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Abstract—This paper conducts an empirical study on detecting
faulty sensors in a large-scale sensor network containing approxi-
mately 10,000 sensors distributed over 36,000 km?. First, we discuss ﬁ_‘
the practical challenge of this task. We compare rule-based models, )

traditional machine learning models, deep learning models with-
out graph neural networks, and deep learning models with graph
neural networks. The experimental results show that graph neural

networks identify more problematic sensors in fewer trials than
rule-based models and other machine learning and deep learning

models. In addition to training the models in a central server, we t—2 -1

also show that localized versions of the deep learning models Time t a )

with graph neural networks vyield predictive power comparable to 4L Failure
centralized training. Consequently, each sensor may perform a local GNN models (centralized probability of
inspection to identify its health status and only send reminder L each node
signals to a centralized server if it is self-diagnosed as a faulty or distributed)

sensor.

Index Terms— Graph neural network, graph convolutional network, sensor network, anomaly detection, automatic
inspection, PM2.5

[. INTRODUCTION dicting sensors’ monitored values first and then classifying the
sensors whose monitored values vary most from the predicted
values as the malfunctioning sensors [4]. This approach turns
out to be effective, likely because of the myriad number of
monitored data that are available from sensors. The same
paper showed that predicting the future monitored values of
a malfunctioning sensor is more difficult than doing so for a
healthy sensor, so this two-stage approach is likely reasonable.
They showed that when using deep neural networks as the
predicting model for the first stage, the two-stage approach
effectively discover the problematic sensors in terms of both
precision and recall.

We continue this line of research by using GNNSs in the first
stage. In particular, we leverage both temporal convolutional
and graphical convolutional neural networks to model the non-
linear and high-dimensional temporal and spatial information
contained in the monitored values derived from sensors. In
addition to centralized training models, we also test localized
models and find that the predictive power of the localized
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IR quality sensors play a crucial role in detecting air
pollution, which is a critical environmental protection
issue [1]. However, the quality of the monitored data may
be unreliable, especially when the sensors are mostly low-
cost sensors and are rarely inspected [2], [3]. As a result,
downstream analyses might be problematic because they rely
on the sensors’ monitored values, which are likely distorted.
This paper aims to discover inaccurate sensors based on
graph neural networks (GNNs) through the spatiotemporal
information derived from sensors. In the following, we use the
terms “inaccurate sensors”, “problematic sensors”, ‘“anomalous
sensors” and “malfunctioning sensors” interchangeably. While
this task can be modeled as a standard binary classification
problem, we usually have no ground truth information re-
garding sensors’ health statuses as training targets, so directly
applying supervised classification algorithms is impractical.
Recently, Lin et al. suggested a two-stage approach — pre-
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Fig. 1. The distribution of the working sensors in July 2021 in Taiwan
and the outlying islands, including the Penghu Islands, Kinmen Island,
Green Island, Orchid Island, and Liugiu Island. The area of the Taiwan
island is approximately 36, 000 km?.

tion Administration (EPA) of the Executive Yuan in Taiwan
has gradually built and operated over 10,000 air quality
sensors since 2017, and this number continues to grow. A
methodology operating at this scale should prove its practical
effectiveness and robustness in discovering malfunctioning
sensors. A geographical distribution of the working sensors
in July 2021 is shown in Figure 1.
We summarize our threefold contributions below.

« We empirically validate the fact that the proposed two-
stage framework can identify malfunctioning air quality
sensors. This model requires no sensor health status la-
bels. Consequently, this model is practical for identifying
malfunctioning sensors in a large-scale sensor network,
which usually has no ground-truth labels regarding sen-
sors’ health statuses.

o We picked two representative spatiotemporal GNN mod-
els, Graph WaveNet and spatiotemporal Graph Convo-
lutional Network (STGCN), to empirically validate the
effectiveness of centralized and localized GNNs in in-
tegrating spatiotemporal information to predict malfunc-
tioning air quality sensors. We compare these GNNs with
baseline models, including rule-based models, traditional
machine learning models, and deep learning models,
based on the dataset collected from the nationwide sensor
network introduced above. The experimental results show
that the GNNs outperform the baseline models in terms
of area under the ROC curve, precision-at-n, and recall-
at-n. As a result, the approach can effectively reduce the
manpower required for inspections.

o To the best of our knowledge, our dataset is the largest
available in the area of identifying problematic air quality
sensors. With a vast amount of data points, our dataset
provides a comprehensive view of sensor behavior and
enables us to compare the effectiveness of various algo-
rithms on a large scale.

