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Abstract—The proliferation of misinformation has emerged
as a new form of warfare in the information age. This type
of warfare involves cyberwarriors, who deliberately propagate
messages aimed at defaming opponents or fostering unity among
allies. In this study, we investigate the level of activity exhibited
by cyberwarriors within a large online forum, and remarkably,
we discover that only a minute fraction of cyberwarriors are
active users. Surprisingly, despite their expected role of actively
disseminating misinformation, cyberwarriors remain predomi-
nantly silent during peacetime and only spring into action when
necessary. Moreover, we analyze the challenges associated with
identifying cyberwarriors and provide evidence that detecting
inactive cyberwarriors is considerably more challenging than
identifying their active counterparts. Finally, we discuss po-
tential methodologies to more effectively identify cyberwarriors
during their inactive phases, offering insights into better cap-
turing their presence and actions. The experimental code is
released for reproducibility: https://github.com/Ryaninthegame/
Detect-Inactive-Spammers-on-PTT.

Index Terms—cyber attack, graphical neural network, forum,
spammer, netizen, information warfare, media framing, filter
bubble, cyberwarrior

I. INTRODUCTION

Social media has emerged as a crucial platform for in-
formation sharing, leading politicians, political parties, and
governments to enlist the services of public relations (PR)
companies and social media curators to bolster their online
reputations. Regrettably, these PR firms occasionally engage in
the deliberate dissemination of plausible but potentially incor-
rect or partially accurate statements on the Internet, employing
techniques such as spin control or media framing. A prominent
example of this phenomenon is Russia’s interference in the
2016 United States election, with propaganda estimated to
have reached 126 million Facebook users and over 20 million
Instagram users [1].

Online propaganda typically relies on a multitude of user
accounts to spread information and create a false impression of
the formation of public opinion. These accounts, referred to as
"cyberwarriors" in this paper, can be generated automatically
or purchased at an affordable cost online. For example, a
Chinese government document in 2021 reveals that accessing
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TABLE I
A COMPARISON OF THE AUPRC SCORES OF DETECTING ACTIVE AND

INACTIVE CYBERWARRIORS USING DIFFERENT MACHINE LEARNING
MODELS. THE RESULTS SHOW THAT DETECTING INACTIVE

CYBERWARRIORS IS MUCH MORE CHALLENGING.

active users inactive users diff
XGBoost 0.8892 0.5157 0.3735

LightGBM 0.7421 0.4888 0.2533
Random Forest 0.8317 0.5147 0.3163

hundreds of active Facebook and Twitter accounts costs 5000
RMB per month, approximately 710 USD [2].

The detection of cyberwarriors plays a pivotal role in
combating the propagation of fake information. Previous stud-
ies have explored the behaviors of suspicious accounts and
spammers on various platforms, proposing methodologies to
detect them [3], [4], [5], [6], [7], [8]. However, most of these
studies focus on highly active users who exhibit extensive en-
gagement on the platform, such as leaving comments, sharing
photos, and initiating discussions. Apparently, detecting active
spammers based on abundant activity logs is comparatively
straightforward.

Perhaps to the surprise of many people, although the mission
of a cyberwarrior is to disseminate messages, a cyberwarrior
account may remain inactive for an extended period before
disseminating misleading posts [9]. Consequently, active cy-
berwarriors make up only a tiny proportion of the total cyber-
warriors. As a result, identifying inactive cyberwarriors may
pose a significantly greater challenge. To validate this point,
we conducted a preliminary study demonstrating the ease
of detecting spammers among active users using supervised
learning techniques and the difficulty of detecting inactive
spammers. As illustrated in Table I, when applying some
of the most successful machine learning models (XGBoost,
LightGBM, and Random Forest) to detect spammers among
active users, we achieve decent scores. However, these num-
bers decrease significantly when targeting inactive users, with
an average drop of over 30% in the area under the precision-
recall curve (AUPRC).

