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Abstract

This paper introduces Decoupled Supervised Learning with Informa-
tion Regularization (DeInfoReg), a novel approach that transforms a long
gradient flow into multiple shorter ones, thereby mitigating the vanish-
ing gradient problem. Integrating a pipeline strategy, DeInfoReg enables
model parallelization across multiple GPUs, significantly improving train-
ing throughput. We compare our proposed method with standard back-
propagation and other gradient flow decomposition techniques. Exten-
sive experiments on diverse tasks and datasets demonstrate that DeIn-
foReg achieves superior performance and better noise resistance than tra-
ditional BP models and efficiently utilizes parallel computing resources.
The code for reproducibility is available at: https://github.com/ianzih/
Decoupled-Supervised-Learning-for-Information-Regularization/.
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1. Introduction

Deep neural networks have trended towards increasing layers to enhance
the recognition capabilities of models. However, increasing the number of
layers lengthens the flow of the gradient, leading to vanishing gradients [1].
Although some solutions have been proposed, such as the residual modules in
ResNet [2] and the inception modules in GoogleNet [3], these methods only
partially address these problems because the long gradient flows still exist in
the network. The long gradient flow also causes gradient locking [4], which
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prevents layers from updating independently and hinders training performance
since the whole forward-backward learning approach requires O(L) for each
batch (L is the number of layers).

Meanwhile, a new model paradigm, which we call the Decoupled Paradigm,
decouples a deep neural network into multiple learning modules [5, 6, 7]; each
module has a local loss function, and the gradient flows between different
modules are cut off. As a result, gradient flows are short even if a network
is deep, so problems of vanishing gradients are less likely to occur [8, 9].
For example, Associated Learning (AL) converts features x and targets y
into similar latent representations as a block, then recursively transforms
these into meta-representations as new blocks, with a local objective function
in each block. In another model, Supervised Contrastive Parallel Learning
(SCPL) [10], the contrastive loss is the local loss for parameter updates. Addi-
tionally, when incorporated with the pipeline strategy, training performance
can be improved as the parameters in different layers (allocated to different
computing units) can be updated simultaneously.

Although the models based on the Decoupled Paradigm have the above
advantages [8, 9, 10, 11], the decoupled model brings new challenges. First,
decoupled models usually lead to less accurate predictions than standard
backpropagation (BP). Second, many decoupled models are based on con-
trastive learning, which still faces challenges such as the collapse problem
and the need for large negative sample pairs [12, 13]. Third, while decou-
pled models have the potential to leverage pipelining for model parallelism,
practical implementations have not been officially released due to non-trivial
engineering challenges.

This paper makes the following contributions to address the above chal-
lenges.

• We introduce DeInfoReg, a novel decoupled model architecture that
leverages self-supervised learning (SSL) as the backbone. Our experi-
ments are conducted on open datasets for natural language processing
and computer vision. Our empirical results demonstrate that DeIn-
foReg achieves test accuracies on open datasets that are comparable
to – or in some cases even exceed – those obtained with traditional
backpropagation (addressing the first challenge).

• We incorporate information regularization techniques within the loss
function to mitigate the collapse problem. Experimental results demon-
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strate that a large batch size is not required (addressing the second
challenge).

• We observed a larger magnitude of gradient values than BP during
training, demonstrating improved stability in deep structures and the
ability to mitigate issues such as gradient vanishing (explaining why
DeInfoReg may address the first challenge).

• DeInfoReg tolerates noisy labels better than BP. This empirical dis-
covery indicates the potential of DeInfoReg to handle complex tasks
with greater efficiency and reliability (more empirical evidence on the
superiority of DeInfoReg for challenge 1).

• We integrate DeInfoReg with pipelining and demonstrate that this
integration enables model parallelism. Thus, our approach significantly
improves training efficiency and scalability, facilitating the deployment
of more complex models in real-world applications (addressing challenge
3).

The rest of the paper is organized as follows. Section 2 reviews previous
studies on gradient flow decoupling and contrastive learning, which is the
foundation of DeInfoReg. Section 3 explains our proposed DeInfoReg model
in detail. The experimental results are reported in Section 4. Finally, we
conclude and discuss the work in Section 5.

2. Related Work

This section reviews previous work on decoupling gradient flows. We also
review studies of contrastive learning and model parallelism.

2.1. Decoupled Paradigm
The decoupled paradigm decomposes a deep neural network into multiple

modules, each with its own local loss function, effectively blocking the gradient
flow between modules.

Previous research using local losses or truncated gradient flows to modu-
larize neural networks has been motivated by various factors, such as reducing
memory usage [14, 15] and allowing faster inference [16]. However, most of
these approaches have been tested only on relatively simple network architec-
tures, and their performance has generally lagged behind that of standard
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backpropagation. Only in limited decoupled models, such as Successive
Gradient Reconciliation (SGR) [15], AL [8, 9], and SCPL [10, 11], show per-
formance comparable to BP. Moreover, to our knowledge, no publication has
yet combined decoupled models with pipelining to achieve model parallelism
for enhanced training throughput.

2.2. Contrastive Learning
Contrastive learning (CL) has become an important research focus due

to its ability to leverage large amounts of unlabeled data to learn object
representations [12, 13, 17, 18, 19, 20, 21, 22]. However, CL usually suffers
from the collapse problem [13, 23]: different input features are mapped to
the same output vector space, resulting in a loss of distinction. Methods
to mitigate this issue often require sacrificing computational efficiency or
increasing the complexity of the model, such as using large batch sizes [24] or
memory banks [19] to maintain diverse representations.

