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Backpropagation (BP) is the cornerstone of today’s deep learning algo-
rithms, but it is inefficient partially because of backward locking, which
means updating the weights of one layer locks the weight updates in
the other layers. Consequently, it is challenging to apply parallel com-
puting or a pipeline structure to update the weights in different layers
simultaneously. In this letter, we introduce a novel learning structure, as-
sociated learning (AL), that modularizes the network into smaller com-
ponents, each of which has a local objective. Because the objectives are
mutually independent, AL can learn the parameters in different layers
independently and simultaneously, so it is feasible to apply a pipeline
structure to improve the training throughput. Specifically, this pipeline
structure improves the complexity of the training time from O(n�), which
is the time complexity when using BP and stochastic gradient descent
(SGD) for training, to O(n + �), where n is the number of training in-
stances and � is the number of hidden layers. Surprisingly, even though
most of the parameters in AL do not directly interact with the target vari-
able, training deep models by this method yields accuracies comparable
to those from models trained using typical BP methods, in which all pa-
rameters are used to predict the target variable. Consequently, because
of the scalability and the predictive power demonstrated in the experi-
ments, AL deserves further study to determine the better hyperparameter
settings, such as activation function selection, learning rate scheduling,
and weight initialization, to accumulate experience, as we have done over
the years with the typical BP method. In addition, perhaps our design can
also inspire new network designs for deep learning. Our implementation
is available at https://github.com/SamYWK/Associated_Learning.
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1 Introduction

Deep neural networks are usually trained using backpropagation (BP)
(Rumelhart, Hinton, & Williams, 1986), which, although common, increases
training difficulty for several reasons, among which backward locking highly
limits the training speed. Essentially, the end-to-end training method prop-
agates the error-correcting signals layer by layer; consequently, it cannot
update the network parameters of the different layers in parallel. This back-
ward locking problem is discussed in Jaderberg et al. (2016). Backward lock-
ing becomes a severe performance bottleneck when the network has many
layers. Beyond these computational weaknesses, BP-based learning seems
biologically implausible. For example, it is unlikely that all the weights
would be adjusted sequentially and in small increments based on a sin-
gle objective (Crick, 1989). Additionally, some components essential for BP
to work correctly have not been observed in the cortex (Balduzzi, Vanchi-
nathan, & Buhmann, 2015). Therefore, much work has proposed methods
that more closely resemble the operations of biological neurons (Lillicrap,
Cownden, Tweed, & Akerman, 2016; Nøkland, 2016; Bartunov et al., 2018;
Nøkland & Eidnes, 2019). However, empirical studies show that the predic-
tions of these methods are still unsatisfactory compared to those using BP
(Bartunov et al., 2018).

In this letter, we propose associated learning (AL), a method that
can be used to replace end-to-end BP when training a deep neural net-
work. AL decomposes the network into small components such that each
component has a local objective function independent of the local objective
functions of the other components. Consequently, the parameters in differ-
ent components can be updated simultaneously, meaning that we can lever-
age parallel computing or pipelining to improve the training throughput.
We conducted experiments on different data sets to show that AL gives test
accuracies comparable to those obtained by end-to-end BP training, even
though most components in AL do not directly receive the residual signal
from the output layer.

The remainder of this letter is organized as follows. In section 2, we re-
view the related work regarding the computational issues of training deep
neural networks. Section 3 gives a toy example to compare end-to-end BP
with our proposed AL method. Section 4 explains the details of AL. We
conducted extensive experiments to compare AL and BP-based end-to-end
learning using different types of neural networks and different data sets,
and the results are shown in section 5. Finally, we discuss the discoveries
and suggest future work in section 6.

2 Related Work

BP (Rumelhart et al., 1986) is an essential algorithm for training deep
neural networks and is the foundation of the success of many models in
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176 Y.-W. Kao and H.-H. Chen

recent decades (Hochreiter & Schmidhuber, 1997; LeCun, Bottou, Bengio,
& Haffner, 1998; He et al., 2016). However, because of “backward locking”
(i.e., the weights must be updated layer by layer), training a deep neural
network can be extremely inefficient (Jaderberg et al., 2016). Additionally,
empirical evidence shows that BP is biologically implausible (Crick, 1989;
Balduzzi et al., 2015; Bengio et al., 2015). Thus, many studies have suggested
replacing BP with a more biologically plausible method or with a gradient-
free method (Taylor et al., 2016) in the hope of decreasing the computational
time and memory consumption and better resembling biological neural net-
works (Bengio, Lee, Bornschein, Mesnard, & Lin, 2015; Huo, Gu, & Huang,
2018; Huo, Gu, Yang, & Huang, 2018).

To address the backward locking problem, Jaderberg et al. (2016) pro-
posed using a synthetic gradient, which is an estimation of the real gradient
generated by a separate neural network for each layer. By adopting the syn-
thetic gradient as the actual gradient, the parameters of every layer can be
updated simultaneously and independently. This approach eliminates the
backward locking problem. However, the experimental results have shown
that this approach tends to result in underfitting—probably because the gra-
dients are difficult to predict.

