
Petrel: Personalized Trend Line Estimation with
Limited Labels from One Individual

Tong-Yi Kuo and Hung-Hsuan Chen[0000−0001−5137−4449]

National Central University, Taoyuan, Taiwan
kuotony860810@gmail.com, hhchen@acm.org

Abstract. This study proposes a framework for generating customized
trend lines that consider user preferences and input time series shapes.
The existing trend estimators fail to capture individual needs and appli-
cation domain requirements. The proposed framework obtains users’ pre-
ferred trends by asking users to draw trend lines on sample datasets. The
experiments and case studies demonstrate the effectiveness of the model.
The code and dataset are available at https://github.com/Anthony860810/Generating-
Personalized-Trend-Line-Based-on-Few-Labelings-from-One-Individual.

Keywords: Time series analysis · Trend estimation.

1 Introduction

Given a time series vector x = [x1, . . . , xT], a trend line estimation algorithm
returns a slowly varying time series ŷ = [ŷ1, . . . , ŷT] that aims to represent the
global pattern of the original time series x. However, a trend line has no precise
definition: “slowly varying” and “global pattern” are both vague descriptions.
As a result, even though many trend estimation algorithms are available [3, 5,
10, 20, 23], none seems to have a dominant advantage over the others.

We believe the ambiguous definition of a trend is inevitable because a proper
trend should depend on not only the input time series but also the nature of
an application and a user’s needs. In other words, even given the same time
series, different users or applications may prefer different trends. To demonstrate
this, we asked different users to draw trend lines given a fixed time series. The
results indeed show that different users illustrate trends with distinct patterns.
An example is shown in Figure 1: given a time series, the left trend is sensitive
to local turbulence, and the right trend is smoother. A simple survey shows that
30% of users preferred the left trend and 70% preferred the right one. This result
motivates our study, which aims to design a framework to estimate a personalized
trend given both a time series and a user’s personal requirements or preferences.

Unfortunately, it is extremely challenging for a user to concretely illustrate
the characteristic of a trend that meets her/his requirements or preferences.
Ultimately, we decided to leverage machine learning algorithms to capture a
user’s needs based on the user’s plotted trend lines on limited time series samples.
We hope that once the machine learning algorithms determine a user’s needs by

2 T.-Y. Kuo and H.-H. Chen

0 250 500 750 1000 1250 1500 1750

2000

1500

1000

500

0

500

1000

(a) Trend line 1

0 250 500 750 1000 1250 1500 1750

2000

1500

1000

500

0

500

1000

(b) Trend line 2

Fig. 1. Two distinct trend lines on the same time series dataset. A simple survey shows
that 30% of users preferred the left one and 70% of them preferred the right. The results
show that different users indeed prefer different types of trend lines.

observing these examples, the algorithms can automatically generate customized
trend lines for a large number of time series that have the same requirements.

We present a scenario that is well-suited for the application of our person-
alized trend line estimator. Let us consider a situation where a user needs to
produce trend lines for a large set of time series such as stock market prices,
website log reports, or Internet traffic reports [7, 15, 1, 13]. However, the cur-
rently popular trend estimators such as ℓ1 trend filtering or Hodrick-Prescott
filtering are not able to generate satisfactory trends that align with the user’s
specific requirements as these estimators are not personalized. Using our work,
a user only needs to draw trends on a small number of time series samples, and
our algorithm will identify the characteristics of the user’s preferred trend lines
and generate customized trend lines for all other time series.

As we will show later in the experiments, directly learning the relationship
between an input time series and the trend line tends toward overfitting given
limited training samples labeled by a user. As a result, the main technical chal-
lenge of our work becomes designing a framework to learn a user’s preferred
shapes of trend lines from limited samples.

The main contributions of this paper include the following. First, we propose
a new research problem – estimating a customized trend from a time series with
personalized or application-specific requirements. We explain why this task is
challenging. Second, we propose a personalized trend line estimator named Pe-
trel to address this problem. Petrel, by design, learns a user’s requirements even
when the user’s labeled trend line samples are limited. Third, we conducted thor-
ough experiments to compare our proposed method with supervised algorithms
and few-shot learning algorithms, both of which learn to map a time series to a
personalized trend line. Additionally, we conducted case studies to demonstrate
that Petrel indeed identifies a user’s preferences. Finally, we release both the
source code and the experimental dataset for reproducibility. The dataset in-
cludes the trends plotted by the real users we recruited. The dataset alone could
be an invaluable resource for researchers studying trend line estimation.