The paper is organized as follows. Section II reviews pre-
vious methods for anomaly detection, especially for air qual-
ity prediction. Section III introduces the two-stage anomaly
detection framework and deep spatiotemporal graph models.
Section IV presents experiments on different methods. Finally,
Section V discusses our discovery and future works.

[1. RELATED WORK

We review previous works on anomaly sensor detection and
introduce the applications and research regarding spatiotempo-
ral pattern mining in this section.

A. Anomalous Sensor Detection

The detection of anomalous sensors has been studied from
different perspectives. Perhaps the most straightforward ap-
proach involves applying statistics-based methods and rule-
based methods to find anomalous sensors. For example, the
authors of [5], [6] discovered spatial anomalies and tempo-
ral anomalies based on human-defined rules. However, the
effectiveness of rule-based methods is limited by the rule
makers’ expertise, and it is likely difficult to capture the high-
dimensional and nonlinear interactions among the temporal,
spatial, and perhaps other types of information.

An alternative approach for identifying anomalous sensors
is through machine learning models. When target labels are
unavailable, unsupervised approaches such as clustering [7]
and principal component analysis [8], [9] are commonly used.
However, supervised learning models such as simple linear
models [10], support vector machines [11], random forests,
Gaussian processes [12], or deep learning models [13] can
be applied if the target variables are available. Unfortunately,
the health statuses of sensors are often unavailable. To address
this challenge, a two-stage approach was proposed by [4], [14].
While previous studies (e.g., [14]-[17]) have also suggested
applying GNN models to detect anomalies in sensor networks,
their experiments were conducted on smaller datasets (ranging
from dozens to at most hundreds of nodes) [14], [15] or
synthetic dataset [16], [17]. Our method, however, is tested
on a network with tens of thousands of nodes, which is
significantly larger than previous works. For further reading,
surveys on anomaly detection for IoT systems and sensor
networks are available in [18] and [19].

The discovered anomalies or outliers may not necessarily
represent malfunctioning sensors. For example, the authors
of [20] use topological characteristics, such as betweenness
and closeness centralities, to infer the outliers. Another ex-
ample is the PurpleAir dataset [21], which provides out-
door/indoor labels for each sensor; these labels are further
used as the normal/abnormal labels in some studies, as the
ground-truth information about sensors’ statuses (normal or
malfunctioning) is usually difficult to obtain on a large scale.
In our paper, we define anomalous or malfunctioning sensors
as those that yield inaccurate measurements when compared
with those provided by a lab-calibrated sensor. We obtained
the ground-truth labels of the test instances based on the on-
field inspection records.

B. Spatiotemporal Pattern Mining

Spatiotemporal pattern mining involves studying the com-
plex relationships among spatial, temporal, and perhaps other
affiliated features, along with the target variables. However,
integrating these various types of features into one model is
sometimes tricky because the sizes of the spatial and tempo-
ral characteristics are likely dynamic, and the dependencies
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among the data instances may violate the independent and
identically distributed (i.i.d.) assumption of many learning
models.

To deal with the dynamic sizes and data dependencies of
temporal features, a possible approach is to utilize a Markov
chain, which assumes that the memorylessness Markov prop-
erty holds to simplify the constructed model [22]. Another
strategy that has become popular in the last decade is the
use of recurrent neural networks (RNN) and their variations
(e.g., long short-term memory), which memorize sequential
information via the internal states of neurons [23], [24]. Spatial
features are sometimes integrated based on one-dimensional
or two-dimensional convolutional neural networks. However,
such designs assume that the spatial features form a grid-
like shape [25], [26], which is probably an oversimplification
of a natural environment. A graph is an essential structure
for modeling the relationships among various objects, such
as scientific literature coauthoring relationships [27], [28],
the interactions between the characters of a novel [29],
word co-occurrence relationships [30], recommender system
relationships [31]-[33], disease relationships [34], and many
more. A graph neural network (GNN) provides tools for
bridging important data structure graphs with deep learning
technology [35]. Among the various GNN models, graph
convolutional networks (GCNs) are extremely popular, likely
because of their elasticity and efficiency: a GCN’s training
time grows only linearly with the number of edges [36]. GCNs
have been applied to model various spatial-temporal tasks,
e.g., traffic prediction [37]-[40], trajectory prediction [41],
link prediction [42], and detecting stealth false data injection
attacks [43]. In this paper, we rely on a GCN to capture spatial
information and integrate it with the temporal information
captured by a temporal convolution network (TCN) or a gated
linear unit (GLU).

