conventional wisdom
is that logs stored by web servers (e.g., Apache or NGINX) or by the history of browsers (e.g.,
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Fig. 1. The relationship between all the online visits of a user, clickstream (CS) events, intentional click-

stream (ICS) events, and extended clickstream (ECS) events.

Chrome or Safari) truthfully record a user’s web browsing history. We collectively call these logs
and records web logs in this paper. Web logs are widely used to analyze users’ online behaviors [4,
12, 23, 33]. However, this paper shows that web logs record only approximately half of a user’s
visited URLs. Additionally, approximately 5.1% of the visited URLs stored in modern web logs are
not generated under a user’s intentions. As a result, the web log could be a biased collection of a
user’s web browsing history, so analyses based on web logs may derive biased observations and
conclusions.

Figure 1 shows the relationship between all the online visits of a user, the visits recorded in
most of today’s web log files (particularly, web server logs and browser histories), and some of
the visits that are not recorded in the web log but recorded and studied in this paper. We will use
the term clickstream, or CS for short, to refer to the events recorded in the web log mentioned
above. Many researchers use CS events to represent most, if not all, of a user’s online visits and use
clickstream and web log interchangeably, e.g., [34, 41]. We show that many web visiting activities
are not recorded by the web log. We collected some of these missing events, which we call extended

clickstream, or ECS for short. There could be other page visits that are neither recorded by the
CS nor the ECS. However, the goal of the paper is not to collect all browsing activities but to point
out that web logs may only represent a small part of a user’s online visits. Additionally, among the
events in a clickstream, only part of them are initiated by users. These intentional visits in the CS
events are collectively called the intentional clickstream (ICS). We may use the two terms “web
log” and “clickstream” interchangeably in this paper, as in many previous works [34].

We illustrated an example in Figure 2. A user opens a browser and visits website A and then
opens another browser window to visit website B. Next, this user opens a link to websiteC in a new
tab, and website C triggers an event that redirects the user to website D. The visits on websites A,
B,C , and D are all recorded in the modern web log. However, the user may not be aware of visiting
web page D because this visit is triggered by server-side or client-side programs. Assuming that
this user decided to switch tabs back to website B and switch windows back to websiteA, these new
visits on websites B andA are not recorded in the web log, even though the user may intend to visit
these websites. In this example, since the first four visits on the websitesA, B,C , andD are recorded
in the modern web log, they are part of the CS events. However, since the visit on D is generated
by a redirect event triggered by the server or client code, the user may be unaware of this visit, so
only the visits on A,B, and C are part of the ICS events; D is not part of the ICS events. Finally,
the “tab switching” behavior and the “go back to the previous page” behavior are not recorded by
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Fig. 2. An example of a user’s online visits that include the intentional clickstream events, unintentional

clickstream events, and extended clickstream events.

the modern web log, although the user may intend to visit these websites. As we will explain later,
we collected and analyzed these events and call them the ECS events. Another example that may
cause information missing is the “go back” function implemented in many current browsers [18].
Specifically, web browsers may cache few previously visited websites in the local cache. When
a user clicks the “go back” button, the browser renders the page content directly from the local
cache instead of sending requests and receiving content from the remote server. Consequently,
the new request may only appear in the local history log but not in the remote server log at the
Internet Service Provider (ISP) or the backend of the website. As we collected users’ visits from
the client-side (which will be explained later), the visits due to “go back” are recorded in the CS.
However, if the logs are collected from the server-side (e.g., from an ISP), these visits would be in
the ECS but not in the CS.

To collect users’ online web page visits more thoroughly, we developed a plugin for Google’s
Chrome browser and recruited users to install the plugin by giving e-coupons to these users. We
informed all users that we will collect and analyze their online browsing logs. Eventually, we
acquired 300+ users and selected 147 users who used this plugin for at least three days as the
experimental targets. Although we collected the data from the client-side (i.e., from a Chrome
browser plugin), the server-side log also suffers similar issues. Particularly, the server-side log
may also contain records not initiated from users (e.g., Remote CS-4, the server-side log on Site D
in Figure 2) and may also fail to record certain user visits (e.g., tab-switching or window-switching
events).

We reported the statistics of the CS events, ICS events, and ECS events in this paper to demon-
strate that modern web logs miss a large portion of users’ website visits and include few records
that are not initiated from users. Additionally, we applied supervised learning algorithms to pre-
dict a user’s future behaviors based on three different sets of features derived from the CS, ICS, or
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ICS plus ECS. The experimental results show that using the ICS or ICS plus ECS better predicts
a user’s future behaviors, suggesting that ECS may contain extra information not included in the
traditional CS. Additionally, the unintentional behaviors in the CS may provide more noise than
information, so using either the ICS plus ECS or only the ICS, instead of the complete CS, can be
a better choice.