Contrastive learning can be effectively combined with multi-modal learning,
where models process inputs such as images with accompanying text or audio.
This integration enables the development of robust and semantically rich
representations that capture complementary information across modalities.
Such a fusion not only enhances the model’s capacity to distinguish similar
concepts but also improves its generalization across tasks involving varied data
sources. Multimodal contrastive learning frameworks – illustrated by works
like CLIP [25] and ALIGN [26] – achieve cross-modal consistency by aligning
representations of different modalities/forms in a shared latent space. These
modalities, in a broader sense, can include data of different formats (e.g., text,
images, or videos), spatial and temporal representation coherence [27, 28], or
different granularity representations of an object [29, 30]. Furthermore, by
leveraging the inherent diversity of multi-modal datasets, these approaches
provide an additional regularization signal that helps prevent the collapse
problem and preserves the distinctiveness of learned features.

2.2.1. Mutual Information Maximization Methods
Recently, a simple and effective method [22, 31] based on the information

maximization criterion [32, 33, 34] has been proposed to address the collapse
problem. These methods measure the information between the embedding
vectors in the current batch samples, ensuring that the embeddings maintain
sufficient variability and do not collapse into a trivial solution. By maximizing
mutual information, these approaches promote diversity and preserve the
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unique features of different input samples, thereby enhancing the overall
robustness and effectiveness of the contrastive learning framework.

The design of our DeInfoReg model is inspired by the AL and SCPL
models [9, 10, 9]. Similarly to AL, the new model addresses the problems of
gradient vanishing and exploding in traditional deep neural network models by
decomposing the network into multiple blocks with independent optimization
objectives. Following SCPL, we enhance the representation learning of an
input object by considering its predictive accuracy for the corresponding
target and its relationship with other objects. However, DeInfoReg offers
significant advantages over these models. Unlike AL, it eliminates the need
for multiple fully connected layers near the output layer. Furthermore, unlike
SCPL, DeInfoReg does not require paired inputs during training. These
simplifications make DeInfoReg more practical and easier to implement in
real-world applications. Additionally, we incorporate the concept of infor-
mation maximization in the design of the loss function [31] to prevent the
collapse problem. As a result, the proposed model achieves high accuracy
and robustness in various tasks.

2.3. Model Parallelism, Data Parallelism, and GPipe
The high computational cost of deep neural network training has led to

parallel training research. Among them, data parallelism replicates the entire
model on multiple devices and splits the training data into mini-batches [35].
Each device computes the gradients independently and the results are later
aggregated to update the model parameters. This method is straightforward
to implement and works well when the model fits in the memory of a single
device.

In contrast, model parallelism divides the neural network across multiple
devices, allocating different layers or segments to different processors. This
approach is particularly useful when the model is too large to fit in the memory
of a single device [36]. However, traditional model parallelism often faces
challenges such as forward and backward locking [4], where the computation
in one module must wait for the results from another, thus reducing parallel
efficiency.

A notable advancement in model parallelism is GPipe and its variants [37,
38], which introduced a pipeline parallelism strategy to alleviate some of these
limitations. GPipe subdivides a mini-batch into micro-batches and schedules
them sequentially through the pipeline. This overlapping of computations
across different segments of the model helps reduce idle times caused by
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inter-device synchronization, thereby increasing training throughput. Despite
these improvements, GPipe continues to experience forward and backward
locking challenges, particularly in deep networks, as gradient computations
remain constrained by the chain rule.

3. The Design of DeInfoReg

This section introduces the design of our model, DeInfoReg. We describe
the motivation and model architecture, detailing the gradient update mech-
anism for each module. We discuss the design of local loss functions, their
impact, and how to leverage pipelines to achieve model parallelism.

3.1. Motivation
Deep neural networks often suffer from vanishing gradients due to long

gradient flows, which hinders effective training. Conventional backpropaga-
tion also enforces strict sequential dependencies, limiting opportunities for
parallel execution. DeInfoReg decouples a deep network into smaller and
independent modules and introduces local loss functions that incorporate
variance, invariance, and covariance terms to address these issues. The vari-
ance term promotes diversity among embeddings to prevent collapse, the
invariance term ensures that embeddings remain consistent with the target
labels, and the covariance term reduces redundancy by de-correlating different
feature dimensions. This design not only shortens gradient flows, mitigating
vanishing gradients, but also enables each module to operate independently,
thereby facilitating model parallelism across multiple GPUs and significantly
improving training throughput.

3.2. DeInfoReg Architecture and Gradient Flow Design
End-to-end backpropagation (BP) is the standard way to compute the

gradients of a neural network. However, when a network is deep, the long
gradient flow may cause the gradient to vanish or explode, compromising
the effectiveness of model training. DeInfoReg decouples a large network
into multiple small modules, blocks the gradient flow between modules, and
assigns local objectives to each module. Thus, each gradient flow is short and
less likely to suffer from the issues of vanishing or exploding gradients. Thus,
the training is likely to be more efficient.

We use Figure 1 to illustrate the structure design of DeInfoReg and its
relationship with a standard neural network. When given a standard neural
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Figure 1: A standard neural network (left) and the DeInfoReg network architecture (right).
The green and red dashed arrows indicate areas affected by gradient updates, while gray
dashed cross marks indicate gradient truncation.

network to map a feature set x(i) to ŷ(i) that approximates the ground truth
label y(i) via L + 2 transformations E1, E2, . . . , EL, PL, CL (each of the Eis,
PL, and CL can be any building block of a graph, such as the fully connected
layer, convolution layer, recurrent layer, etc.), we can convert the network
into the DeInfoReg architecture with L modules, as shown on the right of
Figure 1. We use Pl, Cl, and El to represent the projector, the classifier, and
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the encoder of the module l, respectively; these namings follow the convention
in contrastive learning. The input of the encoder El is the output of the
encoder El−1 of the previous module. The output of the encoder (hl) is
processed by Pl to produce the embedding Êl. We update the weights of the
encoder El and projector Pl to minimize the local loss function LLL

l of layer
l (to be introduced in the next section); the red dashed arrows in Figure 1
indicate the gradient flow related to the loss LLL

l . Furthermore, each module’s
classifier Cl transforms Êl to the predicted label. We update the weights of
the projector Pl and the classifier layers Cl to minimize the cross-entropy loss
LCE
l between the predicted label ŷ(i) and the ground truth label y(i) for layer

l, as shown by Equation 1.