In this paper, our aim is to quantify a user’s level of
activeness and focus on identifying abnormal accounts among
inactive users. Since inactive users provide limited activity logs



as features, we enhance the available clues by incorporating
social information from two perspectives. First, we use data
from inactive users’ connected accounts to generate social-
related features. Second, we employ graph neural networks
(GNNs) as training models to capture the relationships be-
tween different accounts. Consequently, even if an account
exhibits limited activity logs, we can leverage information
from its neighboring accounts to detect its status (normal or
spammer). Our findings indicate that these simple strategies
significantly improve the effectiveness of discovering inactive
spammers while also slightly enhancing the detection of active
spammers.

In summary, this paper makes the following contributions.
• We demonstrate that detecting spammers among inactive

users is considerably more challenging than among ac-
tive users. Additionally, we highlight that a substantial
number of spammers are inactive users, which has not
received significant attention in previous studies that
primarily focus on active users.

• We introduce social-related features and employ graph
neural network models to leverage information from an
account’s neighboring accounts. Through comprehensive
experiments, we demonstrate that these simple strategies
improve the detection of inactive and active spammers
compared to other baseline methods.

• For reproducibility purposes, we release the experimental
dataset and the accompanying code. In addition, the
dataset can serve as a valuable benchmark for spammer
detection, as administrators of a large forum have manu-
ally labeled the spammers in our dataset.

The rest of the paper is organized as follows. Section II
reviews previous studies on spammer detection. In Section III,
we present the statistics and features of our studied forum. In
Section IV, we analyze the behaviors of active and inactive
spammers and compare the challenges associated with their
detection. Finally, we conclude and discuss our work in
Section V.

II. RELATED WORK

Detecting abnormal accounts has been a topic of extensive
research, with various approaches and techniques employed
to establish the relationship between account features and
their classification as normal or abnormal. Machine learning
models have proven to be valuable tools in this regard [3],
[4], [5], [6], [7], [8]. These models leverage relevant infor-
mation, such as an account’s public profile and behaviors,
to identify patterns indicative of abnormal activity. Although
these machine learning methods have demonstrated promising
performance in determining the status of active accounts,
they often encounter difficulties when dealing with less active
accounts, as evidenced by our preliminary study in Table I. The
limited information left by inactive accounts poses challenges
for feature extraction and classification, leading to suboptimal
performance in detecting such accounts.

Graphs are a natural choice for modeling relationships
due to their ability to represent complex interactions and

connections between entities in a visually intuitive and ver-
satile manner [10], [11], [12], [13]. In recent years, graph
neural networks have received significant attention due to
their remarkable performance in various domains, including
biomedical research, social network analysis, and abnormal
sensor detection [14], [15], [16]. Exploiting the inherent graph
structure of social networks to detect abnormal accounts be-
comes a natural choice. Consequently, researchers have lever-
aged graph-based approaches [17] and, more recently, graph
neural networks (GNNs) [18], [19], [20] to model social net-
works and make predictions. These techniques can effectively
identify suspicious patterns and uncover abnormal behavior
by capturing relational information among accounts. However,
despite the progress made in this field, detecting abnormal
accounts remains challenging, particularly when dealing with
less active or inactive accounts. The complexities that arise
from the limited availability of information and the evolving
nature of suspicious behavior necessitate further research and
the development of advanced techniques to enhance detection
accuracy and robustness.

III. THE PTT FORUM

We collect the experimental dataset from the PTT forum.
In this section, we provide a comprehensive introduction
to the PTT forum, including its background, statistics, and
noteworthy features, to familiarize readers with the platform.

A. Introduction of PTT

PTT, established in 1995, has emerged as one of the
largest and most influential forums in Taiwan. With a massive
user base that exceeds 1.5 million registered accounts and
encompasses over 20,000 discussion boards covering a wide
range of topics, PTT serves as a vibrant platform where users
actively engage in discussions, sharing insights, opinions, and
experiences [21]. The popularity of the forum is evidenced
by the staggering volume of user-generated content, with an
average daily production of more than 20,000 articles and over
500,000 comments.

