
Creating a Reproducible and Maintainable

Machine Learning Environment

Hung-Hsuan Chen

Department of Computer Science and Information Engineering
National Central University

hhchen1105@acm.org

Abstract

Reproducibility and maintainability are critical challenges in machine
learning research and development. This tutorial provides a guide to
setting up a repeatable experimental environment using modern tools and
techniques. Specifically, it covers version control using Git, experiment
tracking with MLflow, creating isolated experiment environments with
Conda for virtual environments and Docker for containerization, testing
with pytest, and packaging machine learning code into a reusable library.
By the end of this tutorial, practitioners and researchers will have the
foundational knowledge to ensure that their machine learning workflows
are reproducible and maintainable.

1

Contents

1 Introduction 4

2 Version Control with Git 4
2.1 Basic Git Commands . 5
2.2 Using GitHub . 5
2.3 Fixing Merge Conflicts in Git . 5

2.3.1 Identifying the Conflict 5
2.3.2 Viewing the Conflict . 5
2.3.3 Resolving the Conflict . 6
2.3.4 Aborting the Merge (Optional) 6
2.3.5 Verifying the Merge . 6
2.3.6 Best Practices for Avoiding Conflicts 6

3 Experiment Tracking with MLflow 7
3.1 Tracking an Experiment . 7

4 Experiment Environment with Conda 8
4.1 Creating a Conda Environment 8

4.1.1 Installing Conda . 8
4.1.2 Creating and Managing Environments 8
4.1.3 Installing Packages . 9
4.1.4 Managing Environments and Dependencies 9
4.1.5 Using Pip Inside Conda Environments 9

4.2 Best Practices for Conda Environments 10

5 Experiment Environment with Docker 10
5.1 Setting Up Docker . 10
5.2 Creating a Dockerfile . 10
5.3 Building and Running the Docker Container 11
5.4 Sharing Docker Images . 11
5.5 Best Practices for Docker . 11

6 Testing and Automation with pytest 12
6.1 Basic pytest Commands . 12
6.2 Writing Tests . 12
6.3 How pytest Discovers Test Cases 12

6.3.1 Test Discovery Rules . 12
6.3.2 Customizing Test Discovery 13
6.3.3 Ignoring Files or Directories 13
6.3.4 Checking Discovery without Running Tests 14

7 Packaging Code into a Library 14
7.1 Setting Up the Package Structure 14
7.2 Writing setup.py . 14
7.3 Building and Installing the Package 14

2

8 Conclusion 15

3

1 Introduction

Machine learning research and development often involve iterative experimenta-
tion, in which code, data, and environments change frequently. Without proper
tools and practices, ensuring the reproducibility and maintainability of these
experiments becomes increasingly difficult. Inconsistent environments, poorly
tracked code changes, and lack of automated testing are some of the common
issues researchers and engineers face.

This tutorial introduces essential tools and methodologies that address these
challenges. The tutorial is aimed at machine learning practitioners and re-
searchers who wish to establish a robust, repeatable workflow for their experi-
ments. The focus is on six key areas:

• Version Control with Git: Git is a powerful distributed version con-
trol system that tracks code changes and enables collaboration between
individuals.

• Experiment Tracking with MLflow: MLflow allows for efficient track-
ing of experiments, logging metrics and parameters, ensuring reproducibil-
ity across multiple runs.

• Environment Management with Conda: Conda provides a flexible
solution for managing virtual environments and package dependencies,
ensuring that the same setup can be replicated across different systems.

• Containerization with Docker: Docker allows complete isolation of
applications and their dependencies, providing a consistent environment
to run machine learning experiments on different platforms.

• Testing with pytest: Writing automated tests ensures that the code
functions correctly and consistently as changes are introduced, making
pytest an essential tool for robust machine learning pipelines.

• Packaging Code into a Library: Packaging machine learning code into
reusable libraries makes it easier to distribute and reuse across different
projects and teams.

The following sections will provide step-by-step instructions on using these
tools and examples illustrating their practical use in machine learning workflows.
By adopting the techniques outlined in this tutorial, you will be equipped to
develop machine learning projects that are reproducible and easier to scale and
maintain in the long run.

2 Version Control with Git

Version control helps track and manage changes in your code. Git is a dis-
tributed version control system that enables collaboration and version manage-
ment.

4

2.1 Basic Git Commands

1 # Initialize a Git repository

2 git init

3

4 # Add files to the staging area

5 git add <file_name >

6

7 # Commit changes with a message

8 git commit -m "Initial␣commit"

9

10 # Check the status of the repository

11 git status

12

13 # Push changes to a remote repository

14 git push origin main

2.2 Using GitHub

GitHub is a popular platform for hosting Git repositories. After setting up your
repository on GitHub, you can clone it locally:

1 git clone https :// github.com/username/repository.git

2.3 Fixing Merge Conflicts in Git

Merge conflicts occur when changes made to the same parts of a file in different
branches or by other contributors cannot be automatically merged by Git. Here
is how you can resolve a merge conflict.