Personalized Trend Line Estimation 3

Table 1. Notation list

Indices:
T Length of a time series (t ∈ {1, . . . , T})
N Number of original time series (n ∈ {1, . . . , N})
U Number of simulated users (u ∈ {1, . . . , U})
M Number of user-labeled trends (m ∈ {1, . . . ,M})
J Number of test series (j ∈ {1, . . . , J})
K Number of base trend estimators (k ∈ {1, . . . ,K})
Variables for simulated trend generation and model training:
bk a non-customized base trend generating function that takes a time series as

the input argument
wu the affine coefficients for a simulated user; wu = [wu,1, . . . , wu,K]

xorig
n a collected time series used during training; xorig

n =
[
xorig
n,1 , . . . , xorig

n,T

]
ŷsim
n,u a simulated trend line for simulated user u on xorig

n ; ŷsim
n,u =∑K

k=1 wu,kbk(x
orig
n)

Variables for inference and verification:
xte

j a test series; xte
j =

[
xte
j,1, . . . , x

te
j,T

]
ŷte
j the estimated personalized trend for xte

j ; ŷte
j =

[
ŷte
j,1, . . . , ŷ

te
j,T

]
yte
j the ground truth of the personalized trend for xte

j ; yte
j =

[
yte
j,1, . . . , y

te
j,T

]
xlab

m a time series sample for a user to label with a trend line sample; xlab
m =[

xlab
m,1, . . . , x

lab
m,T

]
ŷlab
m the estimated trend line for xlab

m ; ŷlab
m =

[
ŷlab
m,1, . . . , ŷ

lab
m,T

]
ylab
m the trend line sample for xlab

m labeled by the user; ylab
m =

[
ylab
m,1, . . . , y

lab
m,T

]

2 Personalized Trend Line Estimation

2.1 Task Overview

We follow the notation list shown in Table 1 in this paper.
A standard trend line estimator outputs ŷ = [ŷ1, . . . , ŷT] given a time series

vector x = [x1, . . . , xT]. In this paper, we call a standard trend line estimator bk
a “non-customized base trend generator” because bk generates ŷ without consid-
ering any personalized factors. Famous examples of non-customized estimators
include Hodrick-Prescott filtering (HP filtering) [6, 12], ℓ1 trend filtering [10],
and seasonal-trend decomposition using LOESS (STL) [4].

In contrast, a personalized trend line estimator takes both x and the user’s
requirements as the input to generate ŷ. Since it could be complicated for a user
to specify the requirements directly, we ask the user to draw trend lines (called
“trend line samples” below) on a small number of time series (called “time
series samples” below) and let our model determine the user’s preferred or re-
quired characteristics of the trend line. Specifically, let ylab

m =
[
ylabm,1, . . . , y

lab
m,T

]
be the trend line sample labeled by a user on a time series sample xlab

m =[
xlab
m,1, . . . , x

lab
m,T

]
; we want to learn a customized trend line estimator f that

transforms xlab
m into ylab

m . Once f is obtained, we can estimate ŷte
j as a person-

alized trend for the time series xte
j using f(xte

j).

4 T.-Y. Kuo and H.-H. Chen

2.2 Challenge of the Task

An obvious approach to performing the aforementioned task is to train a su-
pervised learner to map a time series sample xlab

m to a trend line sample ylab
m .

However, such an approach requires a large number of user-labeled trends. In our
scenario, since a user only draws trend line samples for few time series samples,
a supervised learning algorithm tends to overfit the training data.

A possible strategy to address the issue of small training data is the pretrain-
ing and fine-tuning strategy used in few-shot learning [18, 22]. However, as we
will show later in the experiments, although few-shot learning performs mod-
erately better than supervised learners, the estimated personalized trends are
still unsatisfactory. In summary, it is challenging to learn a personalized trend
estimator based on a limited number of xlab

m and ylab
m labeled by a single user.

2.3 Petrel Model – Training

We propose the Petrel model to estimate personalized trends. Instead of directly
learning to map xlab

m onto ylab
m , Petrel consists of a two-stage training process.

Collecting a large number of time series is simple, but labeling the personal-
ized trends for them is laborious. In stage 1 of the training, we generate simulated
personalized trends from a large collection of data series. For a collected time
series xorig

n , we useK non-customized base trend generators to generateK differ-
ent trends: b1(x

orig
n), . . . , bK(xorig

n). Next, we generate a simulated personalized
trend line ŷsim

n,u for a simulated user u by assuming that ŷsim
n,u is composed of an

affine combination of bk(x
orig
n), as shown by the following equation.

