

Data Analytics Research Team (DART) – 2023

陳弘軒 Hung-Hsuan Chen Computer Science & Information Engineering National Central University

Mission: data science for the society

- Discover the necessity and problem (Need)
- Equip with programing and math skills along with domain knowledge to solve the problem (skill)
- Willing to practice and make it happen (Passion)
- 及早開始研究對學生的好處:產
 生學生時代的「代表作」
 - 好的論文有助於申請出國留學、好的 專案有助於求職
- 研究應有所本,不單為研究而研究

Recent research/project direction

- Develop machine learning models that are
 - Faster (shorter training or inference testing time)
 - More accurate
 - Better (under certain conditions)
- Apply machine learning to applications
 - Smart sport (精準運動)
 - Search engines & recommender systems
 - PM2.5 prediction & sensor malfunction prediction
 - Traffic prediction
 - Personality traits and personality prediction
 - Clip search within videos
 - Log analysis

Table of contents

• Recent graduate projects

• Recent undergraudate projects (大學專題)

Recent graduate projects

Supervised Contrastive Parallel Learning (SCPL) (1/3)

 Realizes model parallelism for deep learning models while maintaining high test accuracies across different networks and open datasets

Supervised Contrastive Parallel Learning (SCPL) (2/3)

Standard Di																	
Device No.		Stage															
GPU0	FW1	FW2	FW3	FW4	LOSS	BW4	BV	BW3 BW2			BW1			UP			
Time point	<i>t</i> ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t7	t ₈	t ₉	<i>t</i> ₁₀	t ₁₁	t ₁₂	t ₁₃	t ₁₄	t ₁₅	t ₁₆	t ₁₇

Ν	M	Ρ

Standard RP

Device No.			Stage												Concept			
GPU0	FW1													BV	V1		UP	illustration
GPU1		FW2								BV	V2						UP	mustration
GPU2			FW3				BV	N3									UP	
GPU3				FW4	LOSS	BW4											UP	
Time point	<i>t</i> ₁	t ₂	t ₃	t ₄	t5	t ₆	t7	t ₈	t9	t ₁₀	<i>t</i> ₁₁	<i>t</i> ₁₂	t ₁₃	t ₁₄	t ₁₅	t ₁₆	t ₁₇	

SCPL

Device No.		Stage								
GPU0	FW1	LOSS		BW1						
GPU1		FW2	LOSS		UP					
GPU2			FW3	LOSS	BW3			UP		
GPU3				FW4	LOSS	BW4		UP		
Time point	<i>t</i> ₁	t ₂	t ₃	t4	t ₅	t ₆	t ₇	t ₈		

FWi: forward for layer i LOSS: compute loss BWi : backward for layer i UP: update parameter values

True training process on 4 GPUs

	0 ms		 200 ms		 400 ms
 python (pid 2211): CPU 					
 python (pid 0): GPU 0 					
 python (pid 1): GPU 1 					
p)(p.c.)/ ci c :					
 python (pid 2): GPU 2 	-			_	
 python (pid 3): GPU 3 	_	Ξ.	-		
 Process Spans 					
			435.362 ms		

(a) Training LSTM on IMDB (using NMP).

	0 ms				200 ms		400 ms
 python (pid 2436): CPU 							
 python (pid 0): GPU 0 							
 python (pid 1): GPU 1 							
 python (pid 2): GPU 2 							
 python (pid 3): GPU 3 							
 Process Spans 							
			265.11	0 ms			

(b) Training LSTM on IMDB (using SCPL).

Supervised Contrastive Parallel Learning (SCPL) (3/3)

- Iíd											
Batch size	32	64	128	256	512						
BP	1x (196 min)	1x (173 min)	1x (156 min)	1x (149 min)	1x (147 min)						
GPipe (1 GPU)	0.75x	0.72x	0.72x	0.71x	0.70x						
GPipe (2 GPUs)	1.00x	0.92x	0.93x	0.93x	0.92x						
GPipe (4 GPUs)	1.35x	1.25x	1.17x	1.16x	1.11x						

Training time choodup ratios (INADR transformer)

1.03x

1.32x

1.66x

1.03x

1.37x

1.67x

Test accuracies (IMDB)

1.07x

1.37x

1.82x

1.12x

1.43x

1.92x

	LSTM	Transformer
BP	89.68 ± 0.20	87.54 ± 0.44
Early Exit AL SCPL	$\begin{vmatrix} 84.34 \pm 0.31 \\ 86.41 \pm 0.61 \\ \textbf{89.84} \pm 0.10 \end{vmatrix}$	$\begin{array}{c} 80.24 \pm 0.24 \\ 85.65 \pm 0.77 \\ \textbf{89.03} \pm 0.12 \ \textbf{\dagger} \end{array}$

SCPL (1 GPU)

SCPL (2 GPUs)

SCPL (4 GPUs)

1.05x

1.38x

1.66x

Associated learning (AL) (1/2)