2.3.1 Identifying the Conflict

When you attempt to merge two branches that have conflicting changes, Git
will alert you with a message like:

1 Auto -merging <file_name >

2 CONFLICT (content): Merge conflict in <file_name >

3 Automatic merge failed; fix conflicts and then commit the result

.

At this point, Git has stopped the merge and marked the file as conflicted.

2.3.2 Viewing the Conflict

To see where the conflict occurred, open the conflicting file in a text editor. You
will see conflict markers like this:

1 <<<<<<< HEAD

2 # Changes from your current branch (HEAD)

3 print("Hello from branch A")

4 =======

5

5 # Changes from the branch you ’re merging into your branch

6 print("Hello from branch B")

7 >>>>>>> <branch_name >

The section between ‘<<<<<<< HEAD’ and ‘=======’ represents the changes
in your current branch, while the section between ‘=======’ and ‘>>>>>>>
<branch name>’ represents the changes from the branch you are trying to
merge.

2.3.3 Resolving the Conflict

Manually edit the file to resolve the conflict. For example, you might combine
the two versions or choose one over the other:

1 # Merged content after resolving the conflict

2 print("Hello from both branches ")

After you’ve made your changes and resolved the conflict, you need to stage
and commit the resolved file:

1 # Stage the resolved file

2 git add <file_name >

3

4 # Commit the resolution

5 git commit -m "Resolved␣merge␣conflict␣in␣<file_name >"

2.3.4 Aborting the Merge (Optional)

If you decide that you do not want to continue with the merge, you can abort
it and revert to the state before the merge was attempted:

1 # Abort the merge process

2 git merge --abort

This command will stop the merge and restore your working directory to its
previous state.

2.3.5 Verifying the Merge

After resolving the conflict and committing the changes, you can check the
status of your repository:

1 git status

If all conflicts have been resolved, Git will report that your branch is clean,
and you can continue working as usual.

2.3.6 Best Practices for Avoiding Conflicts

To minimize the likelihood of conflicts:

6

• Frequently pull the latest changes from the remote repository before mak-
ing your own changes.

• Commit and push your changes regularly to ensure that others can access
them.

• When collaborating with a team, communicate with team members about
which parts of the codebase you are working on to avoid overlapping
changes.

3 Experiment Tracking with MLflow

MLflow helps you manage the entire lifecycle of machine learning models, in-
cluding experimentation, reproducibility, and deployment.

3.1 Tracking an Experiment

Install MLflow with the following commands:

1 pip install mlflow

Start the MLflow server at localhost by

1 mlflow server --host 127.0.0.1 --port 8080

You can log metrics, parameters, and models with MLflow in your code:

1 import mlflow

2

3 # Train a logistic regression classifier

4 params = {

5 "solver": "lbfgs",

6 "max_iter": 1000,

7 "multi_class": "auto",

8 "random_state": 8888,

9 }

10 lr = LogisticRegression (** params)

11 y_pred = lr.predict(X_test)

12 accuracy = accuracy_score(y_test , y_pred)

13

14 # Start logging

15 mlflow.set_tracking_uri(uri="http ://127.0.0.1:8080")

16 mlflow.set_experiment("First␣experiment")

17 with mlflow.start_run ():

18 mlflow.log_param(params)

19 mlflow.log_metric ({

20 "accuracy": accuracy ,

21 })

22 mlflow.log_model(lr, "model.pkl")

7

4 Experiment Environment with Conda

Managing environments ensures consistency across machines and operating sys-
tems. Conda is a powerful tool for managing virtual environments and package
dependencies, ensuring that your machine learning projects are reproducible
and portable.

4.1 Creating a Conda Environment

Conda is a package manager and environment management system that works
on Windows, macOS, and Linux. It enables you to create isolated environments
for your projects, ensuring that dependencies do not conflict with each other
across different projects.

4.1.1 Installing Conda

First, install Conda if you haven’t already. Conda is bundled with the Anaconda
or Miniconda distributions. While Anaconda includes many packages by default,
Miniconda is a smaller alternative that allows you to install only the necessary
packages.

• Download Miniconda from https://docs.conda.io/en/latest/miniconda.

html and follow the installation instructions.

• Once installed, verify the installation with the command:

1 conda --version

4.1.2 Creating and Managing Environments

List the available Python versions by the following command:

1 conda search python

To create a new environment for your machine learning project, use the
following command:

1 # Create a new conda environment with Python 3.8

2 conda create --name ml_env python =3.8

This command will create a new environment named ml env with Python ver-
sion 3.8. You can specify any Python version according to the requirements of
your project.

