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Abstract—Recent studies have reported that deep learning
models perform excellently for reranking the top recommenda-
tion items. However, we found that it is not easy to reproduce
some of these results. In particular, we found that recommen-
dations based on a simple neighbor-based model, on average,
outperform the results generated by deep learning models based
on two datasets from e-commerce websites (one open dataset and
one private dataset from our collaborating partner). Moreover,
we performed an error analysis to investigate when the deep
learning models perform better than simple models and when
they do not. OQur analysis is especially useful for medium- and
small-sized online retailers that may have a smaller training
dataset.

Index Terms—recommender systems, ranking models, deep
learning, match and rank, word embedding

I. INTRODUCTION

As deep learning is successful and has become popular
in many domains, it is not surprising that online retailers
utilize this new tool to boost the performance of recommender
systems. Many papers have indeed reported performance im-
provements when using deep learning for recommendation
tasks, especially for the click-through rate (CTR) prediction
tasks [1]-[5]. To facilitate research and reproducibility, many
authors have released their experimental code, and some
researchers have even implemented packages, e.g., DeepCTR,!
to integrate various deep learning-based recommendation mod-
ules so that these models have a unified programming inter-
face.

As we experimented with many of these models using our
dataset collected from a medium-sized e-commerce company,
we found that it is difficult to reproduce a similar degree of
improvement that was reported in these papers. In certain
cases, these sophisticated deep learning models performed
even worse than simple models, such as recommending the
k-nearest neighbors based on the cosine similarity between
the object embeddings generated by self-supervised models,
such as Prod2Vec [6] or Behavior2Vec [7]. These results lead
us to consider the following questions. First, why do deep
learning models usually fail on our dataset? Second, when
and how should we apply sophisticated deep learning models
for recommendations?
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To answer the above questions, we conducted error analyses
on deep learning recommendation models and the simple
nearest-neighbor recommendation model. We found that deep
learning models seem to work well when there are enough
“clues” in the training data. We also found that the authors
who have proposed deep learning recommendations models
mostly work for Internet giants, e.g., Amazon [8], Alibaba
(and its subgroup Taobao) [2], [4], [5], Sina Weibo [1], and
Huawei [3]. These companies can easily access the logs that
may include the behaviors of hundreds of millions of users.
Consequently, training complex deep learning models is less
likely to result in overfits, as the size of the training data is
enormous. On the other hand, we surmise that for small- and
medium-sized e-commerce websites, applying deep learning
models to learn users’ preferences may easily overfit the
training data, so using simple models may end up obtaining
better recommendation lists on average. That being said, we
still show that, in certain cases, small- and medium-sized com-
panies should apply the more sophisticated recommendation
algorithms. In particular, if an item frequently appears in the
training data, we may have more clues about this item, and
the deep learning recommendation models will tend to make
better recommendations for this item. As most e-commerce
companies are small- or medium-sized,” our study may benefit
the majority of the e-commerce companies.

The rest of the paper is organized as follows. In Section II,
we review previous works on recommendation algorithms, es-
pecially the deep learning-based recommendation algorithms.
Section III shows the experimental methods, settings, and
datasets. Section IV reports the experimental results of the
compared models. Finally, we discuss the discoveries and the
limitations of our study and the ongoing and future works in
Section V.

II. RELATED WORK

Collaborative filtering algorithms utilize multiple users’ col-
lective behaviors to decide the recommended items for users,
so no item description or user profiles are needed. Early rec-
ommendation models on collaborative filtering mostly leverage
linear models or their variations [9]-[13]. Recent studies have
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mainly adapted deep learning models for recommendation and
hoped that these sophisticated models could discover the high-
dimensional nonlinear patterns among the raw features and
the targets. This line of research includes Wide&Deep [14],
DeepFM [15], NeuralCF [16], to name a few. Essentially,
these models generate the latent representations of the users
and items and further utilize the interaction of these latent
representations to make recommendations. However, these
methods usually require a fixed number of features. If we
use a user’s previous behaviors (e.g., a series of clicks) as the
input features, the number of features may vary (as the lengths
of different users’ clickstreams are different), so applying the
above methods may require preprocessing (e.g., by average
pooling), which may inevitably lose certain information.