The PTT forum caters to the diverse interests of Taiwanese
citizens, providing an avenue for discussions on a myriad
of subjects, including shopping experiences, celebrity gossip,
news updates, religions, movies, life goals, and notably critical
societal events. In particular, the platform has played an
important role in facilitating discussions during key historical
moments in Taiwan in the last decades. For instance, during
the Sunflower Student Movement in 2014, which involved a
three-week occupation of Taiwan’s Legislative Yuan1 by civic
groups and students, a single discussion board on PTT wit-
nessed the simultaneous presence of over 100,000 users, which
further encouraged more citizens to join the movement. This
event demonstrates the forum’s ability to mobilize individuals
and foster engagement. Similarly, during the 2016 presidential
election and the 2018 city mayor election, PTT attracted
similar numbers of users concurrently visiting a discussion

1Logislative Yuan is the unicameral legislature of Taiwan, similar to UK
Parliament and US Congress.



board, further highlighting its relevance and impact in shaping
public discourse.

Given the substantial influence of PTT, various entities, such
as journalists, politicians, political parties, and the entertain-
ment industry, actively monitor the platform to gauge public
opinion. In particular, politicians recognize the importance of
securing votes, particularly from the young and middle-aged
demographics, by leveraging PTT as a battleground to connect
with potential supporters and address their concerns.

PTT stands out among other online forums due to its
distinctive features and mechanisms. One notable feature is its
commenting system, where users can express their sentiment
towards an article through options such as liking, disliking, or
remaining neutral, accompanied by a 45-character comment.
Moreover, articles that receive a significant number of likes or
dislikes are visually highlighted with special colored symbols,
capturing users’ attention and potentially triggering further
engagement. This feedback loop reinforces the amplification
of likes or dislikes and subsequently increases the visibility
of such articles, leading to increased exposure and potential
impact.

However, with the substantial influence and visibility of
PTT, there have been instances where politicians, political
parties, and public relations (PR) firms resort to disseminating
disinformation on the platform for various purposes, including
media framing, attacking opponents, or self-promotion. The
unique highlighting system introduced earlier serves as a
motivation for individuals with specific agendas to mobilize
accounts and accumulate a large number of likes or dislikes on
selected articles in a short period of time, aiming to generate
further attention around these topics [22]. These dynamics
present challenges in distinguishing between genuine user
participation and orchestrated manipulations, underscoring the
need for robust detection mechanisms.

B. Experimental Data Collection on PTT

To conduct our research, we collected experimental data
from the PTT forum, focusing on a specific time period and a
subset of accounts associated with suspicious activities. From
March 2019 to December 2019, PTT officially announced
7, 581 accounts as spammers, primarily suspected of attempt-
ing to influence the city mayor elections of six major cities
in Taiwan in November 2018 and the upcoming presidential
election in March 2020. Out of these 7, 581 accounts, 4, 918 of
them have at least one activity record related to article posting
or commenting. However, it is worth noting that most of these
4, 918 accounts exhibit minimal activity, with up to 92% of
them having no more than 0.18 activities per day, indicating
a high degree of inactivity. Consequently, relying solely on
the activity logs of these accounts to detect whether they are
spammers or regular users, as suggested by previous studies,
may not yield optimal results.

To capture the relevant data for our analysis, we crawled the
articles from July 1, 2018, to December 29, 2019, based on the
following considerations. First, the PTT announced the first
batch of suspicious accounts in March 2019, approximately

four months after the city mayors’ election on November 24,
2018. Given this timeline, we assume that these accounts
began their actions approximately six months prior to the
election. Therefore, we started our data collection on July 1,
2018, to include the crucial period leading up to the election.
Secondly, the PTT announced its last batch of suspicious
accounts and suspended their posting and commenting permis-
sions on December 29, 2019. Consequently, we set this date
as the final crawling day to ensure comprehensive coverage of
relevant data.

