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Abstract— This paper proposes a two-stage methodology to dis-
cover malfunctioning sensors in an air quality sensor network. The
two-stage methodology consists of a supervised learner to predict
the future PM2.5 values of each sensor and a detector that lever-
ages the result of the previous stage to detect the malfunctioning
sensors. Consequently, even if each sensor’s health status (i.e.,
normal or malfunctioning) is unavailable, we can still apply powerful
supervised learners to this task. We conduct experiments on a
nationwide air quality sensor network that includes 10,000+ sensors
and utilize periodic maintenance records on some of these sensors
as the ground truth of their health status. Experimental results
show that this two-stage methodology can effectively discover
problematic sensors. As maintaining a large-scale sensor network
is laborious, the methodology can dramatically reduce the human
resource required for regular inspection.

Index Terms— auto inspection, IoT, AIoT, PM2.5, sensor network, anomaly detection

I. INTRODUCTION

ASensor network contains a large number of sensors that
collaboratively monitor and collect information from a

target environment. In an ideal situation, each sensor detects
only local information and sends information to neighbors,
local servers, or a centralized server. The small pieces of col-
lected information are integrated to obtain a large picture of the
target. This concept has been applied to various applications,
such as environmental monitoring (e.g., detecting regional
temperature and humidity) [1], industrial monitoring (e.g.,
detecting machine temperature and vibration frequency) [2],
healthcare monitoring (e.g., detecting pulse rate and oxygen
saturation) [3], and many more.

When the number of sensors is large enough, we sometimes
assume that the failure of a small portion of sensors can
be ignored or corrected since the measurements from the
remaining healthy sensors may still be sufficient to assemble
the global picture [4]. However, this assumption is valid only
when a system provides certain degrees of fault tolerance [5].
In practice, malfunctioning sensors may still transmit incorrect
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monitored values to a centralized server or to neighboring
nodes. When these measurements contain more noise than
information, integrating these measurements into a system may
bring more harm than benefit. Consequently, it is essential to
identify malfunctioning sensors and fix problems rapidly.

This paper presents a study on determining malfunctioning
sensors from a large-scale air quality sensor network. We
use the terms “malfunctioning sensors”, “failed sensors”, and
“abnormal sensors” interchangeably in this paper. The large-
scale sensor network studied in this paper is deployed by
the Environmental Protection Administration (EPA) of Taiwan.
This network contains 211 large stations to monitor specially
selected locations and 10, 000+ middle-sized air pollution
sensors in 282 townships and 111 major industrial and science
parks in Taiwan. Most sensors are located on the west coast
of Taiwan because the west coast is the most populated (90%
of 23 million people1) and contains major industrial areas that
produce most air pollution.

Determining the malfunctioning sensors from this sensor
network is an exciting and vital task for several reasons. First,
this is a live sensor network containing approximately 10, 000
working sensors in the area of 36,000+ km2 for several years.
A method that works in this scope may prove its practicability
in a large-scale sensor network. Second, some of these sensors
may report inaccurate values, but we do not know which ones a
priori. Many sensor networks may also face a similar situation,
especially those with a large number of sensors distributed in

1https://en.wikipedia.org/wiki/Demographics_of_
Taiwan
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a wide area. Third, we obtained several ground truth labels
(i.e., a sensor is normal or abnormal) from on-field inspections
by comparing the monitored values of a sensor with those
reported by a lab-calibrated device with high accuracy. Conse-
quently, we can compare the predicted results with the ground
truth status of the inspected sensors. In contrast, most previous
studies examining malfunctioning sensors did not have ground
truth labels and usually made simplified assumptions (e.g.,
labeling outdoor sensors as normal and indoor sensors as
abnormal) to infer the status of each sensor.

The rest of the paper is organized as follows. Section II
outlines previous studies on air quality sensors, autonomous
measurement calibration, and failed node detection. Section III
presents our methodology to identify the suspected malfunc-
tioning sensors. Section IV introduces the experimental dataset
and compares our proposed model with several baseline
methods. Finally, we discuss the discovery, limitations of our
method, and ongoing and future work in Section V.

II. RELATED WORK

This section reviews previous works on air quality sensors,
applications related to air quality sensors, and studies on
detecting malfunctioning sensors.