The main contribution of this paper is not the proposal of another new algorithm or another
new way to collect users’ visited web pages. Instead, we highlight that the clickstream is a partial
and biased collection of a user’s web page browsing behaviors. We conducted various experiments
to support this claim. Since a CS is a biased collection of a user’s web page visiting record, we need
to be more careful about the observations and conclusions from the studies that assume the CS
completely records a user’s web page visits. As far as we know, we are the first group to study and
report this issue systematically.

The rest of the paper is organized as follows. Section 2 reviews the related work on the analysis
of clickstreams. Section 3 explains the data collection strategy and the statistics of the collected
datasets. Section 4 shows experiments on predicting a user’s future behaviors based on the CS, ICS,
and ICS plus ECS. Finally, we discuss our discoveries and future work in Section 5.

2 RELATED WORK

Web logs have been widely used to represent a user’s complete online journey [1, 2, 36, 57]. In this
section, we review various applications and studies based on log analyses.

2.1 Social Networks and User Modeling based on Log Analysis

One essential study of sociology is to observe or model people’s behaviors and interactions among
people. However, interpersonal interactions are difficult to observe or quantify directly. Therefore,
traditional experiments usually involve questionnaires and lab-controlled simulation experiments,
which have obvious disadvantages, such as the fidelity of the simulations, the size of the samples,
the measurement of the variables of interest, etc.

As the online social network platforms became popular in the last few decades, people volunteer
all sorts of personal information on these platforms, including places they visited, the music they
listened to, anniversaries, friend lists, birthdays, job information, relationship status, and many
more. For the first time, human activities can be recorded meticulously on a large scale. Unsur-
prisingly, sociologists, among other researchers, have started to leverage the logs of these plat-
forms to measure users’ interactions and behaviors [6, 48]. Studies on this line include person-to-
person communication, community and group analysis, friendship formation, information trans-
mission [35, 50, 51], etc. It is shown that simple machine learning approaches can accurately predict
an individual’s sensitive demographic profiles (e.g., sexual orientation and political views), psycho-
logical test scores, and subsequent behaviors [1, 32, 36, 59], given an individual’s browsing history
or Facebook likes.

Indeed, analyzing users’ behaviors on social networks has fundamentally changed the way re-
searchers, especially sociologists, design and conduct experiments. However, if the logs are biased
collections, the conclusions derived from these analyses are questionable.

2.2 E-commerce and Recommender Systems Studies based on Log Analysis

E-commerce provides a convenient channel for shopping and may increase the outreach of a busi-
ness. In addition, since the transactions are digitized, e-commerce retailers heavily use users’ visit-
ing logs to conduct various analyses to improve users’ satisfaction and stimulate more purchases.

One way to increase direct purchases and improve users’ satisfaction is by designing better
recommender algorithms to increase the appearance rate of a user’s desired items. This line of
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research includes content-based approaches [40], collaborative filtering [9, 37, 49, 56], and hybrid
methods (using both content-based and collaborative filtering) [5, 16, 17, 42, 45]. Collaborative fil-
tering requires leveraging many users’ collective behaviors to determine the relationship between
items and users. Since collaborative filtering requires no user labeling or item labeling, it has in-
fluenced many works in the last two decades [7, 15, 24, 46]. Many studies have recently used the
click-through rate or the conversion rate as the metrics to measure the effectiveness of a recom-
mendation algorithm [8, 10, 36, 47, 60].

While e-commerce retailers highly leverage the web log to discover a user’s needs, this paper
shows that a web log may only record part of a user’s browsing behaviors, and some of the recorded
clicks are not initiated by users. Perhaps a quick fix is to consider only user-initiated events, which
will be explained further in Section 3 and demonstrated in Section 4.

2.3 Information Retrieval and Search Engines Studies based on Log Analysis

Given a user’s query term, search engines rank millions or even billions of objects (e.g., documents,
authors, and products) to place the objects that are likely to meet a user’s needs at the top of the
ranking [11, 13, 21, 22, 25, 28, 30, 38, 43, 53–55]. The quality of a search engine is usually decided by
user evaluation. However, since hiring people to test different queries and label the results is costly
and labor-intensive, most search engine companies highly leverage online users’ responses as the
ground truth. For example, if users click the second document given a query, the second document
is probably better than the first document for serving the users’ needs [39]. As search engines
widely use online users’ logs to evaluate their ranking algorithms, understanding the biases the
web log may have is essential.