After crawling the articles and comments, we discovered
that the total number of associated accounts (that is, including
the authors and commentors) exceeded 200, 000, which would
require substantial memory space, particularly when employ-
ing graph neural networks (details of which will be introduced
in Section IV). To manage the dataset more effectively, we
further pruned the articles based on specific criteria. First, we
included only articles with at least 90 comments, ensuring
a reasonable level of engagement for comprehensive analysis.
Second, if the associated accounts of an article contained fewer
than three spammers, we excluded the article, focusing on
those articles where suspicious activities were more prevalent.
Finally, we include a maximum of 80 commentors for the
remaining articles. Specifically, if the number of spammers
associated with an article was less than 80, we included all the
spammers; we included regular users in chronological order
until we reached a total of 80 accounts. On the contrary, if
more than 80 spammers were associated with an article, we
selected the earliest 80 spammers while excluding regular user
accounts. Following these criteria, we collected a dataset con-
sisting of 44, 602 user accounts, with 912 of them identified
as spammers by PTT administrators.

All subsequent experiments and analyses presented in this
study are based on the pruned dataset obtained after the
selection process.

IV. ANALYSIS

This section presents the empirical activeness scores of
cyberwarriors and compares the effectiveness of different
models to detect them. It provides insights into the activity
levels of spammers and explores the performance of various
algorithms in identifying them.

A. Most spammers are less active than normal users

We define the degree of activeness of an account by consid-
ering the average number of daily articles and comments. To
assess the activity levels of the collected users, we calculate
the active value for each user and categorize them into 10
groups, denoted G1 to G10. Each group Gi contains users
whose active values fall within the (i−1)th percentile and the
ith percentile among all users.

Table II presents the number of normal and spammer
accounts in each group Gi. As evident from the column "#
normal accounts" and the column "CDF of normal accounts",
the number of normal accounts remains relatively consistent
across the groups. However, the activeness values of spammers



TABLE II
THE NUMBER OF NORMAL USERS AND SPAMMERS FOR EACH GROUP. THE SYMBOL [p, q) REFERS TO THE PERCENTILE OF ACTIVE VALUE r IN THE

RANGE: p ≤ r < q.

Group Percentile of
active value Active value # normal

accounts
CDF of normal accounts

(a) # spammers CDF of spammers
(b) (b) − (a)

G1 [0%, 10%) 0-18 4112 9% 222 24% 15%
G2 [10%, 20%) 19-45 4418 20% 163 42% 22%
G3 [20%, 30%) 46-84 4508 30% 86 52% 22%
G4 [30%, 40%) 85-135 4223 40% 59 58% 18%
G5 [40%, 50%) 136-211 4453 50% 57 64% 14%
G6 [50%, 60%) 212-315 4096 59% 76 73% 14%
G7 [60%, 70%) 316-494 4320 69% 112 85% 16%
G8 [70%, 80%) 495-817 4368 79% 67 92% 13%
G9 [80%, 90%) 818-1663 4638 90% 51 98% 8%
G10 [90%, 100%] ≥ 1664 4554 100% 19 100% 0%

TABLE III
THE AUPRC SCORES OF VARIOUS NON-GNN MODELS (WITHOUT SOCIAL

FEATURES). WE REPEAT EACH EXPERIMENT 10 TIMES AND REPORT THE
MEAN ± STANDARD DEVIATION.