List the available environments by:

1 conda env list

To activate the environment, run:

1 conda activate ml_env

8

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

This switches your shell to the newly created environment. Any packages that
you now install will be isolated within this environment.

To deactivate and return to the base environment:

1 conda deactivate

4.1.3 Installing Packages

Once inside the environment, you can install the required packages for your
project. Conda can install many commonly used machine learning libraries
directly:

1 # Install popular machine learning packages

2 conda install numpy pandas scikit -learn matplotlib

If the package you need is not available in the default Conda channels, you
can use the Conda Forge channel, which includes a broader range of community-
supported packages:

1 # Installing a package from conda -forge

2 conda install -c conda -forge tensorflow

4.1.4 Managing Environments and Dependencies

You can list all environments on your system with:

1 conda info --envs

To remove an environment that you no longer need:

1 conda env remove --name ml_env

Conda also provides a way to export the environment’s configuration, which
is useful for sharing with collaborators or deploying to a new machine. Use the
following command to generate an environment.yml file:

1 # Export environment configuration to a YAML file

2 conda env export > environment.yml

This file can be used to recreate the environment on another system:

1 # Create an environment from a YAML file

2 conda env create -f environment.yml

4.1.5 Using Pip Inside Conda Environments

While Conda manages most packages, some Python packages are only available
through pip. You can still install them within a Conda environment by simply
running:

1 pip install <package_name >

However, it is a best practice to first try installing with Conda before resort-
ing to pip to avoid potential conflicts.

9

4.2 Best Practices for Conda Environments

Here are a few best practices for managing your Conda environments effectively:

• Always specify exact versions of critical dependencies in your environment.yml
file to ensure reproducibility.

• Regularly update your environment using:

1 conda update --all

• Keep environments project-specific to avoid clutter and dependency con-
flicts.

• Use environment variables to manage environment-specific settings such
as data paths or API keys.

5 Experiment Environment with Docker

Docker is a platform for developing, shipping, and running applications in con-
tainers. Containers allow you to bundle your application and its dependencies
into a single portable unit. This ensures that your machine learning models and
environments can run consistently on any platform.

5.1 Setting Up Docker

To get started with Docker, follow these steps to install and verify your setup:

• Download Docker from https://www.docker.com/.

• Follow the installation instructions for your operating system.

• Verify the installation by running:

1 docker --version

5.2 Creating a Dockerfile

A Dockerfile is a text document that contains all the commands to assemble a
Docker image. Below is an example Dockerfile for a machine learning project:

1 # Start with the official Python image

2 FROM python :3.8- slim

3

4 # Set the working directory in the container

5 WORKDIR /app

6

7 # Copy the current directory contents into the container

8 COPY . /app

9

10 # Install any required dependencies from the requirements file

10

https://www.docker.com/

11 RUN pip install --no -cache -dir -r requirements.txt

12

13 # Make port 5000 available to the world outside this container

14 EXPOSE 5000

15

16 # Define the command to run the application

17 CMD ["python", "app.py"]

This Dockerfile sets up a Python 3.8 environment, installs the required
dependencies from requirements.txt, and defines a simple command to run
the application.

5.3 Building and Running the Docker Container

Once you have written the Dockerfile, you can build a Docker image from it.
This image can be shared or deployed anywhere Docker is installed.

1 # Build the Docker image

2 docker build -t my -ml-app .

3

4 # Run the Docker container

5 docker run -p 8080:80 my-ml-app

This command will build your Docker image, naming it my-ml-app, and
run it while mapping port 8080 inside the container to port 80 on your local
machine.

5.4 Sharing Docker Images

Once your Docker image is built, you can push it to the Docker Hub or any
private registry, allowing others to pull and run the same environment.

1 # Login to Docker Hub

2 docker login

3

4 # Tag the image

5 docker tag my-ml-app username/my -ml-app

6

7 # Push the image to Docker Hub

8 docker push username/my -ml-app

5.5 Best Practices for Docker

Here are a few best practices when working with Docker:

• Keep your Dockerfile clean by using small, optimized base images such
as python:3.8-slim.

• Use multi-stage builds to reduce image size by separating the build and
runtime stages.

11

• Regularly update your images to include the latest security patches and
dependencies.

• Avoid hard-coding configuration variables inside your container. Use en-
vironment variables instead.

6 Testing and Automation with pytest

Testing is an essential part of software development. pytest is a popular testing
framework for Python.