Search logs are also used to discover what contents should be added to an enterprise website
for a better navigation experience [29, 58]. Particularly, in [29], the authors defined “missing con-
tent” as the information that is difficult to obtain via simple page navigation but probably can be
retrieved via search. The authors suggested placing such information on a web page that can be
easily accessed. Although both [29] and our work studied logs, the “missing information” in [29]
is different from our “missing web page visits”.

A few previous studies mentioned that the logs might sometimes be distorted [18, 27]. However,
they simply described this issue as a limitation of their research but did not conduct systematic
studies on this problem. We also found papers studying user behaviors on tab switching [26, 27, 52].
However, these papers primarily investigate parallel browsing behaviors but not the issue of the
missing logs.

Most of the research and applications introduced in this section assume that the web logs fully
represent users’ online web browsing behaviors. However, as we will show later, modern web
logs are a biased collection of users’ online visits. We believe the researchers in the field of data
mining and data analysis and information retrieval should be aware of this issue and be careful
with experimental results obtained by analyzing web logs.

3 COLLECTING MISSING WEB PAGE VISITS AND INTENTIONALITY OF WEB PAGE

VISITS

This section introduces the data collection method and the statistics of the collected data.

3.1 Data Collection and Preprocessing

We created a plugin for the Google Chrome browser to collect the CS and ECS events from users.
We recruited users from the Internet and motivated users to join the experiment by providing
e-coupons. We informed all users that the installed plugin collects their browsing behaviors.

ACM Journal of Data and Information Quality, Vol. 14, No. 2, Article 11. Publication date: March 2022.



11:6 C.-Y. Hsu et al.

Table 1. A List of CS Events, ECS Events, and Intentionality

Type Event name Brief description Intentional? %

CS

Link Clicking a link to arrive at the current
page

� 47.3726

Form_submit Visiting a page because of a form sub-
mission

2.8147

Auto_bookmark Clicking through the UI of a browser
(e.g., a menu bar) to arrive at the cur-
rent page

� 2.5437

Generated Clicking a suggested non-URL entry
while typing in the address bar

� 1.6619

Reload Reloading a page � 1.3892
Typed Typing a URL in the address bar to ar-

rive at the current page
� 0.8231

Auto_toplevel Visiting a page because it is a starting
page

0.4135

Manual_subframe Explicitly requesting a subframe nav-
igation

� 0.0325

Keyword Visiting a page because of the key-
word search configuration in the
browser

� 0.0022

Auto_subframe Automatically loaded in a non-top-
level frame

0.0004

Keyword_generated Visiting a page generated by the key-
word search functionality

� 0.0000

ECS

Tab Visiting a page because of a tab
switching

� 25.5639

Windows Visiting a page because of a browser
window switching

� 6.8717

Blur Switching to other application win-
dows or closing the browser

� 5.6950

Idle No I/O to the browser for more than
2 minutes

� 2.4741

Active The first I/O after idling � 2.3415

Details of CS events are explained in https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/

webNavigation/TransitionType. The last column displays the occurrence percentage for each event in our collected

web log.

As shown in Table 1, this plugin collects a user’s various interactions with the browser. The
CS events include all the visits recorded in the standard web logs, and the ECS events contain the
user and browser interactions that are not recorded in the standard web logs. Based on how a user
arrived at a page, we define each record as an intentional or an unintentional visit. The last column
of Table 1 displays the occurrence percentage for each event in our collected web logs.

Table 2 shows examples of intentional/unintentional clickstreams and intentional “extended
clickstreams”. For example, the behavior of “clicking a hyperlink” requires a user to move the
cursor to a specific location on a page and click the mouse, so this kind of behavior is regarded as an
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Table 2. Examples of the Intentional CS, Unintentional CS, and

Intentional ECS Events

intentional behavior unintentional behavior

CS clicks on hyperlinks;
URL typing on the
navigation bar; clicks
on bookmarks

pages loaded in subframes;
pop-up windows; page auto-
redirect

ECS tab switching;
browser switching

-

Table 3. A Statistical Summary of the Number of Days that the Users had

the Plugin Installed

minimal first quantile median mean third quantile maximal

Days 3 70.5 110 41.25 131.5 142

intentional behavior. On the other hand, the pop-up windows are usually triggered by client-side
scripts. Therefore, even though the URLs of these pop-up windows appear in the web log, these
visits are regarded as “unintentional” behaviors, as they are not triggered by users. We believe
that the unintentional events do not exist in the extended clickstreams because all the events in
the extended clickstreams are triggered by users.