It is also possible to eliminate backward locking by computing the local
errors for the different components of a network. Belilovsky, Eickenberg,
and Oyallon (2018) showed that using an auxiliary classifier for each layer
can yield good results. However, this paper added one layer to the network
at a time, so it was challenging for the network to learn the parameters of
different layers in parallel. Mostafa, Ramesh, and Cauwenberghs (2018), ev-
ery layer in a deep neural network is trained by a local classifier. However,
experimental results have shown that this type of model is not comparable
to BP. Belilovsky et al. (2019) and Nøkland and Eidnes (2019) also proposed
to update parameters based on (or partially based on) local errors. These
models indeed allow the simultaneous updating of parameters of different
layers, and experimental results showed that these techniques improved
testing accuracy. However, these designs require each local component to
receive signals directly from the target variable for loss computation. Bio-
logically, it is unlikely that neurons far away from the target would be able
to access the target signal directly. Therefore, even though these methods
do not require global BP, they may still be biologically implausible.

Feedback alignment (Lillicrap et al., 2016) suggests propagating error
signals in a similar manner as BP, but the error signals are propagated with
fixed random weights in every layer. Later, Nøkland (2016) suggested de-
livering error signals directly from the output layer using fixed weights.
The result is that the gradients are propagated by weights, while the sig-
nals remain local to each layer. The problem with this approach is that it
is similar to the issue discussed in the preceding paragraph—biologically,
distant neurons are unlikely to be able to obtain signals directly from the
target variable.
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Another biologically motivated algorithm is target propagation (Bengio,
2014; Lee, Zhang, Fischer, & Bengio, 2015; Bartunov et al., 2018). Rather than
computing the gradient for every layer, the target propagation computes
the target that each layer should learn. This approach relies on an autoen-
coder (Baldi, 2012) to calculate the inverse mapping of the forward pass
and then pass the ground-truth information to every layer. Each training
step includes two losses that must be minimized for each layer: the loss of
inverse mapping and the loss between activations and targets. This learning
method alleviates the need for symmetric weights and is both biologically
plausible and more robust than BP when applied to stochastic networks.
Nonetheless, the targets are still generated layer by layer.

Overviews of the biologically plausible (or at least partially plausible)
methods are presented in Bengio et al. (2015) and Bartunov et al. (2018).
Although most of these methods perform worse than conventional BP, op-
timization beyond BP is still an important research area, mainly for compu-
tational efficiency and biological compatibility reasons.

Most studies on parallelizing deep learning distribute different data in-
stances into different computing units. Each of these computing units com-
putes the gradient based on the allocated instances, and the final gradient
is determined by an aggregation of the gradients computed by all the com-
puting units (Shallue et al., 2018; Zinkevich, Weimer, Li, & Smola, 2010).
Although this indeed increases the training throughput via paralleliza-
tion, this is different from our approach because our method parallelizes
the computation in different layers of a deep network. Our AL technique
and the technique of parallelizing data instances can complement each
other and further improve the throughput given enough computational
resources. A recent work, GPipe, utilizes pipeline training to improve the
training throughput (Huang et al., 2019). However, all the parameters in
GPipe are still influenced in a layerwise fashion. Our method is different
because the parameters in the different layers are independent.

Our work is highly motivated by target propagation, but we create in-
termediate mappings instead of directly transforming features into targets.
As a result, the local signals in each layer are independent of the signals in
the other layers, and most of these signals are not obtained directly from
the output label.

3 A Toy Example to Compare the Training Throughput of End-to-End
Backpropagation and Associated Learning

Figure 1 gives a typical structure of a deep neural network with six hid-
den layers. The input feature vector x goes through a series of transforma-

tions (x
f1−→ s1

f2−→ s2
f3−→ s3

b3−→ t3
h3−→ t2

h2−→ t1
h1−→ y) to approximate

the corresponding output y. We denote the functions ( f1, f2, f3, b3, t3, t2, t1)
and the outputs of these functions (s1, s2, s3, t3, t2, t1, y) by different symbols
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178 Y.-W. Kao and H.-H. Chen

Figure 1: An example of a deep neural network with six hidden layers. We de-
note each forward function ( f1, f2, f3, b3, h3, h2, h1) and the output of each func-
tion (s1, s2, s3, t3, t2, t1, y) by different symbols for ease of later explanation. Let
θ ( f ) denote the parameters of a function f ; then the backward path requires
computing the local gradient ∂ f

∂θ ( f ) for each function f .

Figure 2: Asimplified structure of the AL technique, which decomposes six hid-
den layers into three components such that each component has a local objective
function that is independent of the objective functions of the other components.
Consequently, we may update the parameters in component i (θ ( f )

i , θ
(h)
i ) and the

parameters in component j (θ ( f )
j , θ

(h)
j ) simultaneously for i �= j.

for the ease of later explanation on AL. If stochastic gradient descent (SGD)
and BP are applied to search for the proper parameter values, we need to
compute the local gradient ∂ f

∂θ ( f ) as the backward function for every forward
function f (whose parameters are denoted by θ ( f )). As a result, each train-
ing epoch requires a time complexity of O(n × ((� + 1) + (� + 1))) ≈ O(n�),
in which n is the number of training instances and � is the number of hidden
layers (i.e., � = 6 in our example). Since both forward pass and backward
pass require � + 1 transformations, we have two � + 1 terms. Consequently,
the training time increases linearly with the number of hidden layers �.

Figure 2 shows a simplified structure of the AL technique, which “folds”
the network and decomposes the network into three components such that
each component has a local objective function that is independent of the
local objectives in the other components. As a result, for i �= j, we may up-
date the parameters in component i (θ ( f )

i , θ
(h)
i ) and the parameters in compo-

nent j (θ ( f )
j , θ

(h)
j ) independently and simultaneously, since the parameters
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Table 1: An Example of Simultaneously Updating the Parameters by Pipelining.