1. MODEL

Classifying the health status (i.e., normal or inaccurate)
for sensors using supervised learning is challenging due to
the unavailability of their status labels. Therefore, supervised
classifiers with cross-entropy loss cannot be directly applied.
Instead, we leverage a large number of monitored PM2.5
values to identify inaccurate sensors using a two-stage frame-
work, as proposed in [4]. In stage 1, we use a supervised
regressor to predict the near-future PM2.5 values of each
sensor. In stage 2, we identify problematic sensors by selecting
those whose predicted values differ significantly from the
monitored values. This approach avoids the need for direct
classification while still enabling the accurate detection of
inaccurate sensors.

This section introduces the two-stage approach for discover-
ing inaccurate sensors in detail (Section III-A and Section III-
B). In addition to centralized training and prediction, we also
introduce a local model that can be trained based only on local
information (Section III-C).

A. Stage 1: Predicting Future Monitored Values

In [4], the authors applied various supervised regressors
(e.g., ridge regression, the Lasso, a random forest, a multilayer
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Fig. 2. An example of converting the sequential monitoring data derived
from five sensors to graphs.

perceptron, and long short-term memory) to predict each
sensor’s monitored PM2.5 values in stage 1. In this paper, we
apply deep spatiotemporal GNN models because these types
of models naturally integrate spatial and temporal information.

Figure 2 gives an example of converting the sequential
PM2.5 information derived from n = 5 sensors into graphs. In
particular, for each time unit, we treat each sensor as a node
and connect every pair of sensors with an edge. Therefore, we
generate a complete graph for each time unit. Although each
graph is topologically identical, the monitored PM2.5 values
of the same sensor at different time points may vary.

In our task, the conventional approach of constructing
graphs with a threshold 7 beyond which the weight between
nodes is set to zero is not suitable. This is because of the non-
uniform geographical distribution of sensors, as depicted in
Figure 1, which presents a significant challenge. In particular,
sensors in the middle or east regions of Taiwan are widely
spaced apart, while those in the west are densely located.
Therefore, if we want to ensure that the sensors in the middle
or east regions are well connected to their neighboring sensors,
we have to set 7 to a small value, which ultimately results in
a highly dense network. For simplicity, we opt for a fully
connected network.

We test two different GNNs — Graph WaveNet model [39]
and the spatiotemporal GCN (STGCN) [38] — because they
are simple and have produced great prediction results in
other spatiotemporal prediction tasks [38], [39]. We also study
their variations that require only neighboring information in
Section III-C.

1) Graph WaveNet: Graph WaveNet considers both tem-
poral and spatial information. In particular, Graph WaveNet
captures temporal information based on a dilated causal con-
volution and a gating temporal convolution layer (gated TCN).
The dilated convolution can be considered a 1-dimensional
convolutional neural network (CNN) applied on the time
domain. The filter is applied over a time period larger than
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its length by skipping input values with a certain step size.
As a result, the dilated convolution has large receptive fields
with few layers. The gating mechanism controls the flow of
information to the next layer.

After dealing with the temporal information, Graph
WaveNet iterates through each timestamp to capture the un-
derlying spatial pattern based on the graph convolution layer
module, which is composed of two components. First, a
diffusion convolution models the information flow based on a
k-step random walk to generate a graph convolution. Second,
a self-adaptive adjacency matrix is automatically learned to
capture the latent relationships among different nodes, which
may alleviate the inefficiency of the fixed adjacency matrix.

In summary, the Graph WaveNet model applies a [-layer
gated TCN to capture the temporal information (! = 3 in our
setting). The outputs of the gated TCN are fed into the graph
convolution layer to obtain spatial information. The Graph
WaveNet model stacks m spatiotemporal layers through a
dilated causal convolution to handle both the short-term and
long-term temporal information (m = 4 in our setting).