A. Air Quality Sensors and Applications
Low-cost air quality sensors have become a fundamental

infrastructure to monitor air quality on a large scale with fine
granularity [6]–[9]. However, this infrastructure also presents
many new challenges, such as the best practices for sensor
deployment, sensor calibration, data management, and data
integration. Low-cost sensors sometimes report very different
measurements to devices that employ more advanced monitor-
ing approaches, e.g., federal reference methods (FRMs) and
federal equivalent methods (FEMs) [6]. Consequently, low-
cost sensors may require periodic maintenance and calibration
so that data quality can be assured. The strategy of deploying
many low-cost sensors brings an apparent trade-off: while we
can install many sensors at an affordable price, the mainte-
nance costs can be excessive.

Many studies have proposed utilizing monitored PM2.5
values to predict future PM2.5 values or future trends. Most of
these studies suggest utilizing supervised learning models to
find the relationship between the features (mainly including the
previously monitored values) and the targets (future observed
values) [10]–[13]. Among them, the linear regression model
is simple and highly interpretable because each feature is
assumed to have a linear relationship with the target vari-
able [14]. However, this model cannot capture the nonlinear
relationship between the target and the features. The decision
tree and the random forest models also have good interpretabil-
ity, but integrating the spatial or temporal relationship is not
straightforward [14]. Some works apply spatio-temporal inter-
polation, e.g., kriging, to predict the value of a sensor based on
spatial and temporal information (e.g., [15], [16]). However,
kriging requires the covariance matrix, which is computa-
tionally expensive when the input has large dimensions. To
efficiently integrate spatial, temporal, and perhaps other types

of features among sensors, advanced machine learning models,
such as the support vector machine and various deep learning
models, are applied to capture the nonlinear relationships
among the features and the target variable [17]–[19]. While
complex supervised learning models may be flexible in inte-
grating various information, these models assume that previous
monitored values are correct, which might be an overly naïve
assumption that could impede the accuracy of future PM2.5
prediction. Our model in Stage 1 (details in Section III-E)
also suffers from the same issue. However, our objective
– identifying the malfunctioning sensors – differs from the
above-mentioned works (predicting future PM2.5 values). As
a result, the imperfection of the previously monitored PM2.5
values may cause imperfect future PM2.5 prediction, which
on the contrary, helps our model in Stage 2 to identify the
problematic sensors (details in Section III-F).

Many papers have leveraged the output of air quality sensors
as the input of downstream tasks, e.g., identifying and local-
izing pollution sources [20], querying air quality through a
smart interface (e.g., via a chatbot [21]), detecting unusually
high concentrations of air pollutants [22], and many more.
But, again, the foundation of these downstream applications
is the correctness of the monitored values. Unfortunately, this
is sometimes an unrealistic assumption.

B. Malfunctioning Sensor Detection

To ensure the current status of low-cost air quality sensors,
one evident approach is conducting periodic inspections. Un-
fortunately, this is a laborious process, especially when many
sensors are distributed in a large area.

Many previous works have studied methodologies to dis-
cover problematic sensors; some have even suggested cali-
brating the monitored values automatically or semiautomati-
cally [23]–[30]. The most straightforward strategy to find an
abnormal sensor is using rules and simple statistics to select
the outliers as the malfunctioning sensors [31]. Apparently,
human-defined rules are limited by rule-makers’ knowledge
and expertise. As a result, many studies suggest utilizing data-
driven approaches. When the ground truth label of normal
or abnormal is unavailable as the target for training, we
usually need to rely on various unsupervised approaches such
as clustering [23], [32], [33], principal component analysis
(PCA), or kernel principal component analysis (KPCA) [26],
[34], [35]. On the other hand, if the ground truth label
is accessible as the training data, we can utilize various
supervised learning algorithms to train classifiers. Among the
supervised learning models, the linear model is simple, fast,
and easy to interpret [10], [11]. However, a linear model is
unlikely to discover the high-dimensional interactions among
the heterogeneous features and the target variables. More com-
plicated supervised learning models, such as support vector
machines [11], random forests [11], artificial neural networks
or deep learning [10], [12], or a combination of multiple
supervised models [36] have also been employed on this
problem to discover more complicated patterns. Surveys of
the challenges and anomaly detection in the IoT and sensor
network environments were given in [25], [37], [38]. Some
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studies further investigated automatic calibration when sensors
become less accurate. For example, CalibrationTalk calibrates
inaccurate sensors caused by aging [30]. Kriging was used
previously to calibrate sensors. However, likely due to the
high computational cost, it was applied to sensor networks
with only dozens of sensor stations [13]. One can also apply
supervised learners to predict future monitoring values and use
the predicted values for calibration [24], [27], [28], [39].