Time Unit 1 2 3 4 5 6 7 . . .

First mini-batch Task 1 Task 2 Task 3
Second mini-batch Task 1 Task 2 Task 3
Third mini-batch Task 1 Task 2 Task 3
Fourth mini-batch Task 1 Task 2 Task 3
Fifth mini-batch Task 1 Task 2 Task 3
. . .

of component i (θ ( f )
i , θ

(h)
i ) determine the loss of component i, which is inde-

pendent of the loss of component j, which is determined by the parameters
of component j (θ ( f )

j , θ
(h)
j ).

Table 1 gives an example of applying pipelining for parameter updating
to improve the training throughput using AL. Let task i be the task of up-
dating the parameters in component i. At the first time unit, the network
performs task 1 (updating θ

( f )
1 and θ

(h)
1 ) based on the first training instance

(or the instances in the first mini-batch). At the second time unit, the net-
work performs task 1 (updating θ

( f )
1 and θ

(h)
1 ) based on the second training

instance (or the training instances in the second mini-batch) and performs
task 2 (updating θ

( f )
2 and θ

(h)
2 ) based on the first instance (or the first

mini-batch). As shown in the table, starting from the third time unit, the
parameters in all the different components can be updated simultaneously.
Consequently, the first instance requires O(�/2) units of computational
time, and because of the pipeline, each of the following n − 1 instances re-
quires only O(1) units of computational time. Therefore, the time complex-
ity of each training epoch becomes O(�/2 + (n − 1)) ≈ O(n + �).

Compared to end-to-end BP during which the time complexity grows
linearly to the number of hidden layers, the time complexity of the proposed
AL with pipelining technique grows to only a constant time as the number
of hidden layers increases.

4 Methodology

A typical deep network training process requires features to pass through
multiple nonlinear layers, allowing the output to approach the ground-
truth labels. Therefore, there is only one objective. With AL, however, we
modularize the training path by splitting it into smaller components and as-
sign independent local objectives to each small component. Consequently,
the AL technique divides the original long gradient flow into many in-
dependent short gradient flows and effectively eliminates the backward
locking problem. In this section, we introduce three types of functions

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/1/174/1865567/neco_a_01335.pdf by guest on 16 M
arch 2021



180 Y.-W. Kao and H.-H. Chen

(associated encoding and decoding, and bridge functions) that together
compose the AL network.

4.1 Associated Function and Associated Loss. Referring to Figure 2, let
x and y be the input features and the output target, respectively, of a training
sample. We split a network with � hidden layers into �/2 components (as-
suming � is an even number). The details of each component are illustrated
in Figure 4. Each component i consists of two local forward functions, fi

and gi ( fi and gi will be called the associated function and encoding function,
respectively, for better differentiation; we will further explain the encod-
ing function in section 4.3), and a local objective function independent of
the objective functions of the other components. A local associated function
can be a simple single-layer perceptron, a convolutional layer, or another
function. We compute si using equation 4.1:

si = fi(si−1), i = 1, . . . , �/2. (4.1)

Note that here, s0 equals x.
We define the associated loss function for each pair of (si, ti) by equation 4.2.

This concept is similar to target propagation (Bengio, 2014; Lee et al., 2015;
Bartunov et al., 2018), in which the goal is to minimize the distance between
si and ti for every component i:

Li(si, ti) = ‖si − ti‖2, i = 1, . . . , �/2. (4.2)

The optimizer in the ith component updates the parameters in fi to re-
duce the associated loss function (see equation 4.2).

Referring to Figure 2, equation 4.2 attempts to make si ≈ t i for all i. This
design may look strange for several reasons. First, if we can obtain an f1

such that s1 ≈ t1, all the other fis (i > 1) seem unnecessary. Second, since s1

and t1 are far apart, fitting these two terms seems counterintuitive.
For the first question, one can regard each component as one layer in a

deep neural network. As we add more components, the corresponding si

and t i may become closer. For the second question, indeed, it seems more
reasonable to fit the values of neighboring cells. However, our design breaks
the gradient flow among different components so that it is possible to per-
form a parallel parameter update for each component.

4.2 Bridge Function. Our early experiments showed that si has dif-
ficulty fitting the corresponding target t i, especially for a convolutional
neural network (CNN) and its variants. Thus, we insert nonlinear layers
to improve the fitting between si and t i. As shown in Figure 3, we cre-
ate a bridge function, bi, to perform a nonlinear transform on si such that
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Figure 3: Adding a “bridge” to the structure. The bridge includes nonlinear lay-
ers to transform si into s′

i such that s′
i ≈ ti. The black arrows indicate the forward

path.

bi(si) = s′
i ≈ t i. As a result, the associated loss is reformulated to the follow-

ing equation to replace the original equation 4.2:

Li(si, t i) = ‖bi(si) − t i‖2, i = 1, . . . , �/2, (4.3)

where the function bi(.) serves as the bridge.
Although this approach greatly increases the number of parameters and

the nonlinear layers to decrease the forward loss, except for the last bridge,
these parameters do not affect the inference function, as we will explain
in section 4.5, so the bridges only slightly increase the hypothesis space.
For a fair comparison, we also increase the number of parameters when
the models are trained by BP so that the models trained by AL and trained
by BP have the same number of parameters. The details are explained in
section 5.