ŷsim
n,u =

K∑
k=1

wu,kbk(x
orig
n), (1)

where the wu,ks are the affine coefficients representing the characteristics of user
u’s preferred trend. We vary the values of [wu,1, . . . , wu,K] to simulate different
user us so that different simulated personalized trends ŷsim

n,u are generated even

when xorig
n is fixed. For the non-customized base trend generating functions, we

selected three trend estimators: b1 is ℓ1 trend filtering [10], b2 is HP filtering [6],
and b3 is STL estimation [4]. It is straightforward to include other base trend
generators, e.g., the ARIMA model [9] or a local regression model.

In stage 2, we train an affine coefficient estimator fcoef. Given a time series
xorig
n and a simulated personalized trend ŷsim

n,u that was generated in stage 1 as
the input features, we want the affine coefficient estimator fcoef to return the
affine coefficients [wu,1, . . . , wu,K] after training. In our experiment, fcoef is com-
posed of 4 layers of 1D convolutions (each with ReLU as the activation function)
followed by a fully connected layer (with softmax as the activation function to
ensure that the sum of the outputs is 1). The input includes 2 channels – one for
the time series xorig

n and the other for the simulated personalized trend ŷsim
n,u .

The first stage of this training strategy can generate a large number of train-
ing instances for the second stage to train the affine coefficient estimator fcoef,
which plays a crucial role during inference, as described below.

Personalized Trend Line Estimation 5

2.4 Petrel Model – Inference

The Petrel inference method also involves two stages. In stage 1, the user is asked
to plot M trend line samples (i.e., ylab

1 , . . . ,ylab
M) on M time series samples (i.e.,

xlab
1 , . . . ,xlab

M) for a small value of M . For each pair
(
xlab
m ,ylab

m

)
, we estimate the

affine coefficients to generate the trend ylab
m using Equation 2.

wm = [wm,1, . . . , wm,K] = fcoef
(
xlab
m ,ylab

m

)
(2)

In stage 2, we estimate the personal affine coefficients ([w∗
1 , . . . , w

∗
K]) for

a user and generate the personalized trend ŷte
j for a test series xte

j . We use
two methods of estimating the personal affine coefficients. The first is a simple
average of w1 to wM , as shown in Equation 3.

w∗
k =

1

M

M∑
m=1

wm,k (3)

The second way to compute w∗
k is to take a weighted sum of w1 to wM . The

weights should be inversely correlated with the distance between ylab
m and ŷlab

m

(the estimated trend line for xlab
m). Ultimately, we define the distance by the sym-

metric mean absolute percentage error (SMAPE) (defined in Equation 7). The
personal affine coefficient (estimated by weighted sum) is shown in Equation 4.

w∗
k =

M∑
m=1

αmwm,k, (4)

where αm is defined in Equation 5.

αm =
1
/
SMAPE

(
ylab
m , ŷlab

m

)
∑M

i=1 1
/
SMAPE

(
ylab
i , ŷlab

i

) (5)

Once w∗
k is obtained by either a simple average (Equation 3) or weighted sum

(Equation 4), we estimate the personalized trend for a test series xte
j by

ŷte
j =

K∑
k=1

w∗
kbk

(
xte
j

)
. (6)

3 Experiments

3.1 Experimental Datasets

We used two datasets for the experiments. The first dataset is the Yahoo! S5 time
series dataset [17]. We asked users to plot trends on some of these time series.
The second dataset includes real users’ plotted trends on manually created time
series. Some of these user-plotted trends will be regarded as trend line samples
(ylabm), and others will be regarded as the ground truth of the personalized trend
lines that will be used for evaluation.