Although all these models aim to model the relationship
between the sensor status (i.e., normal or malfunctioning)
and various clues (e.g., the monitored PM 2.5 values from
the neighboring sensors, the previous monitored values from
the target sensor, etc. ), they mostly exhibit some of the
following problems. First, many relevant studies do not have
ground truth on the sensor status (normal or malfunctioning)
during evaluation. Consequently, the reported performance is
questionable. Second, even if some papers rely on simple
heuristics to infer sensor status, these inferences may not
necessarily be correct, and the number of the inferred training
instances is limited, so the corresponding models probably
overfit the training data and are hard to apply in a real
environment. [6]. For similar reasons, we choose not to use
these datasets in our experiments.

Our study involves a rigorous data collecting policy and a
unique two-stage learning strategy to overcome the above two
issues. First, we obtain the ground truth of the sensor status
by onsite inspections (details are introduced in Section III-
A). Second, our experimental dataset involves 12 months of
monitoring logs from 144 sensors, and the training involves
only monitoring values but not the sensor status. Consequently,
we have a large number of training instances.

III. DESIGN

This section presents the current status of Taiwan’s air qual-
ity sensor network, the problem definition, and the methodol-
ogy of identifying malfunctioning air quality sensors.

A. Air Quality Sensor Network in Taiwan
Environmental protection is an essential issue in the modern

world. Among these issues, air pollution and PM2.5 are
undoubtedly important aspects. PM2.5 refers to atmospheric
particulate matter (PM) with a particle size less than 2.5
micrometers (µm). Because PM2.5 is tiny, mucous membranes
or cilia cannot block it from entering the human body. Ad-
ditionally, the composition of PM2.5 is highly complex and
may be attached to substances that could harm humans. It has
been shown that exposure to PM2.5 for a long time increases
the chances of getting cancer. The World Health Organization
(WHO) has reported that an average annual concentration of
PM2.5 above 10µg/m3 can affect human health [40].

To effectively monitor the values of PM2.5 in different
areas, the Environmental Protection Agency (EPA) of Taiwan
has established 211 highly accurate national-level monitoring
stations since 1998 to assess the air quality over a wide range,
and the EPA regularly calibrates the sensors of these stations
to ensure the correctness of observations. These stations can
measure highly accurate PM2.5 values, but the number of

stations is low due to the high cost. To monitor regional air
pollution hotspots with a finer granularity at an affordable
cost in real-time, the EPA has set up 10, 000+ less expensive
regional optical PM2.5 sensors nationwide to form an “air
quality sensor network” in an area of 36, 000+ km2 (the
size of Taiwan). These low-cost sensors have been gradually
established since 2017. In addition to the PM2.5 values,
each sensor also detects the temperature and the relative
humidity. This study targets these less expensive sensors. The
historical monitoring dataset has been released and can be
downloaded from https://ci.taiwan.gov.tw/dsp/
dataset_air.aspx.

Although our dataset contains not only the PM2.5 values
but also the humidity and temperature that may be helpful
to predict future PM2.5 values, these extra features may not
always be available in other sensor networks. We demonstrate
that our model is effective even using only the previous
PM2.5 values as the input features (details in Section III-E).
Therefore, other air quality sensor networks can apply our two-
stage model even if these sensor networks only collect PM2.5
values. That being said, we still tested the effectiveness of
these features in the experiments.

B. Challenges

An optical sensor determines the PM2.5 values by drawing
the particles in the air into the sensing area and measuring
the numbers of particles of different sizes via light scattering.
Although optical sensors are carefully examined in the onset,
they may gradually become less accurate for various reasons.
First, due to the differences in particle diameters, shapes,
surface roughness, and other physical properties, light may
have different degrees of reflection and scattering, which may
influence detection accuracy. Second, the fan motor to draw
the air can only sample a small portion of air at a time, so
the measured PM2.5 values may vary dramatically within a
short period, especially when the air pollution is distributed
unevenly. Third, certain chemical materials (e.g., sulfate and
nitrate) in the particles may absorb water, which may cause the
particles to deform. Consequently, the relative humidity affects
the monitored PM2.5 values. Fourth, environmental factors
may sometimes affect the measurement. For example, sensors
may sometimes be hidden by trees, signboards, or other
obstacles. Finally, and probably the most apparent reason, the
sensors can become less accurate because of aging.