2) Deep STGCN: The STGCN considers both temporal
and spatial information based on a temporal attention layer
and an approximated graph convolution layer. The temporal
attention layer applies a one-dimensional convolution on the
time domain to capture temporal relationships. The output is
further transformed by gated linear units (GLUs) to capture
nonlinearity. For the spatial information, the STGCN utilizes
Chebyshev polynomials to approximate the first-order spec-
tral graph convolution (i.e., the scaled graph Laplacian ma-
trix) [36]. As a result, this structure requires fewer parameters
and is therefore highly efficient for large networks. When
increasing the depth of the layers, the approximation process
resembles the k-th-order spectral graph convolution.

To apply Graph WaveNet (introduced in Section III-A.1)
and the STGCN (introduced in Section III-A.2) to predict the
future monitored values of a PM2.5 sensor, we construct a
complete graph by treating each sensor as a node, and every
node connects to every other node. We assign w;; as the weight
of an edge between node ¢ and node j via the radial basis
function (RBF) kernel, as shown in Equation 1.

_ (1)

where d;; denotes the geographical distance between sensor
17 and sensor j, and 0 = 10 is a hyperparameter. We set the
value of the hyperparameter based on a grid search conducted
on the validation set.

We apply the RBF kernel as it is commonly used as the
similarity score between two locations in geographic informa-
tion analyses, e.g., [44]. The RBF kernel is popular because
the output is negatively correlated with d;;, the geographical
distance between a location ¢ and a location j.

B. Stage 2: Anomaly Detection

The anomaly detection module calculates the R? score be-
tween the predicted PM2.5 values in the near future (using the
results in Stage 1) and the actual monitored PM2.5 values for
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Fig. 3. The entire workflow of the two-stage method for discovering
inaccurate sensors.

each sensor. We use the RR? score instead of other regression
evaluation metrics, such as the root-mean-square €rror or the
mean absolute error, because the R2 score is a normalized
score, making it easier to interpret. In contrast, the value of the
root-mean-square error is usually influenced by the magnitude
of the true y-s.

The R? score for a sensor i is defined by Equation 2.

. N 2
ST (49 - 3)
ST (47— )

represents the monitored PM2.5

R2 (yu)’g(i)) -1 )

where y() = [yii), . y(Ti)]

values at the future 7 time units for sensor 1, ﬁ(i) =
[gjy), ey gjgﬁ)} denotes the predicted values at the future T
time units for sensor 7, and (") is the average monitored value
for sensor ¢ based on the training data.

Rather than relying on a fixed threshold ~ to identify
problematic sensors, we propose ranking sensors by their R?
scores in ascending order. This approach prioritizes sensors
with the lowest R? scores, indicating that they are more
likely to be inaccurate. To determine the number of sensors to
inspect, we suggest the inspection team consider their available
resources and choose the top n sensors for examination.

The entire workflow (Stage 1 and Stage 2) is shown in
Figure 3.

C. Local GNN Models

A GNN-based centralized PM2.5 predictor (as explained in
Section III-A.1 and Section III-A.2) requires the generation
of a large complete graph (containing approximately 10,000
nodes in our case) for each time unit. Additionally, all sen-
sors must transmit their monitored values to a centralized
computing unit for training and prediction, which might be
an issue for low-cost sensors with limited computational and
communication resources.
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To economically utilize the limited capacity of such low-
cost sensors, we discuss variations of the Graph WaveNet and
STGCN models in which each sensor can diagnose its health
status using local information from neighboring nodes. Our
intuition is that a pair of distant nodes probably have smaller
impacts on each other than nodes that are close together, so
we can probably ignore the distant sensors and only focus on
the local sensors. As shown in Equation 1, when the distance
d;; between sensor ¢ and sensor j is large, w;; is close to
zero. Therefore, instead of generating a graph for all sensors,
perhaps we can generate a small graph containing only the
sensors that are local to each sensor.

Eventually, we train a distinct model for each sensor
based on a local complete graph that includes sensor 7 and
its five nearest neighbor sensors. Therefore, sensor i’s future
monitored value is predicted by a small complete graph
containing only six sensors. The observed PM2.5 values are
transmitted only to local neighbors.

The Graph WaveNet model leverages a standard graph
convolution network (GCN) to process information at each
timestamp. However, the time complexity for each timestamp
is O(led+Ind?), where [ represents the number of layers, e is
the number of edges, n denotes the number of nodes, and d is
the number of features in each node [45]. Given that a com-
plete graph has n(n—1)/2 edges, the training time for Graph
WaveNet grows quadratically with the number of input nodes.
Similarly, the Spatio-Temporal Graph Convolutional Network
(STGCN) has a time complexity that grows linearly with the
number of edges [38], which also results in quadratic growth
of the training time with the number of inputs. Therefore,
using the local GNN models significantly reduce the training
time because the network size is much smaller.