[0%, 10%) [10%, 20%) [80%, 100%]

XGBoost 0.52± 0.01 0.48± 0.03 0.89± 0.01
LightGBM 0.49± 0.02 0.40± 0.04 0.74± 0.02

Random Forest 0.51± 0.03 0.27± 0.02 0.83± 0.02
Fully Connected 0.35± 0.06 0.38± 0.05 0.75± 0.03

ConvNet 0.17± 0.06 0.26± 0.14 0.80± 0.33
Soft Voting [22] 0.40± 0.01 0.43± 0.01 0.76± 0.01
Hard Voting [22] 0.43± 0.02 0.47± 0.02 0.70± 0.03

Stacking [22] 0.42± 0.01 0.47± 0.03 0.67± 0.01

exhibit a significant skew. As indicated in the last column
of Table II, the cumulative distribution function (CDF) of
spammers for each row consistently exceeds the CDF of
regular accounts. This implies that, compared to normal users,
most spammers exhibit lower activity levels.

Since cyberwarriors are expected to disseminate informa-
tion, it may be argued that cyberwarriors should demonstrate
higher levels of activity. Thus, our empirical observation –
spammers are typically less active during non-conflict periods
– may be a surprise to many people. However, we found
that previous research on Twitter accounts aligns with our
findings and supports the claim that cyberwarriors often exhibit
extended periods of inactivity during peacetime and only
engage in extensive posting when necessary [9].

B. Supervised learning is successful in detecting active spam-
mers, but not inactive spammers

Given that spammers are generally less active than normal
users, detecting them may pose a greater challenge for algo-
rithms because of the limited clues they leave behind.

To validate this conjecture, we selected various algorithms
and tested their effectiveness in identifying active and inactive
spammers. The algorithms include two popular algorithms
known for their success in Kaggle competitions (XGBoost and
LightGBM), deep learning models such as fully connected
networks and convolutional neural networks (ConvNet), and
recently proposed approaches for spammer detection for PTT,

namely soft voting, hard voting, and stacking ensemble [22].
For each account a, we considered three features. First,
we computed the average popularity of a user’s associated
articles (i.e., the account a’s posted or commented articles).
In particular, we computed the total number of comments for
all m articles and divided by m. Second, we calculated the
average sentiment of comments about articles by subtracting
the number of dislikes from the number of likes for each of
the m articles and computing the average. These two features
were included because previous studies indicate that spammers
often generate many comments on selected articles to increase
their visibility. Lastly, we incorporated the active period of an
account as the third feature.

To evaluate the performance, we used the area under the
precision-recall curve (AUPRC) as the metric. Given the
highly imbalanced nature of our data set, with a percentage
of spammers ranging from 0.4% to 5% in each group (as
shown in Table II), AUPRC was considered more appropriate
than the area under the receiver operating characteristic curve
(AUROC). AUROC tends to overstate the performance of
a classifier when the positive class is the minority class,
potentially leading to misleading results [23], [24]. In contrast,
AUPRC is suitable for scenarios where the positive class is of
interest and represents the minority, as it accounts for precision
and recall without considering true negatives (i.e., the negative
instances that are predicted as negative by a model).

Table III reports the AUPRC scores of the selected algo-
rithms for three groups based on users’ activeness values:
[0, 10%), [10%, 20%), and [80%, 100%]. The results reveal
that as the activeness value increases (i.e., in the [80%, 100%]
group), the improved scores of the average AUPRC range
from 20% to 63% compared to the users in the [0%, 10%) or
[10%, 20%) groups. This finding aligns with our hypothesis
that supervised learning algorithms excel at detecting active
cyberwarriors. However, identifying inactive cyberwarriors is
significantly more challenging. Unfortunately, most cyberwar-
riors exhibit low activity during peacetime, making it possible
to identify them only when they engage in aggressive posting
and sharing of articles.
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Fig. 1. The structure of the GNN-based models. The GNN is either GCN,
TAGCN, or GAT.

TABLE IV
THE AUPRC SCORES OF VARIOUS GNN MODELS AND THE BEST

NON-GNN MODEL (WITHOUT SOCIAL FEATURES). WE REPEAT EACH
EXPERIMENT 10 TIMES AND REPORT THE MEAN ± STANDARD DEVIATION.