After obtaining these behaviors, we removed the URLs representing the local hosts. (e.g., 127.
0.0.1 and 192.168.0.1) because we thought that this type of URL could be noise. Additionally, we
used an online website categorizing service1 to convert each URL into a category. For example,
the URLs google.com, facebook.com, and youtube.com are classified as categories “Search Engines
and Portals”, “Social Networking”, and “Streaming Media and Download”, respectively. Eventually,
we grouped all the collected URLs into 82 categories.

3.2 Data Statistics

We recruited users from the Internet to install our plugin by providing e-coupons to the users. We
informed the users that we would record all their browsing activities. Eventually, we recruited
300+ users; among them, we selected 147 users who used the plugin for at least three days as our
experimental targets. The dataset contains users’ website visits from Feb. 26, 2019 to Jul. 17, 2019,
with 6, 623, 178 event counts in total.

Table 3 shows a summary of the number of days a user used this plugin. As can be seen, the
first quantile is 70.5 days, i.e., 75% of users used the plugin for more than two months, suggesting
the numbers reported in this paper are based on users’ long-term behaviors.

4 ANALYZING CS, ICS, AND ECS

This section presents the experiments demonstrating the problems with the traditional CS and
why the ICS and ICS plus ECS might be better alternatives.

4.1 Statistics of CS, ICS, and ECS Events

When we started this study, we were skeptical of the effectiveness of the ECS events because
we thought that the number of ECS events compared to the number of CS events might be very

1https://fortiguard.com/webfilter.
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Table 4. A Statistical Summary of the Number of Events Per User for the CS, ICS,

and ICS + ECS Events

minimal first quantile median mean third quantile maximal

CS 21 11, 105 20, 381 20, 213 35, 941 110, 580
ICS 21 10, 504 19, 821 19, 181 33, 591 103, 635

ICS + ECS 73 18, 862 36, 421 34, 937 61, 138 178, 473

Table 5. A Statistical Summary of the Number of Events Per User Per Day for the CS, ICS,

and ICS + ECS Events

minimal first quantile median mean third quantile maximal

CS 7 137 231 157 328 932
ICS 7 128 221 150 311 893

ICS + ECS 24 238 387 270 559 1, 758

small and thus unimportant and probably ignorable. Surprisingly, we found that the number of
ECS events is very close to the number of CS events, implying that the traditional web logs fail
to capture nearly half of a user’s online behaviors. Out of the 6, 623, 178 events collected during
the 142 days, the numbers of CS and ECS events are 3, 778, 777 and 2, 844, 401, respectively. These
numbers suggest that ignoring ECS events seems inappropriate, as the ECS events account for 43%
of the total events. The last column of Table 1 displays the occurrence percentage for each event.
As shown, tab switching activities, although not recorded in the web log, account for a quarter of
the total events.

Tables 4 and 5 show the statistics of the numbers of different event types per user and per user
per day, respectively. Since different users may use the plugin for different numbers of days, each
number in Table 4 is not simply a multiplication of the corresponding number in Table 5.

The first rows in both tables display the statistical summaries of the clickstream. Current
browsers typically only record this type of event (e.g., the “history” recorded by Google Chrome).
The second rows show the summary of the events in intentional clickstream (ICS), i.e., the events
triggered by users, not by the browsers or the servers. By comparing the first two rows of Table 4,
we can see that the unintentional events contribute 5.1% of the total CS events for an average user,
suggesting that a user may be unconscious of 5.1% of the recorded events in the traditional web
log. We believe including these unconscious events in analyses may introduce more noise than
information. The third row shows the summary of ECS events plus the ICS events. As shown, the
number of ECS events is close to the number of ICS events.

Based on these numbers, we hypothesize that the standard web log is a biased collection of a
user’s online web visits. Consequently, analyses based on the web logs containing only the click-
stream may reveal only part of a user’s online journey. Below, we show two different experiments
to support this claim. The first experiment compares the popular website categories ranked by CS,
ICS, and ICS + ECS. In the second experiment, we predict a user’s future behaviors (the category
of a user’s following clicked website and time gap before a user’s next click) and compare their
effectiveness based on different types of logs (CS, ICS, and ICS + ECS).