IV. EXPERIMENT

This section introduces the utilized experimental dataset, the
preprocessing steps conducted on the experimental dataset, the
baseline methodologies employed for comparison purposes,
the selected evaluation metrics, and the experimental results.

A. Experimental Dataset

Our experimental dataset includes two parts.

The first part contains the historical PM2.5 values monitored
by the sensors. This dataset is released by the Environmental
Protection Administration (EPA) of Taiwan and can be down-
loaded directly from the website “Civil IoT Taiwan”.! How-
ever, since the majority of these sensors are low-cost sensors
(only 77 out of the 10000+ sensors are highly expensive and
accurate sensors that are continuously inspected every week),
most of the monitored values may be unreliable.

The second dataset contains sensor maintenance records
for 2018 retrieved from the Green Energy and Environment
Research Laboratories of the Industrial Technology Research
Institute — the institute that maintains the sensors studied in
this paper. The maintenance records include 144 sensors that
were inspected between January 2018 and December 2018.

https://ci.taiwan.gov.tw/air-quality

Among the 144 sensors, 116 are normal (labeled O in our
paper), and 28 are out-of-order (labeled 1). All the sensors are
located in Taichung City, the largest city in central Taiwan.

B. Data Preprocessing

The sensorsaiAZ monitored PM2.5 values are occasionally
missing in the dataset released by the EPA. To deal with a
short-term missing value, we fill it in with the latest available
value before the missing data point. If the missing period is
longer than one day, we use the data from the previous day
to fill in the missing values.

We standardize the monitored PM2.5 values using Z-score
normalization, as defined below.

, T—T

— 3)

O

where z is the original PM2.5 value, = denotes the mean of all
the monitored PM2.5 values in the training data, o, represents
the standard deviation, and 2’ is the normalized PM2.5 value.

C. Compared Baselines

We compare the proposed method with several baseline
models, including a famous rule-based model that discovers
inaccurate air quality sensors (ADF [5]), traditional machine
learning models (a random forest [46], [47], the Lasso [48],
[49], and ridge regression [50], [51]), and deep learning
models without graphs (a multilayer perceptron (MLP) [52],
[53] and long short-term memory (LSTM) [54]).

D. Evaluation Metrics

We use the area under the receiver operating character-
istic curve (AUROC), precision-at-n (PQn), and recall-at-n
(RQN) measures as the evaluation metrics. We select these
metrics for the reasons described below.

The receiver operating characteristic (ROC) curve shows the
relationship between the true positive rate and false positive
rate by varying the discrimination threshold. The AUROC is
equivalent to the probability that a classifier ranks a randomly
chosen positive instance higher than a randomly chosen neg-
ative instance. Therefore, the AUROC score is immune to
various evaluation issues that are caused by an imbalanced
dataset. Additionally, we do not need to worry about threshold
values that may influence the scores of the evaluation metrics.

The precision-at-n metric measures the ratio of the number
of true-positive instances (when classifying the top-n values as
positives) to n. In our application scenario, the precision-at-n
metric estimates the number of discovered inaccurate sensors
if the inspection team can only afford to inspect n sensors.
The definition of precision-at-n is shown in Equation 4.

number of inaccurate sensors in the top n
Pan — PT @
n

We also report the recall-at-n score, which is defined as
the number of true-positive- instances (when classifying the
top-n results as positives) in the top n divided by the total
number of positives instances. In our application, recall-at-n
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measures the proportion of discovered inaccurate sensors out
of all inaccurate sensors when the inspection team can only
inspect n sensors. The definition is given in Equation 5.

Ra number of inaccurate sensors in the top n 5)
n= - :
number of inaccurate sensors in total

TABLE |
AUROC SCORES OF DIFFERENT METHODS. WE HIGHLIGHT THE
LARGEST AND THE SECOND-LARGEST AVERAGE AUROC SCORES IN
BOLD AND WITH A BOX, RESPECTIVELY.