Currently, sensors are maintained by periodic inspections
with a strict set of rules. Every season, the maintenance team
samples sensors to conduct onsite inspections by comparing
the sensors with a reference machine for at least 12 hours.
The reported metrics include the relative error and coefficient
of determination. The reference machine is calibrated by a
national-level monitoring station before the inspection and
verified again after the inspection. Since the number of sensors
is large and the inspection process is laborious, maintaining
these sensors comes at a significant cost. On the other hand, by
reducing the maintenance frequency, the sensors’ monitored
values could become unreliable, further affecting the down-
stream applications that depend on the air quality data released
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Fig. 1. An overview of the two-stage model detecting model

from the government. According to a maintenance record in
2018 (as we show later), the fault rate of a randomly sampled
regional sensor is approximately 19.4%, suggesting that a good
portion of the monitored PM2.5 values might be incorrect.
Unfortunately, we do not know which ones are wrong.

C. Objective

We aim to use a data-driven mechanism to identify the sus-
picious malfunctioning air quality sensors to reduce the inspec-
tion and maintenance costs and increase the credibility of the
monitoring values. At first glance, the problem may look like
a standard binary classification task: given the features xi of a
sensor i and perhaps its neighboring sensors, predict whether
this sensor is normal or malfunctioning. In practice, however,
the labels of normal/malfunctioning are usually unavailable,
i.e., we are generally unsure of the condition of a sensor.
Consequently, it is challenging to apply supervised classifiers
directly. Furthermore, even if some inspection results are avail-
able, the number of positive instances (i.e., the malfunctioning
sensors) is usually small. For example, based on one of our
inspection records involving 144 sensors in 2018, 26 sensors
were malfunctioning. As a result, it is difficult for a classifier
to identify the general pattern of a malfunctioning sensor based
on these limited positive instances.

We design a workflow that leverages supervised learning
models but requires no label of normal/malfunctioning as
the target during training. Our proposed method can find
the problematic regional sensors accurately. As a result, we
can effectively reduce the maintenance costs by checking the
sensor that our model identifies as problematic.

D. Proposed Method Overview

Instead of predicting the malfunctioning sensors directly,
we propose a two-stage workflow to find the suspicious
malfunctioning sensors. Figure 1 gives an overview of the two-
stage model.

In the first stage, we use supervised learning algorithms to
build a sensor value prediction module to predict the monitored
PM2.5 value of each sensor in the near future. Since there are

approximately 10 thousand sensors continuously monitoring
the PM2.5 values, we have many training instances for this
new task (although, in practice, some of the monitored PM2.5
values might be incorrect, so the target values and some feature
values could be noisy). Once we obtain a good model to
predict the measured PM2.5 values of the near future of a
target sensor, we proceed to the second stage – identifying the
sensors that have large residuals between the predicted PM2.5
values ŷis and the monitored PM2.5 values (yis). These should
be sensors that are likely to be problematic. As such, we do not
need to label each sensor as normal or malfunctioning during
the training process, but we can still predict the malfunctioning
sensors based on the supervised learning approaches.

The following two sections detail these two stages.

E. Stage 1: Sensor Value Prediction

To predict ŷ(t)i the monitored value of sensor Si at times-
tamp t, we utilize the spatial and temporal features.

Figure 2 shows how to generate the features and the targets
based on the monitored PM2.5 values from the sensor station
Si. To predict y(t)i the monitored value of Si at time t, we
generate features from two sources. The first source is from the
target sensor: we use y(t−1)

i , y
(t−2)
i , . . . , y

(t−30)
i , the monitored

PM2.5 values of the last 30 minutes from sensor Si, as part of
the features. The second source is from ni,1, . . . , ni,5, the five
closest sensors to sensor Si: we include y

(t−1)
i,j , . . . , y

(t−30)
i,j

(j = 1, . . . , 5), the monitored values of neighboring sensors
ni,js, in the last 30 minutes as the features. Consequently, we
denote a training instance in the first stage by

(
x
(t)
i , y

(t)
i

)
,

where x
(t)
i is denoted by Equation 1

x
(t)
i =

[
y
(t−1)
i , . . . , y

(t−30)
i ,y

(t−1):(t−30)
i,1 , . . . ,y

(t−1):(t−30)
i,5

]
,

(1)
where y

(t−1):(t−30)
i,j =

[
y
(t−1)
i,j , . . . ,y

(t−30)
i,j

]
(j = 1, . . . , 5).

Among these features, y(t−1)
i , . . . , y

(t−30)
i can be regarded

as the temporal features (as they are the historically monitored
values of the target sensor), y(t)i,1 , . . . , y

(t)
i,5 can be considered as

the spatial features (as they report the neighboring monitored
values at time t), and y(t−u)

i,j (j = 1, . . . , 5, u = 1, . . . , 30) can
be regarded as both the spatial and temporal features (because
they represent the previously monitored values in the adjacent
sensors). We rotate the value of t from 31 to the timestamp
before the inspection day. Consequently, we can generate a
large number of training instances.