4.2 Ranking Popular Website Categories

This section shows the ranking of popular website categories. Particularly, we rank the categories
based on the events in CS, ICS, and ICS + ECS.
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Table 6. The 20 Most Popular Website Categories Ranked by ICS + ECS, CS, and ICS

(PDF: Probability Density Function; R1, R2, and R3 are the Rankings of Categories Based

on the Numbers of ICS + ECS, CS, and ICS Events, Respectively

Category ICS + ECS CS ICS
R1 Count PDF1 R2 Count PDF2 R3 Count PDF3 PDF1/PDF2

Streaming Media
and Download

1 1,124,145 17.54 3 558,297 14.77 2 555,767 15.49 1.19

Social Networking 2 938,817 14.65 1 608,224 16.10 1 600,171 16.73 0.91

Search Engines
and Portals

3 714,769 11.15 2 559,221 14.79 3 461,377 12.86 0.75

Education 4 570,649 8.9 5 304,364 8.05 5 276,313 7.70 1.11

Information
Technology

5 457,948 7.15 6 200,180 5.30 6 189,298 5.28 1.35

Web-based
Application

6 391,608 6.11 4 336,886 8.91 4 333,320 9.29 0.69

Games 7 386,895 6.04 7 156,347 4.14 7 152,642 4.26 1.46

Business 8 203,138 3.17 9 108,060 2.86 10 99,250 2.77 1.11

Shopping 9 168,830 2.63 11 94,737 2.51 11 88,601 2.47 1.05

File Sharing
and Storage

10 165,818 2.59 10 106,535 2.82 9 105,062 2.93 0.92

Entertainment 11 155,154 2.42 8 117,181 3.10 8 115,618 3.22 0.78

Reference 12 154,226 2.41 12 86,090 2.28 12 80,408 2.24 1.06

Web-based Email 13 115,595 1.80 13 68,741 1.82 13 68,178 1.90 0.99

News and Media 14 100,603 1.57 14 67,278 1.78 14 66,567 1.86 0.88

Newsgroups and
Message Boards

15 72,541 1.13 16 35,036 0.93 16 33,127 0.92 1.22

Pornography 16 69,762 1.09 15 42,031 1.11 15 40,939 1.14 0.98

Personal Websites
and Blogs

17 68,312 1.08 20 25,497 0.67 20 25,220 0.70 1.61

Instant Messaging 18 63,289 0.99 18 29,973 0.79 18 28,931 0.81 1.25

Auction 19 55,927 0.87 17 33,344 0.88 17 33,078 0.92 0.99

Travel 20 49,540 0.77 19 29,955 0.79 19 25,631 0.71 0.97

Table 6 displays the top 20 most visited categories. As shown, although the top 20 categories of
the events in CS, ICS, and ICS+ ECS are the same, their rankings are different. The last column in
Table 6 shows the ratio between PDF1 (the PDF of ICS + ECS events of a category) and PDF2 (the
PDF of CS events of a category). A value of PDF1/PDF2 larger than 1 indicates the traditional web
log (i.e., the CS events here) tends to underestimate the popularity of a category. It appears that
if we estimate the popularity of a category based on the traditional web log, we may highly over-
estimate the popularity of the categories “Search Engines and Portals”, “Web-based Application”,
and “Entertainment”. Likewise, we likely highly underestimate the popularity of the categories
“Information Technology”, “Games”, “Newsgroups and Message Boards”, “Personal Websites and
Blogs”, and “Instant Messaging”. If a web page belongs to the underestimated group, it probably
indicates that users tend to put the web page in the background tab and browse the tab from time
to time via tab switching. Unfortunately, these later visits are unrecorded by the modern web logs.

We further compare the ordinal association between the ranking of ICS + ECS (i.e., Rank1 in
Table 6) and the ranking of CS (i.e., Rank2 in Table 6) based on Kendall’s τ correlation coef-
ficient [31]. We used Kendall’s τ coefficient instead of the probably more popular Spearman’s
correlation because Kendall’s τ is argued to be more reliable as a ranking-based measure [44].
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Fig. 3. Splitting the training, evaluation, and testing data. If a user’s log is equal to or less than 5 days, all

the logs are used for testing (e.g., user D in the figure). If a user’s log is between 5 and 10 days, the last

5 days are used for testing, and the remaining are for training (e.g., user B in the figure).

Equation (1) defines the formula of Kendall’s τ correlation coefficient.

τ (�1, �2) =
P −Q(

n

2

) , (1)

where �1 and �2 are two orders to compare, n is the number of elements for each list, and P and
Q are the number of concordant pairs and the number of discordant pairs, respectively. A pair of
observations is concordant if the two observations have the same order in both �1 and �2; a pair
of observations is discordant if the two observations are ranked in opposite directions in �1 and
�2. Since every element in �1 is different, and every element in �2 is also different, there are no tied
pairs; we do not need to consider different variations of Kendall’s τ that apply different strategies
to account for ties [3].