[0%, 10%) [10%, 20%) [80%, 100%]

XGBoost 0.52± 0.01 0.48± 0.03 0.89± 0.01 †

GCN 0.66± 0.18 0.38± 0.13 0.72± 0.07
TAGCN (K = 1) 0.64± 0.04 0.79± 0.06 0.89± 0.07 †
TAGCN (K = 2) 0.68± 0.02 0.84± 0.05 † 0.89± 0.08 †
TAGCN (K = 3) 0.71± 0.04 † 0.80± 0.07 0.89± 0.06 †

GAT 0.62± 0.09 0.77± 0.05 0.89± 0.06 †

C. Social information helps discover inactive spammers

This section demonstrates that integrating social information
can enhance the identification of inactive spammers. We
explore two perspectives for incorporating social information:
utilizing graphical neural network (GNN) models and de-
signing specialized social features. Our experimental results
validate the effectiveness of both approaches.

1) GNN models: This section introduces GNN-based mod-
els and explains how we construct a social network. Leverag-
ing the social information embedded in the network, models
can potentially extract valuable insights from neighboring
accounts, even when an inactive account provides limited
activity logs.

We consider each account as a node in a graph, connecting
two nodes with an edge if the corresponding accounts co-
appear in an article (either as commentors or with one as the
poster and the other as a commentor). To represent the graph,
we generate an adjacency matrix A = [ai,j ]i,j=1,...,n, where
n denotes the number of nodes, and ai,j = 1 if there exists
an edge connecting nodes i and j, and 0 otherwise.

We selected three representative GNN models as part
of our learning framework: graph convolutional networks
(GCN) [25], topology adaptive graph convolutional networks
(TAGCN) [26], and graph attention network (GAT) [27].
These GNNs incorporate information from neighboring nodes
into each node i through recursive information propagation,
thereby fusing the neighboring information with node i’s
information. The differences among these models lie in the
range of the neighboring area and the mechanism used to
integrate information. Figure 1 provides an overview of the
structure of the neural network with GNN models.

Table IV compares the best non-GNN model (XGBoost)
with GNN-based models. Most models perform satisfactorily
in detecting spammers from active accounts, as indicated in
the last column. However, when targeting less active ac-

TABLE V
THE AVERAGE SUSPECT VALUE FOR THE USERS OF DIFFERENT DEGREES

OF ACTIVENESS

Percentile of
active value # spammers Average

suspect value

[0%− 10%) 222 16.487
[10%− 20%) 163 4.682
[20%− 30%) 86 3.577
[30%− 40%) 59 2.778
[40%− 50%) 57 1.931
[50%− 60%) 76 1.579
[60%− 70%) 112 1.126
[70%− 80%) 67 0.784
[80%− 90%) 51 0.511
[90%− 100%] 19 0.123

[0%− 100%] 912 5.899

counts, most GNN-based models outperform the best non-
GNN model. We highlight the best performing model for each
column using the † symbol. If a GNN model performs better
than or at least as well as XGBoost, we highlight it in bold.

2) Social-related features: The previous section illustrates
that integrating social information helps identify less active
spammers. This discovery led us to hypothesize that by
designing social-related features, we could potentially assist
non-GNN models in detecting less active cyberwarriors.

We introduce a new feature, the suspect value si, for each
account i. The suspect value si is defined as the ratio of the
number of times user i co-occurs with any spammer in an
article to user i’s activeness value, as expressed by Equation 1.

si =

∑
∀p∈Ai

I(p ∈ P(spammer))

ai
, (1)

where ai represents the activeness value of user i, Ai denotes
the set of articles associated with user i (i.e., the set of
articles in which user i has either posted or commented),
P(spammer) returns the set of articles posted or commented on
by spammers, and I denotes the indicator function, such that
I(x) = 1 if x is true and 0 otherwise.