LCE
l (y(i), ŷ(i)) = −

C∑
j=1

yi,j log
(
ŷi,j

)
, (1)

where yi,j ∈ {0, 1} indicates whether instance i belongs to the class j, ŷi,j is
the predicted probability of class j for instance i.

The green dashed arrows in Figure 1 show the gradient flow related to
the loss LCE

l . All the gradients are flowed only within a module.

3.3. Local Loss Function Design
This subsection details the design of the local loss function, which inte-

grates three complementary components: variance, invariance, and covariance
losses. Together, these terms ensure the model learns meaningful representa-
tions while avoiding collapse – a common issue in self-supervised learning [31].

Variance Loss: Promoting Diversity. The variance loss is designed to promote
diversity among embeddings within a batch, which is crucial for preventing the
collapse problem. Collapse occurs when embeddings in a batch become overly
similar, resulting in a loss of representational capacity. The variance loss
addresses this by penalizing dimensions with low variability across embeddings,
ensuring sufficient diversity.

Given a batch of embeddings El ∈ RN×C for a layer l, where N is the
number of samples and C is the dimensionality of each embedding, we first
compute the vector ē, which is the average of the rows in El:

ēl = [ē1l , . . . , ē
C
l ] =

[
1

N

N∑
i=1

ei,1l , . . . ,
1

N

N∑
i=1

ei,Nl

]
, (2)
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def forward(self, x, label):
x = self.projector(x)
nor_x = nn.functional.normalize(x)
batch_size = label.shape[0]
# Variance
x_mean = nor_x - nor_x.mean(dim=0)
std_x = torch.sqrt(x_mean.var(dim=0)+ 0.0000001)
var_loss = torch.mean(F.relu(1 -std_x)) / (batch_size)
# Invariance
target_onehot =to_one_hot(label, self.n_class)
target_simi = similarity_matrix(target_onehot)
x_simi = similarity_matrix(nor_x)
invar_loss = F.mse_loss(target_simi, x_simi)
# Covariance
x_mean = nor_x - nor_x.mean(dim=0)
cov_x = (x_mean.T @ x_mean)/ (batch_size)
cov_loss = off_diagonal(cov_x).pow(2).sum().div(self.
num_features)

loss = var_loss + invar_loss + cov_loss

# Optimization Step(Update Encoder &Projector)
loss.backward()
optimizer.step()

Algorithm 1: PyTorch pseudocode for the local loss computation for
each layer

where ei,jl denotes the (i, j)th entry of El.
Next, we compute the centered embedding matrix Êl by subtracting the

column mean ēl:

Êl = El − ēl =
[
ei,jl − ēil

]
i=1,...,N,j=1,...,C

. (3)

The variance loss is then defined as:

V (Êl) =
1

C
max

(
0, γ − S(Êl)

)
, (4)

where S(Êl) = [s1l , . . . , s
C
l ], each sil is the standard deviation of the ith column
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in Êl, and γ is a predefined threshold. The hinge function max(0, γ − S(Êl))
penalizes dimensions with insufficient variability.

Invariance Loss: Preserving Consistency. The invariance loss ensures that
the learned embeddings eil are consistent with the target labels y(i). Let
Y = [yi,j] ∈ {0, 1}N×C represent the ground-truth labels for a batch. The
invariance loss I(Êl, Y ) is computed as:

I(Êl, Y ) =
1

N

∥∥∥Sim(Y )− Sim(Norm(Êl))
∥∥∥2

, (5)

where Norm(X) = X̄/(
∥∥X̄∥∥

2
+ ϵ), X̄ is a row-centered matrix: X̄ = [x̄i,j] =

[xi,j −
∑C

j=1 xi,j/C],
∥∥X̄∥∥

2
returns the L2 norm of each instance (i.e., each

row), Sim(X) = XXT where each entry at the ith row and jth column in
the matrix represents the cosine similarity between row i and row j in X,
and ϵ is a small constant added to prevent division by zero. This loss aligns
the embedding similarity structure with that of the normalized label vectors,
enhancing semantic consistency.

Covariance Loss: Reducing Redundancy. The covariance loss minimizes re-
dundancy by de-correlating different dimensions of the embeddings. The
covariance matrix Cov(Êl) is given by:

Cov(Êl) =
1

N
(Êl − ẽl)

T (Êl − ẽl), (6)

where ẽl =
∑N

i=1 ê
i
l/N is the average of row vectors in the matrix Êl (êil is the

ith row in Êl).
The covariance loss Cov(Êl) penalizes off-diagonal entries of the covariance

matrix:

C(Êl) =
1

C

∑
i ̸=j

[Cov(Êl)]
2
i,j, (7)

This de-correlation reduces redundancies in the embeddings, encouraging
efficient representation learning.

The final local loss function is the sum of variance, invariance, and covari-
ance losses, as defined in Equation 8, and a pseudocode to compute the local
loss is given in Algorithm 1.

LLL
l (Êl, Y ) = V (Êl) + I(Êl, Y ) + C(Êl). (8)
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The final loss function in each module, given by Equation 9, includes both
the cross-entropy loss LCE

l (Equation 1) and the local loss LLL
l (Equation 8)

for layer l. The hyperparameter α is set to 0.001. In other words, local loss
plays a much more important role in training.

L =
L∑
l=1

(
LLL
l + αLCE

l

)
, (9)

where L is the number of layers.

3.4. Integrating with the Pipeline Strategy
The decoupled nature of the DeInfoReg framework not only mitigates

the issues of gradient vanishing but also facilitates the way for efficient
model parallelism through a pipeline strategy. This section details how
DeInfoReg can be integrated with a pipeline approach to further enhance
training throughput and resource utilization.