A natural alternative to solve the above issue is to adopt a
recurrent neural network (RNN) or one of its variants and
treat the behavior sequence as the model input [17], [18].
However, the RNN and RNN variants are usually challenging
to train. Moreover, older (earlier) information may gradually
decay. More advanced structures (e.g., LSTM and GRU) can
only slow the decay process, but eventually, earlier infor-
mation is still likely to be lost. Consequently, researchers
have proposed applying the attention-based approach [19] so
that the weights of each previous action are decided on-
the-fly. However, attention-based models do not preserve the
sequential information by its nature. Consequently, positional
embeddings might be needed to retain the order of the clicked
items [19].

Although recommender systems have been studied for
decades, recent studies have started to re-examine the practical
performance of these various recommendation algorithms and
the limitations on the evaluation strategies. It was found that
offline evaluation cannot fully represent the online perfor-
mance of an algorithm because of offline evaluation bias [20],
[21]. Even if the offline evaluation well represents the online
performance of a recommendation algorithm, reproducing the
experimental results on recent deep learning-based recommen-
dation models is difficult [22]. Even worse, a recent study
showed that many of the deep learning-based recommendation
models could be outperformed by simple recommendation
algorithms [22]. This result is consistent with our experiments.
However, we further show when deep learning recommenda-
tion models may be useful and why they may or may not
work.

III. EXPERIMENTAL METHOD

This section presents the current setting of recommender
systems for most e-commerce companies, and how we com-
pared different models based on the current setting.

A. Preliminaries: Candidate Generation and Ranking Mech-
anism

For an e-commerce website that contains millions of prod-
ucts that must be recommended efficiently, the recommenda-
tion workflow usually comprises two steps: candidate genera-
tion and ranking [23]. The candidate generation step generates

a few (typically hundreds) of candidate items that are likely
to interest a user. Since this step requires selection from a
vast number of items, the underlying algorithm is usually
simple and fast. Sometimes, these algorithms are performed
in advance, and the results are stored for online queries. The
ranking step fine-tunes the ranking of the selected candidates.
The ranking algorithm can be sophisticated because of the
number of the candidate items is small. Most recent studies on
improving the click-through rate (CTR) focus on developing
different types of ranking models based on deep learning [4],
[5].

We followed this candidate generation and ranking mecha-
nism for the following experiments. In the candidate genera-
tion step, we applied the Prod2Vec algorithm [6] to generate
the embeddings of each item. Essentially, the Prod2Vec model
treats each item as a word and each clickstream as a sentence
so that we may leverage word embedding models [24] to
generate the embedding of each item. When a user browses
an item ¢ (which we call an anchor item in this paper), the
recommendation model selects 100 items whose embeddings
are most similar to the embedding of item ¢ (in terms of
the cosine similarity) as the candidates. We investigated and
compared the effectiveness of different ranking models to
rerank the top 100 candidates.

B. Ranking Models

Once candidate items are generated, the ranking algorithm
reranks these candidates to show the items the user is most
likely to be interested in at the top of the recommendation
list. Recent studies typically used sophisticated deep learning
strategies (e.g., CNNs, RNNs, and attention mechanisms) for
reranking because deep learning models can capture the high-
dimensional, nonlinear relationships among different embed-
dings. This section introduces the ranking models we com-
pared.

The first ranking model is a baseline model for comparison.
This model simply ranks the candidates based on the cosine
similarity between the embeddings of the anchor item and
the candidate items. Essentially, this is simply the Prod2Vec
model — the top candidates are selected without reranking
them. We abbreviate this model KNN in the following, as this
model ranks the k-nearest neighbors to the anchor item as the
recommendation list.

The second model is a multilayer perceptron model, which
is probably the most straightforward ranking model based
on deep learning. The model takes the embedding e; of the
anchor item and the embedding e; of a candidate item as the
inputs and predicts the probability f(e;,e;) that a user clicks
item j after browsing item ¢ using a multilayer perceptron.
Specifically, during the training phase, if a user indeed clicks
on item j after browsing item ¢, this pair is regarded as a
positive instance (i.e., f(e;, e;) = 1). The negative instances
are obtained via negative sampling [25]: let ej, be the embed-
ding of the sampled negative instance, we want f(e;, ex) = 0.
Note that we do not change the embeddings of the items here
but merely try to optimize the parameters of the network. At



the inference phase, the algorithm needs to compute f(e;, ex)
for every candidate item k£ and ranks the candidate items by
their clicking probabilities. We abbreviate this model NN in
the following, as it utilizes a neural network architecture. Note
that the NN model here is very close to the BaseModel intro-
duced in [4], [5]. Compared to the baseline KNN model, the
new model allows high-dimensional interactions between the
elements in the embeddings. Hence, it is likely to capture high-
dimensional relationships among the embeddings. Many recent
studies utilized this design as a base model and introduced
different features or different network structures to construct
various ranking functions (fs) [4], [5], [23], [26].