Table V presents the average suspect values for different
ranges of activeness values. The results reveal a clear relation-
ship between a user’s activeness and their suspect value: users
with lower activity levels tend to connect with more spammer
accounts. This finding supports our earlier observation in
Section IV-A that spammers exhibit less activity. Specifically,
we find that inactive accounts tend to have more connections
to spammers, which could indicate suspicious behavior.

Table VI reports the AUPRC scores of both non-GNN
models and GNN-based models to detect cyberwarriors in
different degrees of activeness, incorporating the suspect value
as a feature. This social feature enhances the identification
of cyberwarriors for both non-GNN and GNN-based models
(referring to Table III and Table IV). Additionally, the sus-
pect value feature proves particularly helpful in identifying
spammers from the inactive user groups, as exemplified by
LightGBM’s AUPRC increasing from 0.49 to a remarkable
0.86 for the most inactive group of users.



TABLE VI
A COMPARISON OF VARIOUS MODELS (INCLUDING SOCIAL FEATURES) IN TERMS OF THE AUPRC SCORE. WE REPEAT EACH EXPERIMENT 10 TIMES

AND REPORT THE MEAN ± STANDARD DEVIATION. WE HIGHLIGHT THE WINNER OF NON-GNN-BASED MODELS IN BOLD. WE HIGHLIGHT THE
GNN-BASED MODELS IF THEY OUTPERFORM THE BEST NON-GNN-BASED MODELS.

Type Model [0%, 10%) [10%, 20%) [80%, 100%] [0%, 100%]

Non-GNN-based models
(including social features)

XGBoost 0.83± 0.01 0.74± 0.03 0.90± 0.02 0.86± 0.00
LightGBM 0.86± 0.02 0.72± 0.05 0.88± 0.02 0.82± 0.00

Random Forest 0.85± 0.01 0.56± 0.05 0.85± 0.02 0.79± 0.00
Fully Connected 0.53± 0.07 0.51± 0.06 0.76± 0.05 0.64± 0.04

ConvNet 0.43± 0.09 0.68± 0.07 0.83± 0.04 0.66± 0.06
Soft Voting [22] 0.69± 0.00 0.56± 0.01 0.76± 0.01 0.72± 0.00
Hard Voting [22] 0.67± 0.01 0.63± 0.02 0.70± 0.03 0.74± 0.01

Stacking [22] 0.54± 0.02 0.56± 0.03 0.67± 0.01 0.69± 0.02

GNN-based models
(including social features)

GCN 0.62± 0.08 0.52± 0.05 0.83± 0.08 0.69± 0.03
TAGCN (K = 1) 0.79± 0.03 0.97± 0.05 0.99± 0.04 0.92± 0.01
TAGCN (K = 2) 0.82± 0.03 0.98± 0.02 0.99± 0.03 0.93± 0.02
TAGCN (K = 3) 0.85± 0.02 0.98± 0.03 0.98± 0.01 0.94± 0.01

GAT 0.73± 0.06 0.91± 0.06 0.92± 0.07 0.87± 0.05

D. F1 scores When Claiming the Top-k Suspicious Users as
cyberwarriors

After a model predicts the probability of an account being
abnormal for each user, practical verification from adminis-
trators is still necessary. Therefore, a two-step procedure can
be employed to determine suspicious accounts in practice.
The procedure involves ranking all users based on their
predicted suspiciousness using a prediction model, followed
by manual examination of the top-k most suspicious accounts
by administrators or guardians. The value of k is determined
based on the available manpower, allowing for the verification
of suspicious accounts with minimal labor costs.

To evaluate the effectiveness of the aforementioned two-step
approach using different prediction models, we compute the
F1-at-k (F1@k) scores for varying values of k. The F1@k
score is defined in Equation 2.