We illustrate an example to further illuminate the process of
generating the training data. In the 144 inspected sensors, the
earliest inspection date is May 29, 2018, so we can create the
training data based on the monitored value from day 1 to May
28, 2018 (the day before the inspection). If day 1 is Jan. 1,
2018, then we have 148 days to generate the training data,
which corresponds to approximately 1440 × 148 = 213, 120
training instances (as one day has 1440 minutes).

We experiment with various supervised learning models to
predict the PM2.5 values in the near future. The predictors
include traditional models (ridge regression with regularization
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Fig. 2. Generating the labels (the monitored PM2.5 value of the next minute on a sensor Si) and features (the monitored PM2.5 values of Si in
the previous 30 minutes and the monitored PM2.5 values of the neighbors of Si at the current moment and in the last 30 minutes).

weight 1.0, Lasso with regularization weight 1.0, and random
forest with 25 trees) and deep-learning-based models (fully
connected neural networks with 3 hidden layers whose sizes
are 300, 100, and 20 and dropout rate 20%, and long short-
term memory with 3 hidden layers, each with 128 neurons).
We omitted kriging because it requires estimating a covariance
matrix whose size is the square of the number of input
samples. In our case, the matrix size is more than 200, 0002. If
each entry needs 4 bytes, storing the covariance matrix results
in more than 150 GB, beyond the memory capacity of most
modern desktop computers or even workstations.

One obvious drawback of such a method is that we assume
the monitored PM2.5 values are correct. Since a good portion
of the sensors could be problematic,2 this assumption is overly
optimistic. In particular, both the feature values (e.g., the
PM2.5 values of the neighboring sensors) and the target values
(i.e., the PM2.5 value we will predict for the centroid sensor)
could be incorrect. However, we still apply these regression
models directly for two reasons. First, as we have many
training samples, the model is still likely to discover the
relationship between the features and targets, even though
some of the feature values or target values may be incorrect.
Second, the final goal of this project is not to predict a perfect
PM2.5 value for the near future but to discover the potentially
malfunctioning sensors to reduce the manual inspection cost.

2A regular random inspection in 2018 showed that 19.4% of the sensors
are malfunctioning

If some features or targets are inaccurate, we may end up
getting inaccurate predictions of the PM2.5 values for the
corresponding sensors. Consequently, these sensors are likely
to be regarded as malfunctioning sensors in the second stage.

F. Stage 2: Malfunctioning Sensor Detection (MSD)

We use the models mentioned in the above section to predict
the monitored values of a sensor Si at each minute on day di,
the day we inspected sensor Si. We call this stage MSD, which
stands for Malfunctioning Sensor Detection.

Let the monitored PM2.5 values for Si on day di be
y =

[
y
(1)
i , . . . , y

(1440)
i

]
; we compare the predicted values

ŷ =
[
ŷ
(1)
i , . . . , ŷ

(1440)
i

]
with y based on the coefficient of

determination (i.e., R2 score). Each ŷ(t)i is predicted based on
the models with feature set x(t)

i (t = 1, . . . , 1440) that were
introduced in Section III-E.

The R2 score can be defined by Equation 2.

R2(ŷ,y) = 1 −
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (2)

where ȳ is the average of the targets in the training data and
n = 1440.

We use the R2 score instead of other popular metrics (e.g.,
root-mean-squared error or absolute error) because the R2

score is a normalized score with the largest possible value of 1.
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If using nonnormalized metrics, it could be difficult to interpret
the goodness of a prediction based on a single number.

After obtaining the R2 score for each sensor, we rank the
sensors based on their R2 score from the smallest to the largest
and select the top k sensors with the smallest R2 score as the
malfunctioning sensors.

IV. EXPERIMENT

This section presents the statistics of the experimental
dataset, the data preprocessing steps before conducting the
experiments, and the experimental results for the Stage 1
(monitored PM2.5 value prediction) and Stage 2 (malfunc-
tioning sensor prediction) tasks.

A. Experimental Dataset
The experimental dataset consists of two parts. The first part

is the log of the monitored PM2.5 values released by the EDA.
The second part is an inspection record on selected regional
sensors in Taichung City, the largest city in central Taiwan.