The Kendall’s τ correlation coefficient of Rank1 (the popular ranking using ICS + ECS) and
Rank2 (the popular ranking using only CS) is 0.86 with the p-value 2.19 × 10−10 computed by the
Mann-Kendall test [20]. These values indicate that among the ranking of the popular categories
based on ICS + ECS and the ranking of the popular categories based on the standard CS, only a
small portion is discordant, and this result is significant.

4.3 Future Behavior Prediction

This section shows the experimental results for predicting a user’s future behavior based on pre-
vious events in the CS, ICS, and ICS + ECS. If using the ICS events or ICS + ECS events can yield
better predictions than the models that make predictions based on the CS events, it may imply
that ECS events contain extra information, and the events appearing in the CS but not in the ICS
provide more noise than signal.

To conduct the experiments, we separated the collected data as follows. Referring to Figure 3,
for each user, we used the behaviors in the last 5 days as the testing data. If a user’s remaining
behaviors spanned longer than 5 days, we further divided the remaining behaviors into evaluation
data (the last 5 days after excluding the testing data) and the training data (the remaining days)
for hyperparameter selection. Based on these rules, the logs of users A,C,E, F , and G in Figure 3
are divided into training, validation, and test datasets; the logs of user B are divided into training
and test datasets; the logs of user D is used only for the test dataset. More than 90% of the users
used the plugin for more than 30 days in our collected dataset.

Based on the above-mentioned data splitting, we conducted the following two experiments to
validate the effectiveness of the ICS events and the ECS events compared to the traditional CS
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Fig. 4. An example of using five consecutive events to predict the next event, where the five consecutive

events may come from clickstream (Output 1), intentional clickstream (Output 2), or extended plus inten-

tional clickstream (Output 3).

events: (1) predicting the category of the next clicked website for a given user; (2) predicting the
time gap before the next click of a given user.

4.3.1 Predicting the Category of the Next Clicked Website. The first experiment utilizes the CS,
ICS, or ICS + ECS events to predict the category of the next clicked website for a given user.

Figure 4 illustrates these three cases. The top timeline shows all the latest collected events of a
user. Output 1 represents the case of using the CS events (particularly the five consecutive events
right before the target) to predict the target. The CS events may contain both intentional and
unintentional events. Output 2 displays the case of using only the five consecutive intentional
events in the clickstream to generate the features. Finally, output 3 demonstrates utilizing the five
consecutive events belonging to the intentional clickstreams or the extended clickstreams to create
the features.

For each CS (including the ICS) event and ECS event, the generated features include the types
(referring to the second column of Table 1 for a list of event types), the URL categories of these
events, and their corresponding timestamps.

As there are 82 website categories, this task can be modeled as a multi-class classification prob-
lem, which is commonly evaluated via the macro average, micro average, or weighted average of
the precision, recall, and F1 scores. We reported the weighted-precision/recall/F1 scores for the
following reasons.

First, since the distribution of the URL categories is highly skewed in our case (as shown in
Table 6), the macro-precision/recall/F1 scores are dominated by the classes that have fewer in-
stances. For example, the “Travel” category accounts for less than 1% of all ICS+ECS, CS, and ICS
events, and the “Social Networking” category constitutes approximately 15% of the events. Thus,
if using macro average, correctly predicting one instance in the Travel category would be much
more valuable than correctly predicting one instance in the Social Networking category.

Second, micro-precision/recall/F1 scores are less informative because the micro-precision score
always equals the micro-recall score, and consequently, the micro-F1 score is also identical because
the micro-F1 score is the harmonic mean of the micro-precision and micro-recall. The fundamental
reason that micro-precision equals micro-recall can be directly derived from the definition. First,
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the numerators of both micro-precision and micro-recall are
∑K

i=1TPi (TPi is the number of true
positives by regarding class i as the positive class and the others as the negative class). Second,
the denominators of micro-precision and mico-recall are

∑K
i=1 (TPi + FPi ) and

∑K
i=1 (TPi + FNi ),

respectively (FPi is the number of false positives when considering class i as positive and the
others as the negative class, and FNi is the number of false negatives when regarding class i as
positive and the other classes as negative). Although they look different,

∑K
i=1 FPi always equals∑K

i=1 FNi , because each incorrect prediction is a false positive for one class and a false negative for
another. For example, if ci is misclassified as c j , this leads to a false positive for class c j and a false
negative for ci .