- AL: an alternative to end-to-end backpropagation
- AL decomposes a network into small components:
 - Each component has a local objective function
 - Parameters in different components can be updated simultaneously
 - Eliminate backward lock, so pipelined training is possible; increase throughput

D. Wu, D.-N. Lin, V. Chen, H.-H. Chen. **ICLR** 2022. Y.-W. Kao and H.-H. Chen. **MIT Neural Computation** 2021.

Associated learning (2/2)

• Results on image classification (CIFAR-100)

	ВР	AL
Vanilla CNN	$26.5 \pm 0.4\%$	$29.7 \pm \mathbf{0.2\%}$
VGG	65.8 <u>+</u> 0.3%	$67.1 \pm 0.3\%$

Results on NLP-1 (IMDB)

	ВР	AL
LSTM	$88.10 \pm 0.50\%$	$89.04 \pm 0.37\%$

Results on NLP-2 (AGNews)

	ВР	AL
LSTM	$88.56 \pm 0.97\%$	$91.42 \pm \mathbf{0.42\%}$

D. Wu, D.-N. Lin, V. Chen, H.-H. Chen. **ICLR** 2022. Y.-W. Kao and H.-H. Chen. **MIT Neural Computation** 2021.

偵測低調的網軍(1/3)

- 電腦容易偵測高調的網軍
 - 常發言、常回文、常推/嘘文等
- 偵測低調的網軍相對困難

AUPRC scores of detecting active and low active spammers

	active users	inactive users	diff
XGBoost	0.8892	0.5157	0.3735
LightGBM	0.7421	0.4888	0.2533
Random Forest	0.8317	0.5147	0.3163

• 但你知道大部份的網軍是「低調」的嗎?

Group	Percentile of active value	Active value	<pre># normal accounts</pre>	CDF of normal accounts (a)	# spammers	CDF of spammers (b)	(b) – (a)
G_1	[0%, 10%)	0-18	4112	9%	222	24%	15%
G_2	[10%, 20%)	19-45	4418	20%	163	42%	22%
G_3	[20%, 30%)	46-84	4508	30%	86	52%	22%
G_4	[30%, 40%)	85-135	4223	40%	59	58%	18%
G_5	[40%, 50%)	136-211	4453	50%	57	64%	14%
G_6	[50%, 60%)	212-315	4096	59%	76	73%	14%
G_7	[60%, 70%)	316-494	4320	69%	112	85%	16%
G_8	[70%, 80%)	495-817	4368	79%	67	92%	13%
G_9	[80%, 90%)	818-1663	4638	90%	51	98%	8%
G_{10}	[90%, 100%]	≥ 1664	4554	100%	19	100%	0%

R.-Y. Wang and H.-H. Chen. IEEE International Conference on Web Intelligence 2023

偵測低調的網軍 (2/3)

 使用傳統機器學習或深度學習偵測低活躍網軍成 效不彰 AUPRC scores of detecting less active and highly active spammers

	[0%, 10%)	[10%, 20%)	[80%, 100%]
XGBoost	0.52 ± 0.01	0.48 ± 0.03	0.89 ± 0.01
LightGBM	0.49 ± 0.02	0.40 ± 0.04	0.74 ± 0.02
Random Forest	0.51 ± 0.03	0.27 ± 0.02	0.83 ± 0.02
Fully Connected	0.35 ± 0.06	0.38 ± 0.05	0.75 ± 0.03
ConvNet	0.17 ± 0.06	0.26 ± 0.14	0.80 ± 0.33
Soft Voting [22]	0.40 ± 0.01	0.43 ± 0.01	0.76 ± 0.01
Hard Voting [22]	0.43 ± 0.02	0.47 ± 0.02	0.70 ± 0.03
Stacking [22]	0.42 ± 0.01	0.47 ± 0.03	0.67 ± 0.01

• GNN模型 vs. 最佳非 GNN 模型: GNN更精確地偵 測低活躍網軍 _GNN vs. XGBoost (best among non-GNN models)_

		[0%, 10%)	[10%, 20%)	[80%, 100%]
XGBoost		0.52 ± 0.01	0.48 ± 0.03	$0.89\pm0.01~\dagger$
GCN	11	0.66 ± 0.18	0.38 ± 0.13	0.72 ± 0.07
TAGCN ($K = 1$)		$\textbf{0.64} \pm 0.04$	0.79 ± 0.06	$0.89 \pm 0.07 \dagger$
TAGCN ($K = 2$)		$\textbf{0.68} \pm 0.02$	$0.84 \pm 0.05 ~\dagger$	$0.89 \pm 0.08 \dagger$
TAGCN ($K = 3$)		$0.71 \pm 0.04 \dagger$	0.80 ± 0.07	$0.89 \pm 0.06 \dagger$
GAT		0.62 ± 0.09	0.77 ± 0.05	$0.89 \pm 0.06 \dagger$

偵測低調的網軍 (3/3)