4.3 Encoding/Decoding Functions and Autoencoder Loss. Referring
to Figure 2, in addition to the parameters of the fis and bis, we also need
to obtain parameters in his to have the mapping t i → t i−1 at the inference
phase. This mapping is achieved by the following two functions, which to-
gether can be regarded as an autoencoder:

t i = gi(t i−1), i = 1, . . . , �/2, (4.4)

t ′
i−1 = hi(t i), i = i, . . . , �/2. (4.5)
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182 Y.-W. Kao and H.-H. Chen

Figure 4: A training example using associated learning. The black arrows in-
dicate the forward paths that involve learnable parameters; the green arrows
connect the variables that should be compared to minimize their associated
distance; the red arrows denote the backward gradient flows. We group each
component by dashed lines. The parameters of the different components are
independent so that they can be updated simultaneously. The variable �

(v )
u de-

notes the vth gradient flow of the uth component. MSE(v )
u denotes the vth mean-

squared error of the uth component. Consequently, the first gradient flow of
each component, �

(1)
u , determines the updates of the parameters of fu and bu;

the second gradient flow of each component, �
(2)
u , determines the updates of gu

and hu.

Referring to Figure 4, the above two equations form an autoencoder be-
cause we want t i−1

gi−→ t i
hi−→ t ′

i−1 ≈ t i−1, so gi and hi are called the encoding
function and decoding function, respectively. The autoencoder loss L′

i for layer
i is defined by equation 4.6:

L′
i(hi(gi(t i−1)), t i−1) = ‖t ′

i−1 − t i−1‖2, i = 1, . . . , �/2. (4.6)

4.4 Putting Everything Together. Figure 4 shows the entire training
process of AL based on our earlier example. We group each component by
a dashed line. The parameters in each component are independent of the
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parameters in the other components. For each component i, the local objec-
tive function is defined by equation 4.7,

local-obji = MSE(1)
i + MSE(2)

i = ‖bi(si) − t i‖2 + ‖t ′
i−1 − t i−1‖2, (4.7)

where ‖bi(si) − t i‖2 is the associated loss shown by equation 4.3 and ‖t ′
i−1 −

t i−1‖2 is the autoencoder loss demonstrated by equation 4.6.
As shown in Figure 4, the associated loss in each component creates the

gradient flow �
(1)
i , which guides the updates of the parameters of fi and bi.

The autoencoder loss in each component leads to the second gradient flow
�

(2)
i , which determines the updates of gi and hi.

A gradient flow travels only within a component, so the parameters in
different components can be updated simultaneously. Additionally, since
each gradient flow is short, the vanishing gradient and exploding gradient
problems are less likely to occur.

Since each component incrementally refines the association loss of the
component immediately below it, the input x approaches the output y.

4.5 Inference Function, Effective Parameters, and Hypothesis Space.
We can categorize the above-mentioned parameters into two types: effec-
tive parameters and affiliated parameters. The affiliated parameters help
the model determine the values of the effective parameters, which in turn
determine the hypothesis space of the final inference function. Therefore,
while increasing the number of affiliated parameters may help to obtain
better values for the effective parameters, it will not increase the hypoth-
esis space of the prediction model. Such a setting may be relevant to the
overparameterization technique, which introduces redundant parameters
to accelerate the training speed (Allen-Zhu, Li, & Song, 2018; Arora, Co-
hen, & Hazan, 2018; Chen, 2017; Chen & Chen, 2020), but here, the pur-
pose is to obtain better values of the effective parameters rather than faster
convergence.

Specifically, in the training phase, we search for the parameters of the
fis and bis that minimize the associated loss and search for the parameters
of the gis and his to minimize the autoencoder loss. However, in the infer-
ence phase, we make predictions based only on equation 4.1, equation 4.5,
and b�/2(s�/2). Therefore, the effective parameters include only the param-
eters in the fis, the his (i = 1, . . . , �/2), and b�/2 (i.e., the last bridge). The
parameters in the other functions (i.e., the gis (i = 1, . . . , �/2) and the b js
( j = 1, . . . , �/2 − 1)) are affiliated parameters; they do not increase the ex-
pressiveness of the model but only help determine the values of the effective
parameters.

The predicting process can be represented in Figure 2. Equation 4.8
shows the prediction function:
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ŷ = (
h1 ◦ h2 ◦ . . . ◦ h�/2 ◦ b�/2 ◦ f�/2 ◦ . . . ◦ f2 ◦ f1

)
(x), (4.8)

where ◦ denotes the function composition operation and � = 6 in the ex-
ample is illustrated by Figures 2 and 4. Only the parameters involved in
equation 4.8 are the effective parameters that determine the hypothesis
space.

5 Experiments

In this section, we introduce the experimental settings and implementation
details, and we show the results of the performance comparisons between
BP and AL.

5.1 Experimental Settings. We conducted experiments by applying AL
and BP to different deep neural network structures—a multilayer per-
ceptron (MLP), a vanilla CNN, a visual geometry group (VGG) network
(Simonyan & Zisserman, 2015), a 20-layer residual neural network (ResNet-
20), and a 32-layer ResNet (ResNet-32) (He, Zhang, Ren, & Sun, 2016)—
and different data sets the Modified National Institute of Standards and
Technology (MNIST; LeCun et al., 1998), the 10-class Canadian Institute
for Advanced Research (CIFAR-10), and the 100-class CIFAR (CIFAR-100)
(Krizhevsky & Hinton, 2009) data sets). Surprisingly, although the AL ap-
proach aims at minimizing the local losses, its prediction accuracy is compa-
rable to, and sometimes even better than, that of BP-based learning, whose
goal is directly minimizing the prediction error.