6.1 Basic pytest Commands

1 # Install pytest

2 pip install pytest

3

4 # Run all tests in a directory

5 pytest

6

7 # Run a specific test file

8 pytest test_file.py

6.2 Writing Tests

Create test cases in a separate file (e.g., test model.py):

1 def test_example ():

2 assert 1 + 1 == 2

6.3 How pytest Discovers Test Cases

One of the powerful features of pytest is its ability to automatically discover
and test cases without additional configuration. The pytest follows certain
conventions to identify and collect tests from the codebase.

6.3.1 Test Discovery Rules

By default, pytest follows these rules to discover test cases:

• Test File Naming: The files containing test cases should be named using
the prefix test or the suffix test. For example:

1 test_example.py

2 example_test.py

• Test Function Naming: The functions that represent test cases should
also be named with the prefix test . For example:

12

1 def test_addition ():

2 assert 1 + 1 == 2

• Test Classes: The test classes should be named with a prefix of Test

(though this is not strictly required). The class should not have an
init method:

1 class TestMathOperations:

2 def test_multiplication(self):

3 assert 2 * 3 == 6

• Directories: By default, pytest recursively searches all subdirectories for
test files, as long as the directory name does not begin with .

6.3.2 Customizing Test Discovery

In cases where your test files or functions do not follow the default conventions,
you can customize how pytest discovers tests:

• Running Specific Tests: You can directly specify the directory, file, or
test case you want to run:

1 # Run all tests in a specific directory

2 pytest path/to/tests/

3

4 # Run a specific test file

5 pytest test_specific.py

6

7 # Run a specific test function within a file

8 pytest test_specific.py:: test_function_name

• Changing Discovery Patterns: You can modify pytest’s discovery be-
havior by using the options in the pytest.ini configuration file. For
example, you can change the test discovery patterns:

1 [pytest]

2 python_files = *_testcase.py

3 python_functions = check_*

This configuration will instruct pytest to look for files ending with testcase.py

and functions starting with check instead of the default test .

6.3.3 Ignoring Files or Directories

You can instruct pytest to ignore specific directories or files during discovery.
To ignore a directory, you can include a conftest.py file in the directory and
add the following:

1 collect_ignore = ["ignored_directory/", "ignored_file.py"]

13

Alternatively, you can use the --ignore flag when running tests:

1 pytest --ignore=path/to/ignored_directory/

6.3.4 Checking Discovery without Running Tests

To see which test cases pytest has discovered without running them, you can
use the --collect-only option:

1 pytest --collect -only

This will output a list of all test cases that pytest has discovered based on
the default or customized discovery rules.

7 Packaging Code into a Library

Packaging your code allows you to distribute it as a library.

7.1 Setting Up the Package Structure

1 my_package/

2 |-- my_module.py

3 |-- __init__.py

4 |-- setup.py

5 |-- tests/

6 |-- test_my_module.py

7.2 Writing setup.py

1 from setuptools import setup , find_packages

2

3 setup(

4 name="my_package",

5 version="0.1",

6 packages=find_packages (),

7 install_requires =[

8 "numpy",

9 "pandas",

10],

11)

7.3 Building and Installing the Package

1 # Build the package

2 python setup.py build

3

4 # Install the package

5 python setup.py install

14

8 Conclusion

By mastering version control with Git, experiment tracking with MLflow, setting
up virtual environments with Conda, containerizing applications with Docker,
testing with pytest, and packaging your code into reusable libraries, you can
create a highly reproducible and maintainable machine learning workflow. Each
of these tools and techniques addresses a specific challenge in the development
and deployment of machine learning projects, ensuring that your work is not
only reliable and scalable, but also easy to share and reproduce across different
platforms and collaborators.

15

	Introduction
	Version Control with Git
	Basic Git Commands
	Using GitHub
	Fixing Merge Conflicts in Git
	Identifying the Conflict
	Viewing the Conflict
	Resolving the Conflict
	Aborting the Merge (Optional)
	Verifying the Merge
	Best Practices for Avoiding Conflicts

	Experiment Tracking with MLflow
	Tracking an Experiment

	Experiment Environment with Conda
	Creating a Conda Environment
	Installing Conda
	Creating and Managing Environments
	Installing Packages
	Managing Environments and Dependencies
	Using Pip Inside Conda Environments

	Best Practices for Conda Environments

	Experiment Environment with Docker
	Setting Up Docker
	Creating a Dockerfile
	Building and Running the Docker Container
	Sharing Docker Images
	Best Practices for Docker

	Testing and Automation with pytest
	Basic pytest Commands
	Writing Tests
	How pytest Discovers Test Cases
	Test Discovery Rules
	Customizing Test Discovery
	Ignoring Files or Directories
	Checking Discovery without Running Tests

	Packaging Code into a Library
	Setting Up the Package Structure
	Writing setup.py
	Building and Installing the Package

	Conclusion