F1@k = 2× p@k × r@k

p@k + r@k
, (2)

where p@k and r@k are precision-at-k and recall-at-k, defined
by Equation 3 and Equation 4, respectively.

p@k =
number of abnormal accounts in top k

k
(3)

r@k =
number of abnormal accounts in top k

total number of abnormal accounts
(4)

The F1@k score extends the standard F1 measure to
evaluate a ranked list by considering the top-k predictions. It
provides a comprehensive assessment by integrating both p@k
and r@k. The precision-at-k (p@k) measures the proportion
of abnormal accounts among the top-k suspicious accounts,
indicating the accuracy of the model’s predictions within the
top-k positions. On the other hand, recall-at-k (r@k) focuses
on the completeness of predictions by evaluating how many
abnormal accounts are included among the top-k positions. It
indicates the model’s ability to identify and retrieve relevant

items from the entire set. The harmonic mean of p@k and
r@k is used to compute the F1@k score, ensuring that both
precision and recall contribute to the final evaluation.

Table VII presents the F1@k scores for various models at
different values of k. The results demonstrate that LightGBM
and XGBoost remain the top-performing models of non-
GNN-based approaches. However, GNN models consistently
outperform the best non-GNN models on F1@k for different
k values. Therefore, when employing the two-step human-
machine cooperation strategy described above, utilizing GNN-
based models with social features remains a favorable option.

V. DISCUSSION

This paper contributes to understanding spammers’ active-
ness and the challenges associated with their detection. By
examining a real dataset from a large forum, we have provided
insights into the prevalence of inactive spammers, which were
largely overlooked as previous studies primarily focused on
active spammers. Our findings emphasize the importance of
considering spammers’ activeness and highlight the need for
caution when applying existing detection models developed
mainly for active spammers. The insights gained from this
research may shed light on the broader landscape of spam
detection and underscore the significance of adapting detection
techniques to encompass both active and inactive spammers.

Although our primary focus in this study was on political
spammers, it is worth noting that the methodology and ap-
proach presented can be extended to address other types of
spammers, e.g., commercial spam. The underlying principles
and techniques – incorporating social information into the
model – can be readily applied to different domains, enabling
the detection and mitigation of spam in various contexts. This
versatility enhances the practical applicability of our research
and provides a foundation for developing effective detection
mechanisms in other domains related to spamming.

Future investigations could explore additional dimensions
of spammer behavior, such as the temporal dynamics of their
activities or the evolving strategies employed by different



TABLE VII
A COMPARISON OF VARIOUS MODELS (INCLUDING SOCIAL FEATURES) IN TERMS OF THE F1 SCORE. WE HIGHLIGHT THE WINNER OF NON-GNN-BASED

MODELS IN BOLD. WE HIGHLIGHT A GNN-BASED MODEL IF ITS RESULT OUTPERFORMS THE BEST NON-GNN MODEL.

Type Model k = 100 k = 200 k = 300 k = 400

Non-GNN-based models
(including social features)

LightGBM 0.6078 0.7729 0.6832 0.5969
XGBoost 0.6431 0.7676 0.6915 0.5866

Random Forest 0.6042 0.7598 0.6811 0.5849
ConvNet 0.6289 0.7154 0.6336 0.5523

FC 0.4382 0.6162 0.5880 0.5352
Ensemble 0.1594 0.2325 0.2193 0.2096

Soft Voting 0.1838 0.3148 0.4208 0.5092
Hard Voting 0.1640 0.2842 0.3977 0.488

GNN-based models
(including social features)

GATC 0.4382 0.6319 0.6916 0.6038
GCN 0.6573 0.6632 0.5549 0.4700

TAGCN (K = 1) 0.6926 0.8564 0.6873 0.5695
TAGCN (K = 2) 0.6997 0.8669 0.7122 0.5970
TAGCN (K = 3) 0.7067 0.8721 0.7164 0.6072

spammers. Such endeavors will contribute to a more compre-
hensive understanding of spamming phenomena and facilitate
the development of robust and adaptive detection methods to
counteract the ever-evolving landscape of spam.
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