In each experiment, we used the settings that were reported in recent
papers. We spent a reasonable amount of time searching for the hyperpa-
rameters not stated in previous papers based on random search (Bergstra
& Bengio, 2012). Eventually we initialized all the weights based on the He
normal initializer and use Adam as the optimizer. We experimented with
different activation functions and adopted the exponential linear unit (ELU)
for all the local forward functions (i.e., fi) and a sigmoid function for the
functions related to the autoencoders and bridges (i.e., gi, hi, and bi). The
models trained by BP yielded test accuracies close to the state-of-the-art
(SOTA) results under the same or similar network structures (He et al.,
2016; Carranza-Rojas, Calderon-Ramirez, Mora-Fallas, Granados-Menani,
& Torrents-Barrena, 2019). In addition, because AL includes extra param-
eters in the function b�/2 (the last bridge), as explained in section 4.5, we
increased the number of layers in the corresponding baseline models when
training by BP so that the models trained by AL and those trained by BP
have identical parameters, so the comparisons are fair.

The implementations are freely available at https://github.com
/SamYWK/Associated_Learning.
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Table 2: Test Accuracy Comparison on the MNIST Data Set.

BP AL DTP

MLP 98.5 ± 0.0% 98.6 ± 0.0% 96.43 ± 0.04%
Vanilla CNN 99.4 ± 0.0% 99.5 ± 0.0% –

Notes: We highlight the winner in bold. We applied only the
DTP algorithm on the MLP because this is the setting used in
the original paper. Applying DTP on other networks might
require different designs.

5.2 Test Accuracy. To test the capability of AL, we compared AL and
BP on different network structures (MLP, vanilla CNN, ResNet, and VGG)
and different data sets (MNIST, CIFAR-10, and CIFAR-100). When convert-
ing a network with an odd number of layers into the folded architecture
used by AL, the middle layer is simply absorbed by the bridge layer at the
top component shown in Figure 4. We also experimented with differential
target propagation (DTP) (Lee et al., 2015) on the MLP network based on
the MNIST data set. We tried only the MLP network, as the original paper
applied only DTP to the MLP structure and applying DTP to other network
structures requires different designs.

On the MNIST data set, we conducted experiments with only two
networks, structures, MLP and vanilla CNN, because using even these
simple structures yielded decent test accuracies. Their detailed settings are
described in the following paragraphs. The results are shown in Table 2. For
both the MLP and the vanilla CNN structure, AL performs slightly better
than BP, which performs better than DTP on the MLP network.

The MLP contains five hidden layers and one output layer; there are
1024, 1024, 5120, 1024, and 1024 neurons in the hidden layers and 10 neu-
rons in the output layer. Referring to Figure 4, this network corresponds to
the following structure when using the AL framework: the network has two
components; both the si and t i in a component i (i = 1, 2) have 1024 neurons,
and b2, the output of the top bridge function, contains 5120 neurons.

The vanilla CNN contains 13 hidden layers and 1 output layer. The first
4 layers are convolutional layers with a size of 3 × 3 × 32 (i.e., a width of
3, a height of 3, and 32 kernels) in each layer, followed by 4 convolutional
layers with a size of 3 × 3 × 64 in each layer, followed by a fully connected
layer with 1280 neurons, followed by 4 fully connected layers with 256 neu-
rons in each layer and ending with a fully connected layer with 10 neurons.
When training by AL, this structure corresponds to the following: the first
five layers (layers 1 to 5) and the last five layers (layers 9 to 13) form five
components, where layer i and layer 14 − i (i = 1, . . . , 5) belong to compo-
nent i and the sixth, seventh, and eighth layers construct the component 6.
The initial learning rate is 10−4, which is reduced after 80, 120, 160, and 180
epochs.
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Table 3: Test Accuracy Comparison on the CIFAR-10 Data Set.

BP AL DTP

MLP 60.6 ± 0.3% 62.8 ± 0.2% 58.2 ± 0.2%
Vanilla CNN 85.2 ± 0.4% 85.8 ± 0.1% –
ResNet-20 91.2 ± 0.4% 89.1 ± 0.5% –
ResNet-32 92.0 ± 0.2% 88.7 ± 0.4% –
VGG 92.3 ± 0.2% 92.6 ± 0.1% –

Notes: We highlight the winner in bold. We applied only
the DTP algorithm on the MLP because this is the setting
used in the original paper. Applying DTP on other net-
works might require different designs.

Table 4: Test Accuracy Comparison on the CIFAR-100 Data Set.

BP AL

MLP 26.5 ± 0.4% 29.7 ± 0.2%
Vanilla CNN 51.1 ± 0.2% 52.2 ± 0.5%
ResNet-20 63.7 ± 0.2% 61.0 ± 0.6%
ResNet-32 63.7 ± 0.3% 59.0 ± 1.6%
VGG 65.8 ± 0.3% 67.1 ± 0.3%

Note: We highlight the winner in bold.