The weighted-precision, recall, and F1 scores are shown in Equations (2), (3), and (4),
respectively.

Pweighted =

K∑
i=1

(
wi ×

TPi

TPi + FPi

)
× 100%, (2)

Rweighted =

K∑
i=1

(
wi ×

TPi

TPi + FNi

)
× 100%, (3)

F1weighted =

K∑
i=1

(wi × F1i ) × 100%, (4)

where wi is the ratio of the instances belonging to class i , K is the number of classes, and F1i is
the F1 score when regarding class i as the positive class and the others as the negative class.

We applied five popular supervised classifiers, logistic regression, k-nearest neighbors (kNN),
random forest, support vector machine (SVM), and XGBoost [14], on the CS, ICS, and ICS + ECS
datasets. As we mentioned in Section 3, there are 82 categories in our collected dataset so that a
random guess would yield a small accuracy and a small F1 score. Even if we consistently predict
the majority category (i.e., “Streaming Media and Download”), the accuracy would be only 17.54%,
as the majority class accounts for 17.54% of all events (referring to Table 6).

Table 7 shows the weighted precision/recall/F1 scores of different models using CS, ICS, and ICS
+ ECS to generate the features. Each number reported in the table is an average of 10 trials. Each
row compares one evaluation metric when applying one training model on CS, ICS, and ICS + ECS.
We highlight the largest and the second-largest numbers in bold and underscore, respectively.

We observed three things from the table, as described below. First, using ICS or ICS+ECS as the
training data usually yielded better Weighted precision/recall/F1 scores than using the traditional
CS as the training data, likely because the ICS or ICS + ECS better represent a user’s online tra-
jectory. Although the difference may seem small (especially given that CS events account for only
57% of a user’s visited websites), we use only the five nearest events to generate the features (as
shown in Figure 4). In other words, no matter we use CS, ICS, or ICS + ECS as the experimental
data, we used the same number of previous events to generate the features for each prediction. The
result suggests that the same number of ICS events (or ICS+ ECS events) may contain more infor-
mation than the same number of CS events. Additionally, according to the full confusion matrices
of the results based on ICS events and ICS + ECS events,2 both ICS and ICS + ECS outperformed
CS in almost all categories. Our second observation is that the tree-based models (XGBoost and
Random Forest) and support vector machine performed better than the others (kNN and logistic

2The full confusion matrices based on ICS and ICS + ECS events are shown in https://github.com/eleceel/DART_analyze_

user_behavior/blob/master/xgb_result_one(ics).pdf and https://github.com/eleceel/DART_analyze_user_behavior/blob/

master/xgb_result_one(icsecs).pdf, respectively. We show the full confusion matrices online to save the space.
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Table 7. Weighted Precision/Recall/F1 Scores of different Models to Predict the

Category of the Next Clicked Web Page Trained on the Features Derived

from CS, ICS, or ICS + ECS

Training Model Evaluation Metric CS ICS ICS + ECS

Logistic Regression
Weighted Precision 28.55 28.96 28.85

Weighted Recall 40.25 40.57 40.73

Weighted F1 score 30.16 30.57 30.42

KNN
Weighted Precision 72.71 73.09 73.81

Weighted Recall 72.71 72.88 73.85

Weighted F1 score 72.23 72.48 73.47

Random Forest
Weighted Precision 76.74 76.53 76.60

Weighted Recall 76.51 76.65 76.69

Weighted F1 score 76.29 76.38 76.42

SVM
Weighted Precision 74.39 74.56 74.65

Weighted Recall 74.52 74.54 74.71

Weighted F1 score 74.50 74.55 74.66

XGBoost
Weighted Precision 77.10 77.27 77.41

Weighted Recall 77.18 77.43 77.60

Weighted F1 score 77.03 77.29 77.44

The highest score of each row is highlighted in bold; the second-highest score of each row

is highlighted using underscore. ICS+ ECS usually gives the highest score, followed by ECS.

regression), probably because user behaviors are complex by nature. Finally, our third observation
can be concluded from the full confusion matrices. The number of observations of a class i is pos-
itively correlated with the corresponding accuracy and the true positive rate when regarding the
class i as the positive class and the others as the negative class.