The first part of the dataset, the monitored PM2.5 values
from 10, 000+ sensors, was released by the EPA of Taiwan.
This dataset is released daily starting in May 2017 and is still
actively updated when writing this paper. This dataset contains
the station IDs, the locations (i.e., the latitudes and longitudes)
of the stations, historical PM2.5 values of each sensor (most
sensors record the PM2.5 values per minute), and historical
temperature and humidity. The EDA also provides APIs for
developers to query the latest PM2.5 values of the sensors
with a 3-minute updating frequency.

The second part of the dataset is an inspection record of
144 selected sensors in Taichung City, the largest city in
central Taiwan. The inspections were conducted over half a
year (from May 29, 2018 to Dec 7, 2018). The malfunctioning
sensors are distributed over all areas. In other words, it is
inefficient to discover malfunctioning sensors if we simply
conduct inspections area-by-area. Out of the 144 randomly
selected sensor stations, 28 were malfunctioning. Therefore,
the hit rate to discover a malfunctioning sensor based on
random selection is approximately 19.4%.

B. Data Preprocessing
We use the monitored PM2.5 values in 2018 as the exper-

imental dataset because the inspection was conducted from
May to December 2018.

We found some data quality issues in the dataset of our col-
lected PM2.5 values. First, some values are missing. Second,
occasionally, a sensor may transmit multiple different values
within a minute. For the first issue, if the missing period is
short, we fill in the values with the latest value before the
missing period starts. If the missing period is longer than one
day, we fill in the missing value by copying the value from
the same minute on the previous day. For the second issue,
we average the values that were sent within the same minute.

To test the effectiveness of the extra features (humidity and
temperature), we also try including these features to predict
the PM2.5 values of the target sensor. Referring to Figure 2,
we added the target sensor’s humidity and temperature mea-
surements at the end of each feature vector.

C. The Sensor Value Prediction (Stage 1)

This section gives the results for Stage 1: predicting the
PM2.5 values of the sensors. Table I shows the results of
various prediction models. For each model, we show (1) the
average R2 score on the normal sensors (with and without
extra features), (2) the average R2 score on the malfunctioning
sensors (with and without extra features), and (3) the differ-
ence between (1) and (2) (with and without features).

We have the following observations. First, all the models
better predict the future PM2.5 values for the normal sensors
than for the malfunctioning sensors. This result demonstrates
that our two-stage strategy – predicting sensor values first
and ranking sensors by R2 score from the smallest to the
largest to detect the malfunctioning sensors – is likely a
reasonable approach. Second, the LSTM model performs best
for both the normal sensors and the malfunctioning sensors.
However, this is probably not good news since, ideally, we
hope a model makes good predictions on the PM2.5 values for
the normal sensors and bad forecasts for the malfunctioning
sensors. Third, although the overall performance of the ridge
regression (labeled as RidgeReg) is not good (second-worst
for normal sensors and worst for malfunctioning sensors), the
difference of the average R2 scores between normal sensors
and the malfunctioning sensors is the greatest. Consequently,
based on our two-stage strategy, ridge regression is likely a
favorable model to discover malfunctioning sensors. Finally,
including the extra features is slightly helpful since the R2

score difference between a normal sensor and a malfunctioning
sensor generally increases marginally.

D. The Malfunctioning Sensor Prediction (Stage 2)

This section shows the experimental result of Stage 2:
predicting the malfunctioning sensors.

We compare the proposed approach with two baseline
methods – random inspection and ADF-5 [31]. Specifically,
as the current inspection mechanism requires looking through
the sampled sensors one by one, this strategy is equivalent
to the random inspection baseline method here. The other
baseline method, ADF-5, is a famous framework used to detect
anomaly sensors for large-scale PM2.5 sensing systems. We
use the parameters introduced in the original paper [31], which
utilizes 5 neighboring sensors to decide the status (anomaly
or normal) of a target sensor.

We report the area under the ROC curve (AUROC), pre-
cision at-k (P@k), and recall at-k (R@k) scores of various
models. A brief introduction to these metrics and the reasons
for choosing them are discussed below.

The ROC curve shows the relationship between the true
positive rate (TPR) and the false positive rate (FPR) using
different discrimination thresholds. Since we are dealing with
a binary classification problem whose positive ratio (i.e., the
number of positive instances divides the total instances) may
vary over time, the AUROC score is a proper choice because
the ROC curve remains unchanged regardless of the positive
ratio and the baseline probability [41].