3.4.1. Overview
Traditional end-to-end backpropagation suffers from both forward and

backward locking, where computations across layers are strictly sequential.
In contrast, DeInfoReg decomposes a deep neural network into multiple inde-
pendent modules, each equipped with its own local loss function (comprising
variance, invariance, and covariance components) and a dedicated classifier.
Since the gradient flow is truncated at the module boundaries, the inter-
module dependencies are minimized. This modularity is a natural fit for a
pipeline strategy, where different modules can be distributed across multiple
processing units (e.g., GPUs) and processed concurrently.

3.4.2. Pipeline Implementation in DeInfoReg
In DeInfoReg, each component is designed with its own local loss function

and operates independently. As soon as the forward pass of the preceding
layers is completed, the next component is triggered to start its forward-
backward process. This means that once the necessary outputs from previous
layers are available, a component starts processing its input through a forward
pass and then computes its local loss, triggering its backward pass.

Figure 2 illustrates the process of applying pipelining to DeInfoReg. Sup-
pose that we divide a neural network into four components. With standard
backpropagation, as shown at the top of the figure, each forward operation
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Device 
number

GPU0 FW1 BW1 UP

GPU1 FW2 BW2 UP

GPU2 FW3 BW3 UP

GPU3 FW4 LOSS BW4 UP

Time point t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17

Device 
number

GPU0 FW1 LOSS BW1 UP

GPU1 FW2 LOSS BW2 UP

GPU2 FW3 LOSS BW3 UP

GPU3 FW4 LOSS BW4 UP

Time point t1 t2 t3 t4 t5 t6 t7 t8

Device 
number

GPU0 FW1 FW2 FW3 FW4 LOSS BW4 BW3 BW2 BW1 UP

Time point t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17

An example of the standard BP

An example of naïve model parallelism (NMP)

An example of Decoupled Paradigm (DeInfoReg)

Figure 2: An illustrative example comparing the GPU usage per iteration for standard BP,
naïve model parallelism (NMP), and DeInfoReg. FWi and BWi denote the forward and
backward of component i, LOSS is loss computation, and UP is parameter update.

(FWi) must wait for the completion of all preceding forward operations (i.e.,
FW1, . . ., FWi− 1), and each backward operation (BWi) must wait for the
backward operations of subsequent layers (i.e., BWi+ 1, . . ., BWL).

If we naïvely allocate the four components to four processing units, such
as GPUs (as shown in the middle of Figure 2), the inherent dependencies
between forward and backward operations remain unchanged, causing all
operations to execute sequentially.

When using DeInfoReg, as depicted at the bottom of the figure, once the
first GPU (GPU0) completes its forward operation, the second GPU (GPU1)
can immediately begin processing the next component using the output from
GPU0. Although forward operations remain dependent, backward operations
can be executed concurrently. This setup enables multiple GPUs to operate
in parallel, significantly boosting computational efficiency. In this example,
the training time per iteration is reduced from 17 to 8 time units.

3.5. Comparison with Existing Approaches
Although variance, invariance, and covariance losses have been explored

in prior work [31], our contribution lies in integrating supervised contrastive
learning within a decoupled paradigm. Existing methods typically apply
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Table 1: Accuracy for BP, AL, SCPL, and DeInfoReg across NLP tasks with LSTM under
different batch sizes
Batch Size 64 128 256 512

IMDB

BP 88.52 ± 0.43 88.17 ± 0.41 87.82 ± 0.68 86.98 ± 0.47
AL 89.53 ± 0.37 89.77 ± 0.26 89.8 ± 0.1 89.58 ± 0.23

SCPL 89.59 ± 0.46 89.48 ± 0.24 89.64 ± 0.22 89.81 ± 0.32
DeInfoReg 89.83 ± 0.48 90.13 ± 0.06 90.1 ± 0.22 90.02 ± 0.31

AGNews

BP 91.56 ± 0.16 91.49 ± 0.08 91.47 ± 0.11 91.25 ± 0.07
AL 92.16 ± 0.08 92.12 ± 0.03 92.07 ± 0.11 91.98 ± 0.12

SCPL 91.92 ± 0.14 91.77 ± 0.1 92.11 ± 0.16 92.09 ± 0.11
DeInfoReg 92.26 ± 0.12 92.3 ± 0.06 92.22 ± 0.1 92.21 ± 0.09

DBpedia

BP 98.56 ± 0.05 98.51 ± 0.04 98.48 ± 0.03 98.42 ± 0.02
AL 98.57 ± 0.06 98.57 ± 0.06 98.59 ± 0.03 98.56 ± 0.01

SCPL 98.56 ± 0.04 98.57 ± 0.06 98.56 ± 0.01 98.58 ± 0.02
DeInfoReg 98.58 ± 0.03 98.57 ± 0.01 98.62 ± 0.01 98.65 ± 0.01

these losses within conventional end-to-end frameworks, which still suffer
from long gradient flows and strict sequential dependencies. In contrast,
our approach leverages the strengths of supervised contrastive learning to
guide each module’s representation learning while decoupling the network
into independent units. This integration not only shortens gradient paths,
reducing the risk of vanishing gradients, but also enables efficient model
parallelism across multiple GPUs.