6 T.-Y. Kuo and H.-H. Chen

Table 2. A comparison of trend estimation algorithms on the Yahoo! S5 series

Type Algorithm SMAPE MSE

Our method
Petrel (averaged) 0.44 5264.34
Petrel (weighted) 0.44 5258.34

DNN models
ConvNet 0.83 176593.87
LSTM 1.02 497312.33

Transformer 1.08 579188.89

DNN with pretraining and fine-tuning

P&F ConvNet 0.44 5425.77
P&F LSTM 0.52 7394.09

P&F Transformer 0.47 9311.75
P&F MLP 0.68 31934.92

Table 3. A comparison of trend estimation algorithms on the manually created series

Type Algorithm SMAPE MSE

Our method
Petrel (averaged) 0.33 6164.38
Petrel (weighted) 0.32 6002.32

DNN models
ConvNet 0.94 166951.8
LSTM 1.11 323712.95

Transformer 1.20 637955.96

DNN with pretraining and fine-tuning

P&F ConvNet 1.45 241890.91
P&F LSTM 1.23 1292454.44

P&F Transformer 0.81 1357013.58
P&F MLP 1.18 242234.14

3.2 Experimental Scenario

To generate personalized trends for the participants, we asked each participant
to draw trend lines on 10 time series samples. These time series samples, along
with the trend line samples plotted by users, were used by the algorithms to
learn or infer a user’s preferences regarding the shapes of the trends.

Next, Petrel and each of the compared baselines generated personalized
trends for 5 time series in Yahoo! S5 (xorig

n) and another 5 manually created
time series (xte

j). We asked the users to plot the trends on these 10 time se-
ries without showing the machine-generated trends. We compare the distances
between a user’s plotted trends and the machine-estimated personalized trends.

Although the time series in Yahoo! S5 (i.e., xorig
n) are available in the begin-

ning, the ground truths of the corresponding personalized trends are not given.
In particular, Petrel uses the simulated personalized trend ŷsim

n,u as part of the
input feature; the pretraining and fine-tuning models (the baseline models that
will be introduced in the next section) use ŷsim

n,u as the target during the pre-

training step, but the ŷsim
n,u values are not the ground truths of the personalized

Personalized Trend Line Estimation 7

trends. To compare the generalizability of the Petrel model and the baseline
models, we also tested each model on the manually generated time series xte

j

that differed from any time series in xorig
n or xlab

m .

3.3 Baseline Methods

We compare Petrel with deep neural network (DNN) models and DNN models
with pretraining and fine-tuning strategies. We do not include traditional trend
estimators (e.g., ℓ1 trend filter or HP filter) because they are non-personalized.

The first type of baseline model (DNNs) includes the convolutional neural
network (ConvNet), long short-term memory (LSTM), and Transformer. Each
model learns to use each of the 10 time series samples as the input features to
predict the corresponding trend line sample drawn by a user. After training,
each model estimates the personalized trend line for each of the test series.

The second type of baseline model applies the pretraining and fine-tuning
strategy to the ConvNet (denoted as P&F ConvNet), LSTM (denoted as P&F
LSTM), Transformer (denoted as P&F Transformer), and multilayer perceptron
(denoted as P&F MLP). The network structure of each model is the same as
that used in the first type. However, during the pretraining step, we use xorig

n ,
the collected time series, and ŷsim

n,u , the simulated trend line, as the training
feature and target. In the fine-tuning step, we use xsam

m , the time series samples,
and ysam

m , the user-plotted trend line samples, as the features and targets to
fine-tune the parameters in the last layer.

3.4 The Quality of the Estimated Personalized Trends

We quantify the quality of a trend line generating algorithm by comparing its
generated trends with users’ plotted trends based on the symmetric mean ab-
solute percentage error (SMAPE) and mean squared error (MSE). Let ŷ =
[ŷ1, . . . , ŷT] and y = [y1, . . . , yT] be the algorithm-generated and user-plotted
trend lines for a time series with T time steps. The SMAPE and MSE between
ŷ and y are defined by Equation 7 and Equation 8, respectively.

SMAPE(ŷ,y) =
1

T

T∑
t=1

2
|ŷt − yt|
|ŷt|+ |yt|

(7)

MSE(ŷ,y) =
1

T

T∑
t=1

(ŷt − yt)
2 (8)

While the MSE is the most widely used metric to measure the difference be-
tween the predictions and observed targets when the target variables are numeric,
the MSE is scale dependent, i.e., the score depends on the scale of the time series.
On the other hand, the SMAPE scales the value by considering the magnitude of
each predicted ŷt and the observed yt, so the SMAPE score is always between 0
and 2 (a smaller SMAPE means that the prediction is more accurate). Unfortu-
nately, given two estimated trends ŷ1 and ŷ2, SMAPE(ŷ1,y) > SMAPE(ŷ2,y)

8 T.-Y. Kuo and H.-H. Chen

does not imply MSE(ŷ1,y) > MSE(ŷ2,y) (and vice versa). For a fair compari-
son, we report both the SMAPE and MSE.