The CIFAR-10 data set is more challenging than the MNIST data sets.
The input image size is 32 × 32 × 3 (Krizhevsky & Hinton, 2009); that is,
the images have a higher resolution, and each pixel includes red, green, and
blue (RGB) information. To make good use of these abundant features, we
included not only MLP and vanilla CNN in this experiment but also VGG
and the ResNets. The input images are augmented by two-pixel jittering
(Sabour, Frosst, & Hinton, 2017). We applied the L2-norm using 5 × 10−4

and 1 × 10−4 as the regularization weights for VGG and the ResNet models.
Because ResNet uses batch normalization and the shortcut trick, we set

its learning rate to 10−3, which is slightly larger than that of the other mod-
els. In addition, to ensure that the models trained by BP and AL have iden-
tical numbers of parameters for a fair comparison, we added extra layers to
ResNet-20, ResNet-32, and VGG when using BP for learning.

Table 3 shows the results of the CIFAR-10 data set. AL performs
marginally better than BP on the MLP, vanilla CNN, and VGG structures.
With the ResNet structure, AL performs slightly worse than BP. The CIFAR-
100 data set includes 100 classes. We used model settings that were nearly
identical to the settings used on the CIFAR-10 data set but increased the
number of neurons in the bridge. Table 4 shows the results. As in CIFAR-10,
AL performs better than BP on the MLP, vanilla CNN, and VGG structures
but slightly worse on the ResNet structures.
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Currently, the theoretical aspects of the AL method are weak, so we are
unsure of the fundamental reasons why AL outperforms BP on MLP, vanilla
CNN, and VGG but BP outperforms AL on ResNet. Our speculations are
below. First, since BP aims to fit the target directly and most of the layers in
AL can leverage only indirect clues to update the parameters, AL is less
likely to outperform BP. However, this reason does not explain why AL
performs better than BP on other networks. Second, perhaps the bridges can
be regarded implicitly as the shortcut connections of ResNet, so applying
AL on ResNet appears such as refining residuals of residuals, which could
be noisy. Finally, years of study on BP has made us gain experience on the
hyperparameter settings for BP. A similar hyperparameter setting may not
necessarily achieve the best setting for AL.

As reported in Bartunov et al. (2018), earlier studies on BP alternatives,
such as target propagation (TP) and feedback alignment (FA), performed
worse than BP in non-fully connected networks (e.g., a locally connected
network such as a CNN) and more complex data sets (e.g., CIFAR). Recent
studies, such as those on decoupled greedy learning (DGL) and the Pred-
sim model (Belilovsky, Eickenberg, and Oyallon, 2019; Nøkland & Eidnes,
2019), showed a similar performance to BP on more complex networks (e.g.,
VGG), but these models require each layer to access the target label y di-
rectly, which could be biologically implausible because distant neurons are
unlikely to obtain the signals directly from the target. As far as we know,
our proposed AL technique is the first work to show that an alternative of
BP works on various network structures without directly revealing the tar-
get y to each hidden layer, and the results are comparable to, and sometimes
even better than, the networks trained by BP.

5.3 Number of Layers versus Associated Loss and versus Accuracy.
This section presents the results of experiments with different numbers of
component layers on the MNIST data set. For each component layer i, both
the corresponding si and t i have 1024 neurons, and s′

� (i.e., the output of the
bridge at the top layer) contains 5120 neurons.

First, we show that each component indeed incrementally refines the as-
sociated loss of the one immediately below it. Specifically, we applied AL
to the MLP and experimented with different numbers of component lay-
ers. As shown in Table 5, adding more layers truly decreases the associated
loss, and the associated loss at an upper layer is smaller than that at a lower
layer.

Second, we show that adding more layers helps transform x into y. As
shown in Table 6, adding more layers increases the test accuracy.

5.4 Metafeature Visualization and Quantification. To determine
whether the hidden layers truly learn useful metafeatures when using AL,
we used t-SNE (Maaten & Hinton, 2008) to visualize the second and fourth
hidden layers and the output layer in the six-layer MLP model and the
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Table 5: The Associated Loss at Different Layers on the MNIST Data Set after
200 Epochs.

Number of Component Layers 1 Layer 2 Layers 3 Layers

‖s′
1 − t1‖2

2 1.2488 × 10−5 1.5469 × 10−5 1.2219 × 10−5

‖s′
2 − t2‖2

2 – 3.5818 × 10−7 3.8033 × 10−7

‖s′
3 − t3‖2

2 – – 6.7192 × 10−10

Note: Referring to Figure 4, for each layer, its corresponding si and t i both contain
1024 neurons.

Table 6: Number of Layers versus Training Accuracy and versus Test Accuracy
on the MNIST Data Set after 200 Epochs.

Number of Component Layers 1 Layer 2 Layers 3 Layers

Training accuracy 1.0 1.0 1.0
Test accuracy 0.9849 0.9860 0.9871

Notes: Referring to Figure 4, for each layer, the corresponding si
and t i both contain 1024 neurons. The bridge layer in the top layer
includes 5120 neurons.

fourth, eighth, and twelfth hidden layers in the 14-layer Vanilla CNN model
on the CIFAR-10 data set. For comparison purposes, we also visualize the
corresponding hidden layers trained using BP. As shown in Figures 5 and
6, the initial layers seem to extract less useful metafeatures than the later
layers because the labels are difficult to distinguish in the corresponding
figures. However, a comparison of the last few layers shows that AL groups
the data points of the same label more accurately than BP, which suggests
that AL likely learns better metafeatures.