The third model is the DIN model [5], which incorpo-
rates personal embedding as part of the inputs. This model
utilizes an attention mechanism to determine the relative
importance of a user’s browsed items and further generate each
user’s personal embeddings. The DIN model can be regarded
as an extension of YouTube’s personalized recommendation
model [23]: YouTube integrated a user’s personal embedding
by averaging the embeddings of the user’s watched videos,
whereas DIN learns personal embedding using the attention
mechanism.

The fourth model is the DIEN model [4], which is an exten-
sion of the DIN model by modifying the network architecture.
The main difference is that the DIEN model incorporates both
GRU and the attention mechanism. Consequently, a user’s
previous visits are constructed as a sequence. The authors
reported an 11.8% CTR gain compared to the DIN model [4]
from online A/B testings on the advertising system of Taobao,
the most visited e-commerce website in 2020, according to
Alexa.’

C. Experimental Datasets

We evaluated the above ranking models using one open
dataset and one private dataset. Table I shows the statistical
summary of the two datasets.

The first dataset — users’ behaviors on Taobao — was
released by the Alibaba Group on its official data-sharing
website Tianchi.* We used this dataset because the DIN
and DIEN models were applied to Taobao. However, the
original papers of these two models did not grant access
the experimental dataset. Under such a scenario, the Taobao
dataset on Tianchi is the most similar dataset we could obtain.
We used the logs of the first day as the training data and the
remaining logs as the test data. We further divide the training
data into training and validation sets if hyperparameter tuning
is needed.

We obtained the second dataset from a medium-sized e-
commerce company in Taiwan. We call this dataset Retailer-X
since the company prefers to remain anonymous. As shown
in Table I, even though the period of the Retailer-X dataset
covers a much longer period than the Taobao dataset (122 days
vs. 9 days, respectively), the Taobao dataset has much more

3https://www.alexa.com/siteinfo/taobao.com
“https://tianchi.aliyun.com/

sessions. However, as the size of most e-commerce websites
are closer to that of Retailer-X, perhaps our experience and
experimental results for Retailer-X are more helpful for most
retailers than those of Taobao. We used the logs of the first
14 days as the training data and the remaining logs as the test
data. If a model requires hyperparameter tuning, we further
divide the training data into training and validation sets.

D. Evaluation

We selected all the sessions that have at least two item-
browsing behaviors as the experimental data. Each selected
session of length ¢ is divided into two parts: the first ¢ — 1
page views are used as the clues, and we want to predict the
last item that the user is going to visit in this session based
on the first £ — 1 page views. To measure and compare the
effectiveness of different learning algorithms, each algorithm
ranks the candidate items by their predicted probabilities to be
viewed.

Because we are dealing with a ranking task, natural choices
of evaluation measurements are various ranking metrics, such
as the precision@k, discounted cumulative gain (DCG), and
normalized discounted cumulative gain (NDCG) [28]. How-
ever, as a session can have only one last visited item, we
cannot be sure of the quality of rankings between the unclicked
candidate items, so the standard ranking metrics may not be
the best option here. Finally, we evaluated the effectiveness of
each algorithm in three different ways. First, we compared the
average positions of the clicked item in the recommendation
lists generated by the different ranking algorithms. If an
algorithm tended to rank the clicked item near the top of
the recommendation list, it is considered a decent algorithm.
Second, we compared the winning rates of these ranking
algorithms. We define a win for algorithm ¢ if this algorithm
ranks the clicked item at the highest position among the
compared algorithms, and the winning rate is the percentage of
wins out of all trials. Third, we reported average precision@k
(k = 5,10, 15, 20), which is defined as the proportion of the
recommended items in the top k that are clicked. However,
as each session has one last visited item, the numerator of
precision@Fk here can only be O or 1.