Type || Model AUROC (mean + stdev)
Rule-Based || ADF-5 0.624
Random Forest 0.6878 £+ 0.0063
Traditional ML Lasso 0.7000 £ 0.0157
Ridge 0.7085 £+ 0.0135
MLP 0.6940 £ 0.0072
DN LSTM 0.7090 + 0.0072
GNN Graph WaveNet  0.7216 £ 0.0147
STGCN 0.7220 £+ 0.0142
E. Results

Table I gives the AUROC scores of a rule-based model,
traditional machine learning models, deep learning models,
and GNN models. The rule-based ADF model detects a
sensor’s health status by comparing the sensor’s monitored
values with the neighboring sensors’ monitored values based
on the rules defined by experts. The original paper exam-
ined five nearest neighbors [5], which is denoted as ADF-5
in the following. Since all other models are training-based
methodologies that may yield slightly different predictions
every time, we repeat the experiments for each model five
times and report both the mean and standard deviation of the
AUROLC scores obtained from the five trials. We list mean and
standard deviation, instead of the traditional p-values, because
(1) mean and standard deviation provide more information
about the distribution of the scores, and (2) p-values are often
harder to correctly interpret [S5]. As shown in Table I, the
GNN-based models (Graph WaveNet and the STGCN) yield
better average AUROC scores stably (as shown by the small
standard deviations) than all the baseline models. Furthermore,
while the STGCN model exhibits a higher average AUROC
score compared to the Graph WaveNet model, the observed
difference may be deemed insignificant since the mean value
of the Graph WaveNet’s AUROC score plus its standard
deviation is greater than the mean value of STGCN’s AUROC
score.

Table II gives the precision-at-n scores of various methods
for n = 10,20,...,50. Such a setup simulates the real-
world scenario in which the inspection team is only able
to inspect m sensors and wants to estimate the percentage
of inaccurate sensors out of all inspected sensors. Based
2018 on the inspection records provided by the Green Energy
and Environment Research Lab at the Industrial Technology
Research Institute, 28 out of the 144 inspected sensors were

malfunctioning. Since the inspected sensors are obtained from
a randomly selected region, we estimate that approximately
(28/144) x 100% ~ 19.44% of the sensors are inaccurate on
average. As a result, the precision-at-n for a random inspection
is 0.194 for all n-s. The precision-at-n values for a random
inspection and the other compared methods are shown in
Table II. As shown, the GNN-based methods are commonly
in the top-2 in terms of the precision-at-n metric, especially
when n becomes larger.

Table III displays the recall-at-n values of different meth-
ods. When the inspection team can only examine 7 sensors,
the recall-at-n metric estimates the proportion of discovered
problematic sensors out of all truly inaccurate sensors. Since
19.44% of the sensors are out-of-order, randomly inspecting
n sensors is expected to yield 0.1944n problematic sensors,
which leads to a recall-at-n value of 0.1944n/28, as shown
in Table III. We also show the results of the other comparison
models in the same table. Again, the GNN-based methodolo-
gies are commonly among the two methodologies with the
highest recall-at-n scores.

F. Global Models vs. Local Models

For each GNN model, we compare the AUROC scores
produced by the global and local training methods.

The global method leverages all sensors’ monitored infor-
mation to build a unified model. This is exactly the method-
ology introduced in Section III-A and Section III-B. All the
numbers related to the GNN models reported in previous tables
are based on the global unified models.

The local models aim to use only the monitored PM2.5
values from a sensor ¢ and its five closest neighbor sensors to
build a local prediction model for sensor . Although such
a methodology requires building a distinct model for each
sensor, each model can exchange and share information only
among its local sensors.

Table IV gives the AUROC scores of the global and local
versions of the Graph WaveNet and STGCN training models.
There appears to be no significant difference between these
two training methods. Table V and Table VI provide compar-
isons between the global and local methods in terms of their
precision-at-n and recall-at-n values, respectively. The global
and local methods produce no apparent winner here as well.
Therefore, if transmitting all monitored values to a centralized
server is an issue, we can always use the local methods to train
GNN-based models while still obtaining comparable results.

G. The Influence of the Similarity Scores

We compare the AUROC scores using different similarity
measures for Graph WaveNet and STGCN in this section. We
compare the RBF kernel (Equation 1) with the polynomial
kernel and Laplacian kernel.