4. Experiments

This section presents the experimental setups and results. We conduct
experiments to compare DeInfoReg with backpropagation (BP) and other
decoupled models Associated Learning (AL) and Supervised Contrastive
Parallel Learning (SCPL) using several network architectures, including Long
Short-Term Memory (LSTM), Transformer, VGG, and ResNet, based on open
datasets in natural language processing and computer vision. Experimental
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Table 2: Accuracy for BP, AL, SCPL, and DeInfoReg across NLP datasets with Transformer
under different batch sizes

Batch Size 64 128 256

IMDB

BP 87.91 ± 0.44 87.54 ± 0.29 87.50 ± 0.42
AL 87.93 ± 0.37 86.89 ± 0.73 87.98 ± 0.48

SCPL 88.16 ± 0.48 88.89 ± 0.29 88.69 ± 0.32
DeInfoReg 89.02 ± 0.17 89.26 ± 0.09 88.86 ± 0.30

AGNews

BP 91.05 ± 0.10 90.84 ± 0.11 90.74 ± 0.16
AL 88.20 ± 1.60 86.20 ± 1.90 89.41 ± 0.86

SCPL 91.36 ± 0.21 91.64 ± 0.07 91.66 ± 0.21
DeInfoReg 91.91 ± 0.13 91.95 ± 0.06 91.90 ± 0.15

DBpedia

BP 97.66 ± 0.05 97.63 ± 0.01 97.59 ± 0.02
AL 91.20 ± 2.37 92.81 ± 2.02 93.58 ± 1.62

SCPL 97.35 ± 0.27 97.47 ± 0.04 97.58 ± 0.05
DeInfoReg 97.84 ± 0.02 97.84 ± 0.02 97.85 ± 0.03

results show that DeInfoReg outperforms the baselines on most datasets and
most network architectures (Section 4.1 and Section 4.2).

We conduct experiments to study possible reasons for DeInfoReg’s surpris-
ingly great prediction accuracy. First, we investigate whether short gradient
flows alleviate the gradient vanishing issue (Section 4.3). Specifically, we
demonstrate that: (1) deep neural networks are easier to train with DeInfoReg
compared to BP, as evidenced by higher prediction accuracies, and (2) the
gradient magnitudes near the input layer of a deep neural network approach
zero when trained with BP, whereas they remain significantly larger when
trained with DeInfoReg. This observation suggests that shorter gradient
flows facilitate more effective signal transmission. Additionally, we show that
DeInfoReg is more robust when it comes to noisy labels than BP (Section 4.4).

In addition to the accuracy evaluations, this work also investigates practical
aspects of deploying DeInfoReg. We present an analysis of the training time
speedup achieved by integrating DeInfoReg with a pipeline strategy for model
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parallelism (Section 4.5). Furthermore, an empirical examination of the
model’s memory footprint is provided (Section 4.6).

Finally, we conduct an ablation study on the local loss functions and a
hyperparameter analysis on the value of α in Equation 9. It turns out that
all three local losses are essential (Section 4.7), and the value of α appears to
be optimal around 1e-2 to 1e-3 (Section 4.8).

All experiments are conducted on a machine with an Intel Core i7-12700K
CPU (3.60 GHz, 25MB cache) and an NVIDIA GeForce RTX 3090 GPU
(24GB). We perform a hyperparameter search for each model using the
validation dataset to ensure that each model is optimally tuned for fair and
accurate comparison. The hyperparameter settings can be found in the
released code.

4.1. Natural Language Processing Experiments
4.1.1. Experiment Setup

We use two network structures that are commonly used for NLP experi-
ments, LSTM and Transformer. We use three open datasets: IMDB, AGNews,
and DBpedia.

In NLP experiments, we remove blank words and stop words. The first
layer of each model is a pre-trained GloVe (Global Vectors for Word Represen-
tation) [39]. DeInfoReg and SCPL use the identity function as the projector
in each layer. The hyperparameters of SCPL follow the original paper [10]
with a temperature parameter of 0.1.

The LSTM network comprises the main network encoder plus two fully
connected layers as the classifier. We separate these components into four
modules. DeInfoReg, SCPL, and AL block the gradients between the four
modules. Each module includes four layers of bidirectional LSTM with a
dimension size of 300. SCPL and BP add the classifier after the output of the
last module with two fully connected layers and tanh as the activation function
for the first linear layer. For DeInfoReg, the structure of the classifier in
each module includes a tanh activation function followed by a fully connected
layer.

The Transformer network comprises four modules comprising the main
network encoder and two fully connected layers forming the classifier. DeIn-
foReg, SCPL, and AL block the gradient flows among the four modules. Each
module includes three Transformer encoding layers, each of which includes
a Multi-Head Self-Attention layer, an add-and-norm layer (i.e., a residual
connection and layer normalization), a fully connected layer, and another
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add-and-norm layer. SCPL and BP add a classifier after the output of the
last module with two linear layers where the activation function of the first
layer is tanh. The classifier for each module in DeInfoReg is a tanh function
followed by a fully connected layer.

4.1.2. NLP Classification Results
We test the LSTM network with batch sizes of 64, 128, 256, and 512. We

test different batch sizes because models based on contrastive learning often
require a larger batch size to get decent results. Similarly, we test batch sizes
of 64, 128, and 256 for the Transformer network. We do not test the batch
size 512 for Transformer due to GPU memory limitations.

The results for LSTM and Transformer deep networks are shown in Table 1
and Table 2, respectively. We repeat each experiment five times and report
the mean ± standard deviation of accuracy. The results show that DeInfoReg
achieves the best accuracy in all datasets in all batch sizes compared to BP,
AL, and SCPL. In addition, batch size has a limited influence on the accuracy
of DeInfoReg.

4.2. Computer Vision Experiments
4.2.1. Experiment Setup

We use two network structures that are widely used for computer vision
tasks: VGG network (VGG-11) [40] and ResNet (ResNet-18) [2]. We use
three open datasets: CIFAR-10, CIFAR-100, and TinyImageNet. We scale
the TinyImageNet images from 64× 64× 3 to 32× 32× 3 to match the input
dimension of the network.

We augment input images (e.g., random cropping, random flipping, color
jittering, and random grayscale) as a preprocessing step for all models. SCPL
and DeInfoReg use a multilayer perceptron as the projector layer. In particular,
SCPL follows the settings in the original paper [10]: two fully connected layers
with ReLU as the activation function for the first layer. As for DeInfoReg, the
projector includes three fully connected layers, where the output of the first
two layers also goes through batch normalization and the ReLU activation
function.