Table 2 gives the SMAPEs and MSEs of various methods in predicting per-
sonalized trends on the Yahoo! S5 dataset. These time series appear in the train-
ing step of Petrel and the pretraining steps of all the pretraining and fine-tuning
models. However, the ground-truth labels of the personalized trends are not
given. Petrel (averaged) and Petrel (weighted) refer to the strategies used to de-
termine the personal affine coefficients w∗

k: either using Equation 3 (averaged) or
Equation 4 (weighted). The results show that Petrel outperforms all the baseline
methods in terms of both SMAPE and MSE on Yahoo! S5. The DNN models
perform poorly, likely because of the limited number of training instances from
the time series samples and trend line samples. For the pretraining and fine-
tuning strategies, although the trends in the pretraining step are synthesized by
Equation 1, these synthetic trends are still helpful in alleviating overfitting.

Table 3 shows the quality of the predicted personalized trends for Petrel
and the baseline models on the manually created time series that do not appear
during all training (or pretraining) steps. The Petrel model shows a more obvious
advantage. Both types of baseline models (DNNs and DNNs with pretraining and
fine-tuning) generate trends that are very different from a user’s plotted trends.
When comparing the results with the results shown in Table 2, the performance
of the pretraining and fine-tuning strategies becomes much worse. This is likely
because the pretraining and fine-tuning strategy works only when the test series
appear in the pretraining step but fails if the test series differ greatly from those
appearing in the pretraining step.

3.5 Case Study

This section presents a case study of two users to demonstrate that Petrel indeed
identifies the users’ preferred trend shapes. We only show the averaged version
of Petrel here because the weighted version gives similar results.

Figure 2 shows three trend samples plotted by users A and B: user A prefers
the trends to be sensitive to local turbulence, but user B prefers smooth trends.

Figure 3 shows the personalized trends generated by Petrel on three series
presented in the Yahoo! S5 dataset (each column represents the same series).
The personalized trend for user A appears sensitive to local turbulence, while
user B’s trend is smoother. This matches our assessment of their preferences.

Figure 4 illustrates the personalized trends generated by Petrel on three
manually crated series, i.e., series that do not appear in any training phase.
Again, when given the same time series, the estimated personalized trend for
user B is smoother than the one generated for user A.

4 Related Work

4.1 Trend Estimation

Trend line estimation is a fundamental problem in time series analysis. It aims
to find a slowly varying curve that represents a given sequence well. It has been

Personalized Trend Line Estimation 9

0 250 500 750 1000 1250 1500 1750
1000

0

1000

2000

3000

4000

(a) Trend 1 by user A

0 250 500 750 1000 1250 1500 1750
600

400

200

0

200

400

600

(b) Trend 2 by user A

0 250 500 750 1000 1250 1500 1750

0

500

1000

1500

2000

(c) Trend 3 by user A

0 250 500 750 1000 1250 1500 1750
1000

0

1000

2000

3000

4000

(d) Trend 1 by user B

0 250 500 750 1000 1250 1500 1750
600

400

200

0

200

400

600

(e) Trend 2 by user B

0 250 500 750 1000 1250 1500 1750

0

500

1000

1500

2000

(f) Trend 3 by user B

Fig. 2. Three trend line samples plotted by user A and user B. It appears that user A
prefers the trends to be sensitive to local turbulence, but user B prefers smooth trends.

shown that estimating trend lines improves the performance of time series anal-
ysis tasks. For example, removing trends from a time series as a preprocessing
step may improve the prediction quality of various target tasks [11, 16, 24].

Trend estimating algorithms can be parametric or nonparametric. Paramet-
ric models aim to find a function that transforms the observed time series into
a trend. The simplest model of this form is probably the linear regression model
– given a time series x = [x1, . . . , xT], a linear regression model assumes a lin-
ear relationship between each xj (j ≤ t) and ŷt and looks for parameters that
minimize a given objective. This concept can be easily extended to high-order
polynomial regressions or even more complex functions. However, to ensure the
“slowly varying” property that is usually required for a trend line, extremely
high-order polynomial regressions or overcomplex functions are rarely used in
practice for trend estimation. The famous autoregressive integrated moving av-
erage (ARIMA) model [8, 9] also falls into the family of parametric models.
ARIMA assumes that the difference between neighboring ŷts is linearly corre-
lated with both their lagged values and the previous error terms.