The polynomial kernel uses the dot product to determine the
similarity between two points. When the degree is larger than
1, the polynomial kernel determines not only the similarity
between the original feature space but also a combination of
the features. The formula of the polynomial kernel between
two points ¢ and j is shown in Equation 6.
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TABLE I
PRECISION-AT-n VALUES ACHIEVED BY VARIOUS METHODS. WE HIGHLIGHT THE LARGEST AND THE SECOND-LARGEST AVERAGE AUROC
SCORES IN BOLD AND WITH A BOX, RESPECTIVELY.

Type \ Model \ P@10 P@20 P@30 P@40 P@50
Random ‘ 0.194 0.194 0.194 0.194 0.194
Rule-Based ‘ ADF-5 ‘ 0.300 0.350 0.270 0.330  0.320
Random Forest 0.380 0.370 0.400 0.342 0.320
Traditional ML | Lasso 0.580 0.430 0.394 0.370  0.320
Ridge 0.600 0433 0.395 0.375 0.337
DNN MLP 0.500 0.430 0.374 0.344 0.312
LSTM 0.600 0.410 0.368 0.332  0.336
GNN Graph WaveNet | 0.540 0.420 0.400 0.378 0.348
STGCN 0.588 0.438 0.419 0.414 0.372
TABLE IlI

RECALL-AT-n VALUES FOR VARIOUS METHODS. WE HIGHLIGHT THE LARGEST AND THE SECOND-LARGEST AVERAGE AUROC SCORES IN BOLD
AND WITH A BOX, RESPECTIVELY.

Type \ Model \ R@10 R@20 R@30 R@40 R@50
Random ‘ ‘ 0.069 0.139 0.208 0.278 0.347
Rule-Based ‘ ADF-5 ‘ 0.110 0.250 0.290 0.460 0.570
Random Forest 0.136 0.266 0.428 0.484 0.570
Traditional ML | Lasso 0.204 0.306 0.422 0.524 0.570
Ridge 0.210 0.308 0.423 0.533 0.603
DNN MLP 0.180 0.308 0.398 0.484 0.560
LSTM 0.214 0.293 0.394 0.474 0.600
GNN Graph WaveNet | 0.190 0.302 0.428 0.538 0.622
STGCN 0.209 0.314 0.449 0.594 0.665
TABLE IV TABLE V

GLOBAL MODELS VS. LOCAL MODELS BASED ON THEIR AUROC
SCORES. FOR THE SAME GNN MODEL, THE GLOBAL AND LOCAL

GLOBAL MODELS VS. LOCAL MODELS IN TERMS OF PRECISION-AT-7.
FOR THE SAME GNN MODEL, WE HIGHLIGHT THE WINNER BETWEEN
THE GLOBAL AND THE LOCAL METHODS USING BOLD FONT.

METHODS YIELD COMPARABLE AUROC SCORES.

Model | Type || AUROC (mean =+ stdev)
Global 0.7216 £ 0.01469
Graph WaveNet ‘ Local H 0.7260 £ 0.0108
Global 0.7220 % 0.0142
STGCN ‘ Local H 0.7214 + 0.0186

(6)

where n; and n; are the latitude and longitude of sensor 7 and
sensor j, respectively, ¢ and d are two scalars.

The Laplacian kernel is similar to the RBF kernel, as shown
by Equation 1 and Equation 7, respectively. However, the
Laplacian kernel has a sharper peak than the RBF kernel,
which means that the Laplacian kernel assigns high similarity
to nearby points and low similarity to distant points.

o il
U}’L,] - eXp 0_2 i

where d; ; is the geographical distance between sensors ¢ and
7, and o is a hyperparameter.

wij = (n] n; +c)?,

)

Model \ Type \ \ P@10 P@20 P@30 P@40 P@50
Graph Global 0.540 0.420 0.400 0.378 0.348
WaveNet Local 0.600 0.417 0.417 0.380 0.360
STGCN Global 0.588 0.438 0.419 0.414 0.372
Local 0.640 0.450 0.398 0.386 0.360

Table VII gives a comparison of the AUROC scores of
different kernels. The Poly0 and Poly2 in the table refer to the
polynomial kernel with degrees d = 0 and d = 2, respectively.