To assess the quality of the learned metafeatures, we calculated the intra-
and interclass distances of the data points based on the metafeatures. We
computed the intraclass distance dintra

k as the average distance between any
two data points in class k for each class. The interclass distance is the av-
erage distance between the centroids of the classes. We also computed the
ratio between inter- and intraclass distance to determine the quality of the
metafeatures generated by AL and BP (Michael & Lin, 1973; Luo et al., 2019).
As shown in Table 7, AL performs better than BP on both the CIFAR-10 and
CIFAR-100 data sets because AL generates metafeatures with a larger ratio
between inter- and intraclass distance.

6 Discussion and Future Work

Although BP is the cornerstone of today’s deep learning algorithms, it is
far from ideal, and therefore, improving BP or searching for alternatives

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/1/174/1865567/neco_a_01335.pdf by guest on 16 M
arch 2021



Associated Learning 189

Figure 5: t-SNE visualization of the MLP on the CIFAR-10 data set. The different
colors represent different labels. The figures in the first row are the results of
the raw data, second layer, fourth layer, and output layer when using BP. The
second row shows the corresponding results for AL.

Figure 6: t-SNE visualization of Vanilla CNN with CIFAR-10 data set. The dif-
ferent colors represent different labels. The figures in the first row are the results
of the raw data, fourth, eighth, and twelfth layers when using BP. The second
row shows the corresponding results for AL.

is an important research direction. This letter discusses AL, a novel pro-
cess for training deep neural networks without end-to-end BP. Rather than
calculating gradients in a layerwise fashion based on BP, AL removes the
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Table 7: A Comparison of the Inter- and Intraclass Distances and the Ratio of
the Two.

Interclass Intraclass Inter-/Intra-
Data Set Network Method Distance Distance Ratio

CIFAR-10 MLP BP 39.36 67.97 0.58
AL 0.73 0.66 1.11

Vanilla CNN BP 41.82 26.87 1.56
AL 1.17 0.36 3.25

CIFAR-100 MLP BP 114.42 342.65 0.33
AL 0.23 0.28 0.82

Vanilla CNN BP 114.71 163.43 0.70
AL 0.55 0.51 1.08

Note: We highlight the winner in bold.

dependencies between the parameters of different subnetworks, thus al-
lowing each subnetwork to be trained simultaneously and independently.
Consequently, we may utilize pipelines to increase the training throughput.
Our method is biologically plausible because the targets are local and the
gradients are not obtained from the output layer. Although AL does not di-
rectly minimize the prediction error, its test accuracy is comparable to, and
sometimes better than, that of BP, which does directly attempt to minimize
the prediction error. Although recent studies have begun to use local losses
instead of backpropagating the global loss (Nøkland & Eidnes, 2019), these
local losses are computed mainly based on (or are at least partially based
on) the difference between the target variable and the predicted results. Our
method is unique because in AL, most of the layers do not interact with the
target variable.

Current strategies to parallelize the training of a deep learning model
usually distribute the training data into different computing units and ag-
gregate (e.g., by averaging) the gradients computed by each computing
unit. Our work, on the other hand, parallelizes the training step by com-
puting the parameters of the different layers simultaneously. Therefore, AL
is not an alternative to most of the other parallel training approaches but
can integrate with the above-mentioned approach to further improve the
training throughput.

Years of research have allowed us to gradually understand the proper
hyperparameter settings (e.g., network structure, weight initialization, and
activation function) when training a neural network based on BP. However,
these settings may not be appropriate when training by AL. Therefore, one
possible research direction is to search for the right settings for this new
approach.

We implemented AL in TensorFlow. However, we were unable to imple-
ment the pipelined AL that was shown in Table 1 within a reasonable period
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because of the technical challenges of task scheduling and parallelization
in TensorFlow. We decided to leave this part as future work. However, we
ensure that the gradients propagate only within each component, so theo-
retically, a pipelined AL should be able to be implemented.

Another possible future work is validating AL on other data sets. (e.g.,
ImageNet, Microsoft Common Objects in Context, and Google’s Open Im-
ages) and even on data sets unrelated to computer vision, such as those
used in signal processing, natural language processing, and recommender
systems. Yet another future work is the theoretical work of AL, which may
help us understand why AL outperforms BP under certain network struc-
tures. In the longer term, we are highly interested in investigating optimiza-
tion algorithms beyond BP and gradients.

Acknowledgments

We acknowledge partial support by the Ministry of Science and Technology
under grant MOST 107-2221-E-008-077-MY3. We thank the reviewers for
their informative feedback.

References

Allen-Zhu, Z., Li, Y., & Song, Z. (2018). A convergence theory for deep learning via over-
parameterization. arXiv:1811.03962.

Arora, S., Cohen, N., & Hazan, E. (2018). On the optimization of deep networks: Implicit
acceleration by overparameterization. arXiv:1802.06509.

Baldi, P. (2012). Autoencoders, unsupervised learning, and deep architectures. In
Proceedings of ICML Workshop on Unsupervised and Transfer Learning (pp. 37–49).

Balduzzi, D., Vanchinathan, H., & Buhmann, J. M. (2015). Kickback cuts backprop’s
red-tape: Biologically plausible credit assignment in neural networks. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 485–491).
Palo Alto, CA: AAAI Press.