Table II gives the AUROC scores for various methods.
As the machine learning algorithms are nondeterministic by
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Normal Sensors (1) Malfunctioning Sensors (2) (1) − (2) Normal Sensors (3) Malfunctioning Sensors (4) (3) − (4)
Using extra features? False True

RidgeReg 0.8215 0.6005 0.2210 0.8344 0.6098 0.2246
Lasso 0.8335 0.6778 0.1557 0.8519 0.6700 0.1819

Random Forest 0.7574 0.6156 0.1418 0.7774 0.6319 0.1455
DNN 0.8320 0.6939 0.1381 0.8537 0.7284 0.1253

LSTM 0.8467 0.7002 0.1465 0.8830 0.7330 0.1500

TABLE I
THE R2 SCORES OF VARIOUS METHODS FOR THE SENSOR VALUE PREDICTION TASK. WE HIGHLIGHT THE WINNER OF EACH COLUMN IN BOLDFACE.

WE HOPE THE MODELS PERFORM POORLY ON THE MALFUNCTIONING SENSORS, SO A LOWER VALUE IN THE “MALFUNCTIONING SENSORS”
COLUMN INDICATES A BETTER RESULT. EXTRA FEATURES REFER TO THE HUMIDITY AND TEMPERATURE MEASURES OF THE TARGET SENSOR.

Method AUROC score
Random Inspection 0.5 (expected value)
ADF-5 [7] 0.624
RidgeReg + MSD 0.7085± 0.0135
Lasso + MSD 0.7000± 0.0157
Random Forest + MSD 0.6878± 0.0063
DNN + MSD 0.6940± 0.0072
LSTM + MSD 0.7090 ± 0.0072

TABLE II
THE AREA-UNDER-ROC CURVE SCORE OF VARIOUS METHODS ON

THE TASK OF MALFUNCTIONING SENSOR DETECTION (MEAN ±
STANDARD DEVIATION). WE HIGHLIGHT THE WINNER IN BOLDFACE.

Model P@10 P@20 P@30 P@40 P@50

Random Inspection 0.194 0.194 0.194 0.194 0.194
ADF-5 [7] 0.300 0.350 0.270 0.330 0.320
RidgeReg + MSD 0.600 0.433 0.395 0.375 0.337
Lasso + MSD 0.580 0.430 0.394 0.370 0.320
Random Forest + MSD 0.380 0.370 0.400 0.342 0.320
DNN + MSD 0.500 0.430 0.374 0.344 0.312
LSTM + MSD 0.600 0.410 0.368 0.332 0.336

TABLE III
THE PRECISION@k (k = 10, 20, 30, 40, AND 50) FOR DIFFERENT

METHODS ON THE TASK OF MALFUNCTIONING SENSOR DETECTION. WE

HIGHLIGHT THE WINNER OF EACH k BY BOLDFACE.

nature, we report the average and the standard deviation of 5
trials for each machine learning model. Our two-stage strategy
with any machine learning model outperforms the current
inspection strategy (random inspection) and ADF-5. Among
the various machine learning models, LSTM performs the best,
followed by ridge regression and Lasso.

We report another metric – precision-at-k (P@k). When we
can only afford to inspect k sensors, precision-at-k measures
the ratio of the discovered malfunctioning sensors among all
the inspected sensors. Precision-at-k is defined by Equation 3.

Model R@10 R@20 R@30 R@40 R@50

Random Inspection 0.069 0.139 0.208 0.278 0.347
ADF-5 [7] 0.110 0.250 0.290 0.460 0.570
RidgeReg + MSD 0.210 0.308 0.423 0.533 0.603
Lasso + MSD 0.204 0.306 0.422 0.524 0.570
Random Forest + MSD 0.136 0.266 0.428 0.484 0.570
DNN + MSD 0.180 0.308 0.398 0.484 0.560
LSTM + MSD 0.214 0.293 0.394 0.474 0.600

TABLE IV
THE RECALL@k (k = 10, 20, 30, 40, AND 50) FOR DIFFERENT

METHODS ON THE TASK OF MALFUNCTIONING SENSOR DETECTION. WE

HIGHLIGHT THE WINNER OF EACH k BY BOLDFACE.

P@k =
f

k
, (3)

where f is the number of correctly identified malfunctioning
sensors when inspecting k sensors.

Table III gives the result of P@k for k =
10, 20, 30, 40 and 50. As the inspection in 2018 shows
that 28 out of the 144 sampled sensors are malfunctioning,
the expected value of P@k for random inspection is
28/144 ≈ 0.194 for all ks. When k = 10, using the LSTM
model or ridge regression can be three times more effective
than random inspection and twice as effective as ADF-5.
As k increases, the difference decreases because the LSTM
model and the ridge regression are forced to return more
sensors whose status may be uncertain.