IV. EXPERIMENTAL RESULTS

This section reports the compared models based on (1) the
average position of the next clicked item in the recommenda-
tion list, (2) average precision@k, and (3) winning rate. We
also discuss when the deep learning models erform better than
simple models and when they do not.

A. Overall Performance

Table II shows the average position of the clicked item for
the different ranking algorithms. The simple KNN algorithm
performs slightly better than the complicated NN model and
much better than the even more complicated DIN and DIEN
models on both datasets. If we consider the metric average
precision@k with k = 5,10, 15, 20, the results are similar, as
shown in Table III and Table IV. However, the authors who



i Period # of sessions  # of distinct products

Taobao 2017/11/25 — 2017/12/03 6,761,250 4,067,842

Retailer-X 2019/3/1 — 2019/6/30 2,639,734 592,768
TABLE T

A STATISTICAL SUMMARY OF THE TWO EXPERIMENTAL DATASETS. THE STATISTICAL SUMMARY OF THE FIRST DATASET IS DIFFERENT FROM THAT
REPORTED IN [27] BECAUSE WE CONSIDER ONLY ITEM-VIEWING BEHAVIORS; ALL OTHER BEHAVIORS (E.G., PUTTING AN ITEM INTO THE SHOPPING
CART, ADDING AN ITEM TO A FAVORITES LIST, ETC.) ARE EXCLUDED.

[ KNN [6] NN [4], [5], [23] DIN [5] DIEN [4]

Taobao 30.08 32.00 47.66 50.02

Retailer-X 20.29 20.62 44.65 46.63
TABLE 1T

AVERAGE POSITION OF THE CLICKED ITEM FOR THE DIFFERENT RANKING
ALGORITHMS (THE SMALLER THE VALUE IS, THE MORE ACCURATE THE
MODEL)

[[ KNN [6] NN [4], [5], [23] DIN [5] DIEN [4]
precision@5 24% 20% 5% 6%
precision@10 35% 30% 10% 10%
precision@15 43% 39% 15% 15%
precision@20 50% 46% 21% 20%

TABLE IIT
AVERAGE PRECISION @k FOR THE DIFFERENT RANKING ALGORITHMS ON
THE TAOBAO DATASET

proposed the DIN and DIEN models reported that the NN
model performed worse than the DIN model and the DIEN
model [4], [5]. That being said, there are differences between
our experimental settings and the ones reported in [4], [5].
First, the authors of the DIN and DIEN models compared
the ranking algorithms based on the area under the ROC
curve. In contrast, we used a more straightforward metric —
the position of the clicked item in the recommendation list.
Second, we cannot determine how the authors who proposed
the DIN and DIEN models generated the item embeddings.
In our experiments, we first produced item embeddings by
the Prod2Vec model, and then we fixed the item embeddings
and simply trained the parameters in the neural network. We
applied this procedure because it becomes a common process
of conducting NLP projects: word embeddings are pretrained
and then these embeddings are used as inputs of a neural
network to train a particular task. If the authors of [4], [5]
generated the item embeddings in other ways, e.g., training
the item embeddings along with the network parameters for
the NN model, then perhaps it is the embedding generating
process that caused the difference between our NN model and
those reported in [4], [5].

We also evaluated the different ranking models based on
their winning rates. Particularly, a ranking algorithm r; wins if

[ KNN [6] NN [4], [5], [23] DIN [5] DIEN [4]
precision@5 38% 33% 5% 8%
precision@10 52% 48% 12% 17%
precision@15 61% 58% 18% 24%
precision@20 67% 65% 25% 29%

TABLE IV
AVERAGE PRECISION @k FOR THE DIFFERENT RANKING ALGORITHMS ON
THE RETAILER-X DATASET

[[ KNN NN DIN DIEN

Taobao 40%  30% 15% 15%

Retailer-X 45%  34% 10% 11%
TABLE V

WINNING RATES OF THE COMPARED RANKING ALGORITHMS

it ranks the next clicked item highest among the four compared
models, and the winning rate of r; is simply the percentage
of wins that r; achieves.