When setting the degree to 0 (Poly0), the similarity score
between each pair of sensors is one regardless of the distance.
Such a naive setting gives poor AUROC scores for both the
Graph WaveNet and STGCN. The Poly2 setting produces
unsatisfactory results, likely due to the polynomial kernel’s
inadequacy as a similarity measure for our application. This
is primarily because the dot product is not a proper distance
function for geographical locations that use latitude and longi-
tude as input features. In contrast, the Laplacian kernel shows
promise as its AUROC scores are comparable to those of the
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TABLE VI
GLOBAL MODELS VS. LOCAL MODELS IN TERMS OF RECALL-AT-n. FOR
THE SAME GNN MODEL, WE HIGHLIGHT THE WINNER BETWEEN THE
GLOBAL AND THE LOCAL METHODS USING BOLD FONT.

Model | Type || R@10 R@20 R@30 R@40 R@50
Graph Global 0.190 0.302 0.428 0.538 0.622
WaveNet Local 0.214 0.300 0.447 0.543 0.630
STGCN Global 0.209 0.314 0.449 0.594 0.665
Local 0.230 0.322 0.428 0.550 0.642
TABLE VII
A COMPARISON OF THE AUROC SCORES OF DIFFERENT KERNEL
FUNCTIONS.
Model || RBF kernel Poly0 Poly2 Laplacian
Graph WaveNet 0.7216 0.600 0.620 0.7213
STGCN 0.7220 0.599 0.616 0.7176

RBF kernel, likely because the two kernel functions share
similar formulas.

H. The Influence of the Number of Neighbors for the
Local Models

TABLE VIII
AUROC SCORES OF THE LOCAL MODELS USING DIFFERENT NUMBERS
OF NEIGHBORS.

| 3 4 5 6 7
Graph WaveNet (local) 0.7242  0.7254  0.7260 0.7257  0.7262
STGCN (local) 0.7208 0.7210  0.7214 0.7215  0.7207

Table VIII shows the influence of the number of neighbors
on the local models. We tested 3, 4, 5, 6, and 7 neighbors.
The outputted AUROC scores are very similar. Eventually, we
fix the number to 5 for the local models in other experiments
for simplicity.

V. DISCUSSION AND FUTURE WORK

This paper leverages a two-stage framework to discover the
problematic sensors in a nationwide sensor network containing
10000+ sensors. In the first stage, we use deep spatiotemporal
graph models to predict the future monitored PM2.5 values
of each sensor. In the second stage, we claim that the k
sensors that have the lowest R? scores among the monitored
and predicted values are problematic sensors. Experimental
results obtained on a real dataset show that GNN-based
models outperform the baselines in terms of their AUROC,
precision-at-n, and recall-at-n scores. We also experiment by
training the GNN models with local methods in which the
sensors only communicate with their neighboring sensors. The
empirical results show that the local methods’ predictions are
comparable to those of the global methods, suggesting that we
can use the local method to achieve more efficient training.

Currently, all our GNN models are applied on an undirected
graph, which implies that two sensors have the same degree
of influence on each other. This may not necessarily be true
in real scenarios. For example, wind direction may be a key
factor in determining the propagation flow of air pollution.
Therefore, one of our future research directions will be to
apply GNNss to a directed graph so that the models can capture
these directional factors. We would also like to include more
geographical or atmospheric features, such as relative humid-
ity, wind direction, landform measurements, altitude, and time
of day, to make the obtained predictions more accurate, as
including these factors may yield better results [56].

Moreover, as the sensor deployment in Taiwan is not
uniformly distributed, a key drawback of the proposed local
models is that the nearest sensors for an urban sensor may
still be spatially distant. Consequently, accurately diagnosing
the status of the sensors in southeast Taiwan (as depicted in
Figure 1) presents a challenge. As a future direction, we plan to
extend our local models to address the sparsity of neighboring
sensors in such areas.

Finally, since we leverage neighbors’ information to infer
a sensor’s status, if a sensor’s neighbors are faulty, this
sensor may be falsely identified as faulty, which can affect
the accuracy of our algorithm. Essentially, this issue is not
unique to graph-based algorithms; it is a common challenge
in all data-driven approaches because the accuracy of any
algorithm ultimately depends on the quality of the input data.
One possible remedy is to adjust the influence score matrix
to account for the issue. For instance, if a large percentage
of sensors are out of order in a small region, we might be
able to adjust the matrix to give less weight to the neighbors
of these sensors, reducing the impact of the faulty sensors
on our algorithm’s accuracy. Nonetheless, this solution may
not be optimal, and the performance of our algorithm will
still depend on the quality of the input data. As the saying
goes, “garbage in, garbage out.” Therefore, it’s essential to
ensure the quality of the input data to improve the algorithm’s
accuracy.
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