We also report recall-at-k, which measures the percentage of
the discovered malfunctioning sensors among all the sensors
that are indeed failed, given that we can only inspect k sensors.
The definition of recall-at-k is given by Equation 4.

R@k =
f

N
, (4)

where N is the total number of failed sensors, i.e., 28 in our
experiment.

Table IV shows the results of R@k (k = 10, 20, 30, 40, 50)
on different models. When k equals 10, LSTM can be three
times and two times more effective than random inspection and
ADF-5, respectively. When k becomes larger, ridge regression
seems to be the best choice among the compared models.

When comparing the performances of various models on
Stage 1 (predicting PM2.5 values) and Stage 2 (predicting
the malfunctioning sensors) tasks, the ridge regression model
is unimpressive in predicting future PM2.5 values (second-
worst according to Table I), but ridge regression is one of
the two best algorithms to predict malfunctioning sensors, as
demonstrated by Table II, Table III, and Table IV. These results
may appear contradictory at first glance. However, as long as a
model better predicts the PM2.5 values for the normal sensors
than that of the malfunctioning sensors (including the cases
where a model makes bad predictions on the PM2.5 values
for the normal sensors but makes much worse predictions on
that of the malfunctioning sensors), the model can still help
us discover the malfunctioning sensors.

V. DISCUSSION

Discovering the malfunctioning sensors in a sensor network
is crucial. Unfortunately, effectively finding malfunctioning
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sensors based on inspection is challenging, especially when
the sensors locate in many different places far away. This
paper proposes a two-stage methodology to discover mal-
functioning sensors automatically. Experimental results on a
nationwide sensor network show that the methodology can
effectively identify malfunctioning sensors, suggesting the
two-stage method is likely general enough to be applied to
other types of sensor networks.

The success of this project requires many factors to coexist.
First, the Environmental Protection Agency of Taiwan deploys
many air quality sensors and releases the current and historical
monitored values. Consequently, it is easy to collect and
organize the required PM2.5 information. Second, although
the 10, 000+ sensors are distributed widely in Taiwan (whose
area is 36, 000+ km2), Taiwan has extremely convenient road
networks, by which one could reach almost anywhere within
a couple of hours. Consequently, it is still manageable to
dispatch inspectors to most sensor deployment positions from
a centralized managing office. Finally, Taiwan’s minimum
wage3 is low when compared with countries or economies
with similar GDPs per capita.4 As a result, it is still affordable
to hire a maintenance team to conduct regular inspections.
The ground truth labels used in our study were directly
obtained from the maintenance office. The coexistence of
all these factors makes our project a unique case that can
effectively collect the monitored values and the status (normal
or malfunctioning) of the sensors on a large scale.

A potential problem of the two-stage model is the misiden-
tification of sensor failure and sudden industrial emissions. In
both cases, the predicted and monitored PM2.5 values may
vary dramatically, so that the malfunctioning sensor detector
may regard the corresponding sensors as problematic sensors.
A simple workaround for this issue is considering both the
R2 score and the sign of the monitored value subtracted from
the predicted value. If the R2 score is large and the sign is
positive, there is probably a sudden emission from the plants.
On the other hand, if the R2 score is high but the sign is
negative, indicating that the monitored value is much smaller
than the predicted value, the sensor is likely malfunctioning.

We would like to continue refining the model from two
directions. First, we would like to integrate more features into
the framework. For example, the age of a sensor could be an
important factor to indicate its health status. Second, we would
like to apply more advanced supervised models for the first
stage. In particular, we are most interested in using graphic
neural networks since sensors can form a network based on
their geographical information. This type of model may be
able to discover more problematic sensors with fewer trials.

Another possible future pursuit is automatic sensor calibra-
tion. Automatic calibration may look similar to the task in
Stage 1, but automatic calibration requires much accurate pre-
dictions, which is still beyond the capability of our models in

3In Jan. 2021, the minimum monthly wage in Taiwan is $24, 000 NTD
(approximately $854 USD).

4Taiwan’s GDP per capita is estimated $32, 123 USD (nominal) and
$59, 398 (PPP) in 2021, according to https://en.wikipedia.org/
wiki/List_of_countries_by_GDP_(nominal)_per_capita
and https://en.wikipedia.org/wiki/List_of_countries_
by_GDP_(PPP)_per_capita.

Stage 1. If we could automatically determine the relationship
between the actual PM2.5 values and the monitored PM2.5
values of a malfunctioning sensor, the maintenance teams
would only be needed when it is difficult to calibrate the
sensor automatically. Consequently, we could further diminish
the number of required maintenance staff members.
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