Table V lists the winning rates of the four compared
methods. It appears that KNN and NN usually rank the next
clicked item better than the other two algorithms, but the DIN
and DIEN models may still win occasionally (approximately
10% to 15% of the time). Although, on average, the simple
models (e.g., KNN and perhaps NN) seem to outperform
the others, a better strategy might be combining the four
models, as there appears to be no single winner in all cases.
Therefore, our question becomes the following. First, why did
the earlier papers report that sophisticated models performed
better on average? Second, when should we apply complicated
ranking algorithms, and when should we use simple ranking
algorithms?

B. Why Previous Papers Reported Mediocre Results on Simple
Models

Bias and variance analysis is a useful tool to analyze why a
learning algorithm fails [29], [30]. We suspect that the previous
papers reported better results for the complex models because
these models were trained on larger training data. To validate
this hypothesis, we conducted the following two experiments.
First, assuming that a user clicked on item j after viewing
item ¢, we compared the relationship between the appearance
count of ¢ in the training data and the position of j in the
recommendation list. We presume that if an item ¢ appears
frequently in the training data, the models may obtain more
information about this item ¢ and therefore generate a better
recommendation list when the anchor item is item ¢. Such
a phenomenon should be more evident for the complicated
models, as they are more likely to overfit the training data.
Second, we allocated a larger ratio of labeled instances to the
training data and observed how the results varied.

Figure 1 shows the first result: the relationship between the
number of appearances of an item in the training data and
the position of the next clicked item in the recommendation
list (smaller is better). We compared the KNN model and the
NN model. As shown, when an item appears frequently in the
training data, the NN model tends to rank the next clicked
item closer to the top of the recommendation list (i.e., the



Taobao Retailer-X
Training data size 1 day 4 days | 14 days 2 months
Average rank of DIN 47.808  33.251 44331 42.870
Average rank of DIEN 50.172  37.007 46.806 43.341
TABLE VI

RANKING OF DIFFERENT MODELS AS THE SIZE OF THE TRAINING DATA INCREASES

“KNN « NN

Position of the next clicked item

2000 3000 4000

Appearance Count in Training Data

(a) Taobao

~KNN + NN
60

40

Position of the next clicked item

0 1000

2000 3000 4000

Appearance Count in Training Data

(b) Retailer-X

Fig. 1. Error analyses on two datasets: the appearance count of an item and
the position of the next clicked item in the recommendation list (smaller is
better).

value of the position is smaller). This trend is more evident
in the Taobao dataset, probably because this dataset contains
more highly popular items, so the NN algorithm is able to
make better recommendations for these items.

Table VI shows the second result: when we increased
the size of the training data, both the DIN model and the
DIEN model indeed make better recommendations. Thus, the
previous papers reported superior performance for the DIN
and DIEN models likely because they applied these models
on a large training dataset. As we are unable to obtain the
datasets used in these papers, the Taobao dataset on Tianchi is
the best we could obtain, but this dataset contains only selected
users’ logs for nine days. Another aspect that may cause this

difference is that the authors who proposed DIN and DIEN
applied these models online for A/B testing. Unfortunately,
we are unable to access the production system of Taobao, so
online A/B testings are impossible.

V. DISCUSSION

The Internet giants have proposed many new recommen-
dation algorithms, and these algorithms mostly rely on deep
learning models. However, according to a 2018 report by
eMarketer,’ more than 150 billion dollars is not spent at the top
online retailers, so investigating recommendation algorithms
that could work on smaller datasets is still valuable and
needed. We showed that when the training dataset is small
or when the occurrence frequency of an item is low in the
training data, these complex deep learning models may per-
form worse than simple models, such as KNN. Consequently,
for medium- and small-sized e-commerce companies with less
training instances, it might be more useful to apply simple
recommendation models that cost less computational resources
and likely perform better on average, or perhaps to use a hybrid
strategy.

While we tried to replicate the experiments presented in
previous publications, many practical issues limited us from
duplicating their settings. These limitations include the avail-
ability of the experimental data, the experimental environment
(e.g., online A/B testing), hyperparameter selection, and many
more. These inevitable differences may cause a gap between
the numbers reported by our experiment and those of previous
papers. To eliminate the difficulties for future researchers to
repeat our experiments, we have made the experimental code
available for public use.®

For ongoing and future work, we will continue to investigate
how medium- and small-sized e-commerce companies may
leverage and adjust the research outputs from Internet giants.
We are also working on hybrid or ensemble strategies.
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