Trend estimating algorithms can also be nonparametric. These algorithms
usually need an objective function to define the quality of an estimated trend,
but they do not assume a fixed relationship between x and ŷ. The objective
function usually involves two parts – the estimated ŷt should be close to xt,
and the difference between neighboring ŷts should be small. Famous nonpara-
metric algorithms for trend estimation include ℓ1-trend filtering [10] and HP
filtering [6]. The main difference between ℓ1-trend filtering and HP filtering is
their definitions of closeness between neighboring ŷts. Local regression methods,

10 T.-Y. Kuo and H.-H. Chen

0 250 500 750 1000 1250 1500 1750
600

400

200

0

200

400

600

800

1000

(a) Personalized trend 1 es-
timated by Petrel for user A

0 250 500 750 1000 1250 1500 1750

1000

500

0

500

1000

1500

2000

2500

(b) Personalized trend 2 es-
timated by Petrel for user A

0 250 500 750 1000 1250 1500 1750

2000

1500

1000

500

0

(c) Personalized trend 3 es-
timated by Petrel for user A

0 250 500 750 1000 1250 1500 1750
600

400

200

0

200

400

600

800

1000

(d) Personalized trend 1 es-
timated by Petrel for user B

0 250 500 750 1000 1250 1500 1750

1000

500

0

500

1000

1500

2000

2500

(e) Personalized trend 2 es-
timated by Petrel for user B

0 250 500 750 1000 1250 1500 1750

2000

1500

1000

500

0

(f) Personalized trend 3 es-
timated by Petrel for user B

Fig. 3. The personalized trends for user A and user B generated by Petrel (averaged)
on three Yahoo! S5 time series (the time series used to generate the simulated trends).

e.g., locally estimated scatterplot smoothing (LOESS) and locally weighted scat-
terplot smoothing (LOWESS), can also be used to estimate trends by treating
the xts as the input features. When extending trend estimation to 2-dimensional
input, a graph trend can be generated [21, 23].

4.2 Few-shot Learning

Few-shot learning (FSL) refers to a scenario in which machine learning is applied
with a limited number of training instances [19, 22]. In many cases, FSL tries to
embed prior knowledge into the model and update the model based on the few
training instances. A typical way to embed prior knowledge is to use a pretraining
strategy, which usually leverages a relevant dataset with many training instances
to train a model. The fine-turning stage uses the few training instances to update
all or part of the model parameters. The FSL strategy has been successfully
applied to various application domains [2, 14].

5 Conclusion

In this paper, we introduce a new and challenging task: estimating personalized
trends for a large number of time series based on limited samples labeled by
a user. We propose a novel algorithm named Petrel to perform this task. We
recruited users to plot personalized trends on synthetic and open datasets. The

Personalized Trend Line Estimation 11

0 250 500 750 1000 1250 1500 1750

100

0

100

200

300

400

(a) Personalized trend 1
for unseen time series esti-
mated by Petrel for user A

0 250 500 750 1000 1250 1500 1750

200

0

200

400

600

800

1000

1200

(b) Personalized trend 2
for unseen time series esti-
mated by Petrel for user A

0 250 500 750 1000 1250 1500 1750

400

200

0

200

400

600

800

(c) Personalized trend 3
for unseen time series esti-
mated by Petrel for user A

0 250 500 750 1000 1250 1500 1750

100

0

100

200

300

400

(d) Personalized trend 1
for unseen time series esti-
mated by Petrel for user B

0 250 500 750 1000 1250 1500 1750

200

0

200

400

600

800

1000

1200

(e) Personalized trend 2
for unseen time series esti-
mated by Petrel for user B

0 250 500 750 1000 1250 1500 1750

400

200

0

200

400

600

800

(f) Personalized trend 3
for unseen time series esti-
mated by Petrel for user B

Fig. 4. The personalized trends for user A and user B generated by Petrel (averaged)
on three manually created series (which did not appear during training).

experimental results show that, compared to DNN models and DNN models
with the pretraining and fine-tuning strategy, the Petrel model generates trends
closer to those plotted by the users. The case studies also confirm that Petrel
can adapt to different users’ preferences to generate personalized trends.

Acknowledgements. This work is partially supported by the National Science
and Technology Council of Taiwan under grant 110-2222-E-008-005-MY3.