The VGG network comprises nine convolutional layers and four max-
pooling layers as the main network encoder, and two fully connected layers as
the classifier. Each convolutional layer uses batch normalization and ReLU as
the activation function [41]. In DeInfoReg, SCPL, and AL, the main network
encoder is divided into four modules; the gradient flow between modules
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is blocked. Each module consists of four convolution layers, followed by a
max-pooling layer, then two convolution layers and another max-pooling
layer, followed by two more convolution layers and a third max-pooling layer,
and finally, one convolution layer and a max-pooling layer. SCPL and BP
add a classifier after the last module; the structure of the classifier is two
fully connected layers, where ReLU is the activation function of the first fully
connected layer. DeInfoReg includes a classifier for each block. The structure
of each classifier includes batch normalization, a ReLU activation function,
and a fully connected layer.

The ResNet comprises 18 residual layers as the main network encoder,
with one average pooling layer and one fully connected layer as the classifier.
In DeInfoReg, SCPL, and AL, the main network encoder is divided into four
modules with gradient truncation. Each module includes eight blocks; each
block consists of two convolutional layers with a residual connection. BP and
SCPL add a classifier after the last module, structured as an average pooling
layer followed by a fully connected layer. DeInfoReg includes a classifier for
each block; the classifier is structured as a batch normalization layer, followed
by a ReLU activation function and a fully connected layer.

4.2.2. Computer Vision Classification Results
We train all models with 200 epochs in computer vision classification tasks.

Similar to the experiments in NLP, we test different batch sizes: 64, 128, 256,
and 512.

The results of the VGG and ResNet models are shown in Table 3 and
Table 4, respectively. BP performs best on the simplest CIFAR-10 dataset, and
DeInfoReg performs best on more complicated CIFAR-100 and TinyImageNet
on both VGG and ResNet networks. Additionally, DeInfoReg shows stable
accuracy across different batch sizes. This discovery indicates that we can
use a small batch size to save GPU memory for DeInfoReg. For comparison,
SCPL is also based on contrastive learning, but SCPL usually requires a larger
batch size to get better results. DeInfoReg has a smaller request on batch
size, likely because its loss function considers the variance and covariance
regularization directly, so negative pairs are less critical.

4.3. DeInfoReg Mitigates Gradient Vanishing
This section experiments on whether short gradient flows mitigate the

gradient vanishing issue.
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Table 3: Accuracy for BP, AL, SCPL, and DeInfoReg across CV tasks with VGG under
different batch sizes
Batch Size 64 128 256 512

CIFAR-10

BP 93.45 ± 0.09 93.71 ± 0.16 93.63 ± 0.1 93.74 ± 0.24
AL 93.02 ± 0.18 92.77 ± 0.17 92.45 ± 0.21 92.23 ± 0.34

SCPL 93.34 ± 0.05 93.41 ± 0.19 93.6 ± 0.14 93.67 ± 0.24
DeInfoReg 93.02 ± 0.18 93.00 ± 0.14 93.22 ± 0.1 93.1 ± 0.05

CIFAR-100

BP 68.13 ± 0.84 69.77 ± 0.54 71.02 ± 0.17 71.77 ± 0.34
AL 70.47 ± 0.24 69.91 ± 0.23 69.73 ± 0.19 69.1 ± 0.22

SCPL 70.19 ± 0.32 71.42 ± 0.19 71.85 ± 0.17 72.33 ± 0.19
DeInfoReg 73.7 ± 0.17 73.67 ± 0.24 74.03 ± 0.15 74.18 ± 0.12

TinyImageNet

BP 45.83 ± 0.66 42.77 ± 0.13 43.7 ± 1.1 45.52 ± 0.73
AL 46.73 ± 0.16 46.53 ± 0.27 46.8 ± 0.23 46.19 ± 0.19

SCPL 43.7 ± 0.77 44.71 ± 0.3 45.1 ± 0.3 45.58 ± 0.35
DeInfoReg 49.74 ± 0.32 50.93 ± 0.36 51.48 ± 0.56 50.98 ± 0.26

We perform experiments using the LSTM network based on the AGNews
dataset. We test the number of modules as 4, 6, 8, 10, 12, and 14. We
compare DeInfoReg and BP’s accuracies and the magnitude of the gradient
values in different layers.

Table 5 gives the comparison of the test accuracy of BP and DeInfoReg
with different numbers of modules. The results show that BP and DeInfoReg
perform well, up to 8 LSTM blocks. However, when the model has ten or
more blocks, BP’s accuracy drops significantly, while DeInfoReg maintains
stable performance, demonstrating better stability and being less sensitive to
the number of layers.

Figure 3 shows the average magnitudes of the gradient in the encoders of a
10-module (i.e., 10-layer) LSTM network, where the first module is closest to
the input, and the tenth module is closest to the output. When trained with
BP, the magnitudes of the gradient in the modules near the input approach
zero, leading to inefficient training. In contrast, using DeInfoReg maintains

18



Table 4: Accuracy for BP, AL, SCPL, and DeInfoReg across CV tasks with ResNet18
under different batch sizes
Batch Size 64 128 256 512

CIFAR-10

BP 93.4 ± 0.27 93.47 ± 0.14 93.48 ± 0.13 93.55 ± 0.12
AL 90.63 ± 0.28 90.63 ± 0.13 90.35 ± 0.14 89.82 ± 0.18

SCPL 92.09 ± 0.10 92.33 ± 0.11 92.24 ± 0.12 92.00 ± 0.19
DeInfoReg 91.77 ± 0.10 92.03 ± 0.19 92.01 ± 0.12 91.96 ± 0.19

CIFAR-100

BP 70.58 ± 0.06 70.67 ± 0.12 71.00 ± 0.38 70.97 ± 0.34
AL 70.47 ± 0.24 69.91 ± 0.23 69.73 ± 0.19 69.10 ± 0.22

SCPL 67.68 ± 0.15 68.56 ± 0.41 68.95 ± 0.11 69.00 ± 0.18
DeInfoReg 70.65 ± 0.11 70.75 ± 0.23 71.44 ± 0.25 71.56 ± 0.17