4.3.2 Predicting the Time Gap Before a User’s Next Click. The second experiment predicts the
time gap before a user’s next click. We divided the period into five classes: 0 to 5 seconds, 5 to 20
seconds, 20 seconds to 2 minutes, 2 minutes to 20 minutes, and longer than 20 minutes. This divi-
sion is motivated by the Weber-Fechner law [19], which states that humans’ subjective sensation is
primarily proportional to the logarithm of the stimulus intensity. As we divide the time gap length
into groups, this task can also be regarded as a multi-class classification problem. We can again
apply various supervised classifiers and report the results using the weighted precision/recall/F1
scores.

Table 8 shows the result. As before, we applied logistic regression, k-nearest neighbors, random
forest, support vector machine, and XGBoost, on the CS, ICS, and ICS + ECS datasets. We also
highlight the first and the second largest numbers in bold and underscore for each row, respectively.
The results are consistent with our previous experiment: using all the events in ICS + ECS as the
training data can yield better predictions than using the ICS events or traditional CS events as
the training data, and the tree-based models (XGBoost and Random Forest) and support vector
machine again yielded better weighted-precision/recall/F1 scores than the simple models, kNN
and logistic regression.

5 DISCUSSION

While the conventional wisdom is that the web logs accurately record a user’s web page brows-
ing history, we showed that web logs record only approximately half of a user’s web page visits.
Moreover, even among the recorded instances, several of them are not intentional visits. Since
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Table 8. Weighted Precision/Recall/F1 Scores of Different Models to Predict the

Period to the Next Click Trained on the CS, ICS, or ICS + ECS

Training Model Evaluation Metric CS ICS ICS+ECS

Logistic Regression
Weighted Precision 51.16 51.27 51.96

Weighted Recall 51.18 51.22 52.00

Weighted F1 53.56 53.76 54.75

KNN
Weighted Precision 48.74 48.87 49.95

Weighted Recall 48.71 48.83 49.90

Weighted F1 48.71 48.87 49.92

Random Forest
Weighted Precision 53.36 53.46 54.46

Weighted Recall 53.31 53.44 54.44

Weighted F1 53.58 53.74 54.76

SVM
Weighted Precision 52.26 52.46 53.53

Weighted Recall 52.29 52.51 53.54

Weighted F1 score 52.28 52.48 53.54

XGBoost
Weighted Precision 53.53 53.77 54.74

Weighted Recall 53.51 53.77 54.71

Weighted F1 53.50 53.70 54.77

The highest score of each row is highlighted in bold; the second-highest score of each row

is highlighted using underscore. ICS+ ECS usually gives the highest score, followed by ECS.

the web log is a biased collection of a user’s online visits, we may need to be more careful about
the analyses that use web logs as the ground truth to represent a user’s online trajectory. As far
as we know, we are the first group to conduct experiments on this issue systematically. These
experiments include a simple comparison of popular website categories ranked by CS, ICS, and
ICS + ECS, and more complex tasks to predict the category of a user’s next clicked website and
the period before the next click. All the results show that the ECS contains extra information not
recorded by the traditional CS events, and the unintentional clickstreams may contain more noise
than information.

Some browsing behaviors may not be recorded by the modern CS or our proposed ECS. For
example, several modern e-commerce websites list a fixed number of products on a page, but
when a user scrolls down to near the bottom of the page, the page automatically lists more items.
As a result, even if a user browses many different items, suggesting that this user is probably
highly interested in the current browser shopping, the local web log contains only one record.
Even though the logs in CS plus ECS may still miss certain user behaviors, the goal of the paper
is to point out that modern web logs are far from a complete list of a user’s online visits, not to
collect all user behaviors. Listing other missing behaviors is indeed interesting, but the task may
become trivial as we enumerate more and more missing behaviors.

As we informed all users that their browsing behaviors are logged and analyzed, the users may
modify their behaviors. We did not conduct preventative measures for behavior change for two
reasons. First, as shown in Table 3, the median observation period of a user is 110 days. It is less
likely that a user can modify the behavior for such a long time. Second, even if a user intentionally
adjusts the frequency of visiting particular websites, they probably do not change how they use
new tabs and new windows, which accounts for most of the ECS events. However, a more careful
analysis should ensure the consistency of a user’s behavior. A possible approach is to compare a
user’s behavior in the first month and the following months, assuming that a user might forget
about the tracking after a few weeks. If the logging time is long enough, perhaps we could directly
abandon the logs in the first month.
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Some readers may also be worried about privacy issues when more user behaviors are collected.
But, again, we want to emphasize that the purpose of this paper is to demonstrate that the modern
web log is a biased collection of users’ online visits, so we should be more careful when deriving
conclusions from analyzing clickstreams. Privacy issues are undoubtedly important, but studying
user behaviors while preserving privacy is beyond the scope of our study.
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