Bartunov, S., Santoro, A., Richards, B., Marris, L., Hinton, G. E., & Lillicrap, T. (2018).
Assessing the scalability of biologically-motivated deep learning algorithms and
architectures. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems (pp.
9390–9400). Red Hook, NY: Curran.

Belilovsky, E., Eickenberg, M., & Oyallon, E. (2018). Greedy layerwise learning can scale
to imagenet. arXiv:1812.11446.

Belilovsky, E., Eickenberg, M., & Oyallon, E. (2019). Decoupled greedy learning of CNNs.
arXiv:1901.08164.

Bengio, Y. (2014). How auto-encoders could provide credit assignment in deep networks via
target propagation. arXiv:1407.7906.

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., & Lin, Z. (2015). Towards biologically
plausible deep learning. arXiv:1502.04156.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13, 281–305.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/1/174/1865567/neco_a_01335.pdf by guest on 16 M
arch 2021



192 Y.-W. Kao and H.-H. Chen

Carranza-Rojas, J., Calderon-Ramirez, S., Mora-Fallas, A., Granados-Menani, M., &
Torrents-Barrena, J. (2019). Unsharp masking layer: Injecting prior knowledge in
convolutional networks for image classification. In Proceedings of the International
Conference on Artificial Neural Networks (pp. 3–16). Berlin: Springer.

Chen, H.-H. (2017). Weighted-SVD: Matrix factorization with weights on the latent factors.
arXiv:1710.00482.

Chen, P., & Chen, H.-H. (2020). Accelerating matrix factorization by overparameter-
ization. In Proceedings of the International Conference on Deep Learning Theory and
Applications (pp. 89–97). SciTePress.

Crick, F. (1989). The recent excitement about neural networks. Nature, 337(6203), 129–
132.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (pp. 770–778). Piscataway, NJ: IEEE.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computa-
tion, 9(8), 1735–1780.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen, M., . . . Chen, Z. (2019).
GPipe: Efficient training of giant neural networks using pipeline parallelism. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché, E. Fox, & R. Garnett (Eds.),
Advances in neural information processing systems, 32 (pp. 103–112). Red Hook, NY:
Curran.

Huo, Z., Gu, B., & Huang, H. (2018). Training neural networks using features replay.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Gar-
nett (Eds.), Advances in neural information processing systems, 31 (pp. 6659–6668).
Red Hook, NY: Curran.

Huo, Z., Gu, B., Yang, Q., & Huang, H. (2018). Decoupled parallel backpropagation with
convergence guarantee. arXiv:1804.10574.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver, D.,
& Kavukcuoglu, K. (2016). Decoupled neural interfaces using synthetic gradients.
arXiv:1608.05343.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images
(Technical report). University of Toronto.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning ap-
plied to document recognition. In Proceedings of the IEEE, 86(11), 2278–2324.

Lee, D.-H., Zhang, S., Fischer, A., & Bengio, Y. (2015). Difference target propagation.
In Proceedings of the Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (pp. 498–515). Berlin: Springer.

Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J. (2016). Random synaptic
feedback weights support error backpropagation for deep learning. Nature Com-
munications, 7, 13276.

Luo, Y., Wong, Y., Kankanhalli, M., & Zhao, Q. (2019). G-softmax: Improving intr-
aclass compactness and interclass separability of features. IEEE Transactions on
Neural Networks and Learning Systems, 31, 685–699.

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9, 2579–2605.

Michael, M., & Lin, W.-C. (1973). Experimental study of information measure and
inter-intra class distance ratios on feature selection and orderings. IEEE Transac-
tions on Systems, Man, and Cybernetics, SMC-3, 172–181.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/1/174/1865567/neco_a_01335.pdf by guest on 16 M
arch 2021



Associated Learning 193

Mostafa, H., Ramesh, V., & Cauwenberghs, G. (2018). Deep supervised learning us-
ing local errors. Frontiers in Neuroscience, 12, 608.

Nøkland, A. (2016). Direct feedback alignment provides learning in deep neural net-
works. In D. D. Lee, U. von Luxburg, H. M. Wallach, H. Larochelle, K. Grauman,
& N. Cesa-Bianchi (Eds.), Proceedings of the 30th Conference on Neural Information
Processing Systems (pp. 1037–1045). Red Hook, NY: Curran.

Nøkland, A., & Eidnes, L. H. (2019). Training neural networks with local error signals.
arXiv:1901.06656.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533.

Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules.
In U. von Luxburg, R. Garnett, M. Sugiyama, & I. Guyon (Eds.), Proceedings of
the 31st Conference on Neural Information Processing Systems (pp. 3856–3866). Red
Hook, NY: Curran.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R., & Dahl, G. E. (2018).
Measuring the effects of data parallelism on neural network training. arXiv:1811.03600.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition. In Proceedings of the International Conference on Learning
Representations.

Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., & Goldstein, T. (2016). Training
neural networks without gradients: A scalable ADMM approach. In Proceedings
of the International Conference on Machine Learning (pp. 2722–2731).

Zinkevich, M., Weimer, M., Li, L., & Smola, A. J. (2010). Parallelized stochastic gra-
dient descent. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, &
A. Culotta (Eds.), Advances in neural information processing systems, 23 (pp. 2595–
2603). Red Hook, NY: Curran.

Received April 27, 2020; accepted July 27, 2020.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/1/174/1865567/neco_a_01335.pdf by guest on 16 M
arch 2021