TinyImageNet

BP 47.66 ± 0.26 47.62 ± 0.20 47.73 ± 0.13 47.63 ± 0.15
AL 42.53 ± 1.33 42.58 ± 0.44 42.52 ± 0.47 41.93 ± 0.25

SCPL 41.33 ± 0.42 43.69 ± 0.11 44.85 ± 0.30 46.06 ± 0.40
DeInfoReg 47.68 ± 0.14 47.85 ± 0.35 48.49 ± 0.32 49.22 ± 0.20

reasonable gradient magnitudes near the input. This probably explains why
training a deep network with BP often results in poor accuracy, as shown in
Table 5. Note that the gradient measurements for DeInfoReg only consider
the encoders E1, . . . , EL depicted in Figure 1, excluding gradients from other
components such as projectors P1, . . . , PL. This approach guarantees that
the comparison with the gradients in BP layers is fair and isolates the effect
of our method on the gradient flow. The results clearly demonstrate that the
increase in gradient magnitude is attributable to alleviating the vanishing
gradient problem rather than merely the result of additional loss supervision

Table 5: Test accuracy of BP and DeInfoReg at various module depths L

L 4 6 8 10 12 14
BP 91.08± 0.21 91.55± 0.07 91.41± 0.30 50.78± 0.16 45.14± 0.23 25± 0.24

DeInfoReg 92.03± 0.18 92.2± 0.07 92.11± 0.06 92.1± 0.16 92.28± 0.28 92.12± 0.29
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Figure 3: Gradient changes in the encoder output of 10 LSTM blocks (Top: DeInfoReg,
Bottom: BP)

or increased loss weight.
Overall, these results indicate that DeInfoReg performs more stably than

BP at different depths, especially in deeper structures, proving its effectiveness
in handling the gradient vanishing issue.

4.4. Robustness on Noisy Labels

Table 6: Test accuracy of BP and DeInfoReg under different noisy label ratios θ

θ 0.0 0.2 0.4 0.6 0.8
BP 88.27 ± 0.48 83.01 ± 1.2 76.08 ± 0.13 67.71 ± 0.4 57.94 ± 1.75

DeInfoReg 90.15 ± 0.18 85.46 ± 0.66 81.28 ± 1.1 76.36 ± 5.18 68.1 ± 8.31

This section reports DeInfoReg’s ability to handle noisy (i.e., incorrect)
labels during training.
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Table 7: The speedup of the training time (using BP as the reference).

Batch size 256 512 1024

BP 1x (28.74 sec) 1x (28.44 sec) 1x (28.8 sec)
DeInfoReg (1 GPU) 0.81x 0.85x 0.90x
DeInfoReg (2 GPUs) 1.30x 1.35x 1.35x
DeInfoReg (4 GPUs) 1.41x 1.44x 1.47x

We compare the accuracy of BP and DeInfoReg’s robustness on noisy
datasets using the IMDB dataset. We introduce random noisy labels with
different noisy ratios into the training data. We test the models’ accuracies
with clean labels based on the test dataset.

Table 6 presents the test accuracy in various noisy ratios. The results
indicate that DeInfoReg consistently outperforms BP at all levels of noise.
When the noise ratio is high, the performance gap between DeInfoReg and
BP widens, suggesting that DeInfoReg’s robustness to noise is significantly
superior. This increased resilience to noisy labels highlights the effectiveness
of our method in preserving meaningful patterns in the data, even under
challenging conditions.

4.5. Training Time Speedup from Model Parallelism
The experimental results presented in Table 7 illustrate the impact of

model parallelism on the training time of DeInfoReg relative to standard
backpropagation. We make comparisons in various configurations using one,
two, and four GPUs. The experiments were conducted on a VGG model
trained on the CIFAR-100 dataset for 100 epochs, and the average training
time per epoch was recorded. When using BP as the baseline, training time
remains relatively constant across different batch sizes, averaging around 28 –
29 seconds. In contrast, DeInfoReg exhibits varying speedups depending on
the number of GPUs employed.

For instance, with a single GPU, DeInfoReg achieves a speedup factor of
less than 1.0 across all batch sizes, indicating that the communication cost
between GPUs and the overhead introduced by the decoupled processing in
DeInfoReg slightly increases training time compared to BP in this scenario.
However, as additional GPUs are leveraged, the benefits of model parallelism
become evident. When using two GPUs, the training time is reduced by
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approximately 30%−−35% relative to BP. DeInfoReg further improves the
speedup with four GPUs, reaching improvements of 41% to 47%.

These results underscore the effectiveness of DeInfoReg’s decoupled learn-
ing strategy when combined with model parallelism. By partitioning the
network into independent components that can perform forward and backward
passes concurrently across multiple GPUs, DeInfoReg alleviates the constraints
of traditional end-to-end backpropagation and significantly enhances training
throughput. This efficiency gain becomes particularly pronounced as more
GPUs are employed, demonstrating that DeInfoReg is well suited for scaling
up training in environments with abundant parallel computing resources.

4.6. Comparison of GPU Memory Usage

Table 8: Comparison of training parameter counts and GPU memory usage for BP, AL,
SCPL, and DeInfoReg on an IMDB natural language task (batch size 256); the backbone
network is LSTM.

Method GPU Memory Usage
BP 18088 Mib
AL 18116 MiB

SCPL 18184 MiB
DeInfoReg 18104 MiB

Table 8 compares the GPU memory usage for BP, AL, SCPL, and De-
InfoReg when training on the IMDB dataset with a batch size of 256 using
LSTM as the backbone network. The results show that the four methods
exhibit comparable GPU memory footprints. Specifically, BP uses 18088 MiB,
AL consumes 18116 MiB, SCPL requires 18184 MiB, and DeInfoReg utilizes
18104 MiB. These differences are minimal, indicating that despite architec-
tural modifications and the integration of decoupled supervised contrastive
learning in DeInfoReg, its memory requirements remain in the same range as
traditional backpropagation and other gradient decoupling approaches. This
demonstrates that our method achieves improved performance and robustness
without incurring significant additional GPU memory costs.