References

1. Bai, G.J., Lien, C.Y., Chen, H.H.: Co-learning multiple browsing tendencies of a
user by matrix factorization-based multitask learning. In: IEEE/WIC/ACM Inter-
national Conference on Web Intelligence. pp. 253–257 (2019)

2. Bansal, T., Jha, R., McCallum, A.: Learning to few-shot learn across diverse nat-
ural language classification tasks. In: Proceedings of the 28th International Con-
ference on Computational Linguistics. pp. 5108–5123 (2020)

3. Bianchi, M., Boyle, M., Hollingsworth, D.: A comparison of methods for trend
estimation. Applied Economics Letters 6(2), 103–109 (1999)

4. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: A seasonal-
trend decomposition. J. Off. Stat 6(1), 3–73 (1990)

5. Gray, K.L.: Comparison of trend detection methods. University of Montana (2007)

12 T.-Y. Kuo and H.-H. Chen

6. Hodrick, R.J., Prescott, E.C.: Postwar us business cycles: an empirical investiga-
tion. Journal of Money, credit, and Banking pp. 1–16 (1997)

7. Hsu, C.Y., Chen, T.R., Chen, H.H.: Experience: Analyzing missing web page visits
and unintentional web page visits from the client-side web logs. ACM Journal of
Data and Information Quality (JDIQ) 14(2), 1–17 (2022)

8. Hsu, C.J., Chen, H.H.: Taxi demand prediction based on lstm with residuals and
multi-head attention. In: VEHITS. pp. 268–275 (2020)

9. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. OTexts
(2018)

10. Kim, S.J., Koh, K., Boyd, S., Gorinevsky, D.: ℓ1 trend filtering. SIAM review 51(2),
339–360 (2009)

11. Laptev, N., Yosinski, J., Li, L.E., Smyl, S.: Time-series extreme event forecasting
with neural networks at uber. In: International conference on machine learning.
vol. 34, pp. 1–5 (2017)

12. Leser, C.E.V.: A simple method of trend construction. Journal of the Royal Sta-
tistical Society: Series B (Methodological) 23(1), 91–107 (1961)

13. Lien, C.Y., Bai, G.J., Chen, H.H.: Visited websites may reveal users’ demographic
information and personality. In: IEEE/WIC/ACM International Conference on
Web Intelligence. pp. 248–252 (2019)

14. Lifchitz, Y., Avrithis, Y., Picard, S., Bursuc, A.: Dense classification and implant-
ing for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 9258–9267 (2019)

15. Lin, T.H., Zhang, X.R., Chen, C.P., Chen, J.H., Chen, H.H.: Learning to iden-
tify malfunctioning sensors in a large-scale sensor network. IEEE Sensors Journal
22(3), 2582–2590 (2021)

16. Liu, Z., Hauskrecht, M.: Learning adaptive forecasting models from irregularly
sampled multivariate clinical data. In: Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence. p. 1273–1279. AAAI’16, AAAI Press (2016)

17. Marlin, B.M., Zemel, R.S.: Collaborative prediction and ranking with non-random
missing data. In: Proceedings of the third ACM conference on Recommender sys-
tems. pp. 5–12 (2009)

18. Shen, Z., Liu, Z., Qin, J., Savvides, M., Cheng, K.: Partial is better than all: Revis-
iting fine-tuning strategy for few-shot learning. In: Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021. pp. 9594–9602. AAAI Press (2021)

19. Tao, R., Zhang, H., Zheng, Y., Savvides, M.: Powering finetuning in few-shot learn-
ing: Domain-agnostic bias reduction with selected sampling. In: Thirty-Sixth Con-
ference on Artificial Intelligence, AAAI 2022. pp. 8467–8475. AAAI Press (2022)

20. Tibshirani, R.J.: Adaptive piecewise polynomial estimation via trend filtering. The
Annals of Statistics 42(1), 285–323 (2014)

21. Varma, R., Lee, H., Kovačević, J., Chi, Y.: Vector-valued graph trend filtering with
non-convex penalties. IEEE transactions on signal and information processing over
networks 6, 48–62 (2019)

22. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: A
survey on few-shot learning. ACM computing surveys 53(3), 1–34 (2020)

23. Wang, Y.X., Sharpnack, J., Smola, A., Tibshirani, R.: Trend filtering on graphs.
In: Artificial Intelligence and Statistics. pp. 1042–1050. PMLR (2015)

24. Zhang, G.P., Qi, M.: Neural network forecasting for seasonal and trend time series.
European journal of operational research 160(2), 501–514 (2005)