4.7. The Impact of Local Loss Functions
This section reports on an ablation study on the local loss functions.
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Table 9: Test accuracy of DeInfoReg with different local loss function components

Loss Combination VGG (CIFAR-100) LSTM (IMDB)

Variance Only 73.06± 0.38 83.42± 0.17
Invariance Only 74.02± 0.22 89.90± 0.14
Covariance Only 72.89± 0.26 83.58± 0.14

Variance + Invariance 74.10± 0.30 90.10± 0.20
Variance + Covariance 73.20± 0.28 84.00± 0.20

Invariance + Covariance 74.00± 0.25 90.00± 0.25
All 74.27± 0.29 90.36± 0.27

We evaluate the impact of different local loss functions, variance, invariance,
and covariance, of the DeInfoReg model based on the final accuracy. We test
VGG on CIFAR-100 and LSTM on IMDB datasets.

Table 9 shows the result. When using only a single local loss, invariance
is the most important. This makes sense as the invariance loss aims to
minimize the distance between the predicted embedding and the target label
distribution, which is probably the most important clue for each module.
However, combining all three local losses yields the best results. For VGG on
CIFAR-100, the accuracy improves from 74.02% to 74.27%. For LSTM on
IMDB, the accuracy improves from 89.90% to 90.36%. These results highlight
the hybrid effect of combining all three local loss functions.

4.8. The Impact of the Relative Importance of Cross-entropy and Local Losses
This section aims to investigate the impact of the relative importance

between the cross-entropy loss (LCE) and the local loss (LLL) in Equation 9.
This relative importance is governed by the hyperparameter α. To assess
the effect of different α values, we conducted a series of experiments using
the DeInfoReg model with a VGG network on the CIFAR-100 dataset. The
values of α are set to 1× 10−0, 1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4, and
1× 10−5.

The experimental results, summarized in Table 10, demonstrate that
varying the value of α can influence the accuracy of the model. The peak
performance is observed when α is around 1 × 10−2 and 1 × 10−3, which
yields the optimal test accuracies. Increasing or decreasing the value of α is
detrimental.

The observed trend in performance with varying α values highlights a
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Table 10: Best test accuracy of DeInfoReg (VGG on CIFAR-100) with varying α values.

α Best Test Accuracy (%)

1× 10−0 67.93
1× 10−1 70.43
1× 10−2 73.28
1× 10−3 72.66
1× 10−4 67.10
1× 10−5 47.91

crucial trade-off in the DeInfoReg framework. When α is too large (e.g.,
1× 10−0), the cross-entropy loss (LCE) term dominates the total loss for each
module. This excessive emphasis on the final classification task perhaps forces
intermediate modules to prematurely specialize their features for classification,
potentially neglecting the development of rich, diverse, and generalizable
representations that the local loss (LLL) terms are designed to foster. Such
premature specialization might lead to suboptimal feature hierarchies in the
earlier layers, thereby limiting the overall capacity and performance of the
decoupled learning system. Conversely, when α is too small (e.g., 1×10−5), the
contribution of the cross-entropy loss becomes negligible, and the training of
each module is almost exclusively driven by the local loss LLL. Although LLL

promotes feature diversity, insufficient guidance from the global classification
objective can be detrimental.

5. Discussion

This study introduces the Decoupled Supervised Learning with Informa-
tion Regularization (DeInfoReg) model architecture. DeInfoReg integrates
the concept of contrastive learning and regularization losses to decouple the
gradient flow of a neural network into multiple shorter ones, making optimiza-
tion more efficient. Our experiments on open datasets for both visual and
natural language tasks confirm that DeInfoReg consistently exhibits stable
and outstanding performance, regardless of batch size, module depth, or
noise robustness. Moreover, our results indicate that DeInfoReg effectively
mitigates the vanishing gradient problem, a critical challenge in training deep
networks.

In addition to its optimization benefits, the decoupled design of DeInfoReg
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naturally facilitates model parallelism. By partitioning the network into
independent components that can perform forward and backward passes con-
currently, DeInfoReg enables multi-GPU training that significantly improves
training throughput. This ability to leverage parallel training mechanisms
is particularly advantageous in large-scale settings, where computational
resources can be fully utilized to reduce overall training time.

In standard BP, all parameters are optimized to ensure that the prediction
ŷ closely matches the ground truth y In contrast, DeInfoReg – and other
models based on the decoupled paradigm – employ gradient truncation,
meaning that the parameter updates may not necessarily align directly with
the ultimate objective of achieving ŷ ≈ y. As a result, DeInfoReg may
sometimes perform worse than BP on specific datasets, e,g., CIFAR-10.
However, we emphasize that in other datasets, DeInfoReg typically stands
out as the best-performing model among decoupled paradigm approaches
and sometimes even surpasses BP. Furthermore, many default settings in
neural networks, such as the choice of activation functions and learning rate
schedulers, are primarily designed for standard BP and may not be optimal
for decoupled models. Future research may explore better configurations
explicitly tailored for decoupled approaches.

Other promising directions deserve further exploration as future work.
First, integrating DeInfoReg with residual connections could be a valuable
enhancement, as it may further improve gradient flows and mitigate issues
related to vanishing or exploding gradients, thereby boosting the model’s
overall stability and performance in very deep networks. Second, the de-
coupled architecture makes it possible to implement asynchronous training
strategies across multiple GPUs and further refine model parallelism, which
could lead to even greater improvements in training efficiency. Third, we aim
to develop an API similar to scikit-learn for the DeInfoReg model, providing
users with greater flexibility in building and extending modules, simplify-
ing customization and deployment, and facilitating integration into various
workflows. Finally, testing DeInfoReg on larger datasets will be essential to
validate its effectiveness in big data scenarios.
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