 加入社群特徵可幫助所有模型更好地偵測 網軍

AUPRC scores of the models when including social features

Туре	Model	[0%, 10%)	[10%, 20%)	[80%, 100%]	[0%, 100%]
Non-GNN-based models (including social features)	XGBoost LightGBM Random Forest Fully Connected ConvNet Soft Voting [22] Hard Voting [22] Stacking [22]	$\begin{array}{c} 0.83 \pm 0.01 \\ \textbf{0.86} \pm 0.02 \\ 0.85 \pm 0.01 \\ 0.53 \pm 0.07 \\ 0.43 \pm 0.09 \\ 0.69 \pm 0.00 \\ 0.67 \pm 0.01 \\ 0.54 \pm 0.02 \end{array}$	$\begin{array}{c} \textbf{0.74} \pm 0.03 \\ 0.72 \pm 0.05 \\ 0.56 \pm 0.05 \\ 0.51 \pm 0.06 \\ 0.68 \pm 0.07 \\ 0.56 \pm 0.01 \\ 0.63 \pm 0.02 \\ 0.56 \pm 0.03 \end{array}$	$\begin{array}{c} \textbf{0.90} \pm 0.02 \\ 0.88 \pm 0.02 \\ 0.85 \pm 0.02 \\ 0.76 \pm 0.05 \\ 0.83 \pm 0.04 \\ 0.76 \pm 0.01 \\ 0.70 \pm 0.03 \\ 0.67 \pm 0.01 \end{array}$	$\begin{array}{c} \textbf{0.86} \pm 0.00 \\ 0.82 \pm 0.00 \\ 0.79 \pm 0.00 \\ 0.64 \pm 0.04 \\ 0.66 \pm 0.06 \\ 0.72 \pm 0.00 \\ 0.74 \pm 0.01 \\ 0.69 \pm 0.02 \end{array}$
GNN-based models (including social features)	$\begin{array}{c} \text{GCN} \\ \text{TAGCN} \ (K=1) \\ \text{TAGCN} \ (K=2) \\ \text{TAGCN} \ (K=3) \\ \text{GAT} \end{array}$	$\begin{array}{c} 0.62 \pm 0.08 \\ 0.79 \pm 0.03 \\ 0.82 \pm 0.03 \\ 0.85 \pm 0.02 \\ 0.73 \pm 0.06 \end{array}$	$\begin{array}{c} 0.52 \pm 0.05 \\ \textbf{0.97} \pm 0.05 \\ \textbf{0.98} \pm 0.02 \\ \textbf{0.98} \pm 0.03 \\ \textbf{0.91} \pm 0.06 \end{array}$	$\begin{array}{c} 0.83 \pm 0.08 \\ \textbf{0.99} \pm 0.04 \\ \textbf{0.99} \pm 0.03 \\ \textbf{0.98} \pm 0.01 \\ \textbf{0.92} \pm 0.07 \end{array}$	$\begin{array}{c} 0.69 \pm 0.03 \\ \textbf{0.92} \pm 0.01 \\ \textbf{0.93} \pm 0.02 \\ \textbf{0.94} \pm 0.01 \\ \textbf{0.87} \pm 0.05 \end{array}$

空汗感測器故障預測 – supervised learning-based

- 10,000+空汗感測器 (in 2021),但
 有相當比例之量測值不精準
- 採定期巡檢,但人力成本極高
- 智慧巡檢:以圖卷積網路
 (Graphical Convolutional Network)
 與時間卷積網路整合時空資訊預
 測故障之感測器
- 訓練資料採用 2018 年的部份資料
- 工研院於2018年5月至12月巡檢
 144個測站,以巡檢結果做為測試
 資料
 - 28個異常
 - 116個正常
 - 我們以此巡檢紀錄評估各種異常偵 測演算法的優劣

D. Wu, T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. IEEE Sensors Journal 23(15), 2023 (Featured article) 14 T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. IEEE Sensors Journal 22(3), 2022

Type	Model	ROC mean	ROC std
Dula hagad	ADF-5 (5 是 [6] 中給的超參數值)	0.624	0.0
Rule based	ADF-10(ROC Best)	0.694	0.0
	Random Forest	0.6878	0.006261
	Lasso	0.7000	0.015652
ML(無圖卷積)	Ridge	0.7085	0.013472
ML(無画仓禎)	TCN	0.7066	0.007701
	DNN	0.6940	0.007211
	LSTM	0.7090	0.007211
MI (圖类積)	GraphWaveNet	0.7260	0.010826
ML(圖卷積)	STGCN	0.7214	0.018569

D. Wu, T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. IEEE Sensors Journal 23(15), 2023 (Featured article) 15 T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. IEEE Sensors Journal 22(3), 2022

 Precision@k: 若按建議依序檢查k個測站, 實際有問題的測站在k個測站中的佔比

Type	Model	P@10	P@20	P@30	P@40	P@50
隨機巡檢		0.194	0.194	0.194	0.194	0.194
Rule based	ADF-5	0.300	0.350	0.270	0.330	0.320
Itule based	ADF-10(ROC Best)	0.500	0.500	0.400	0.380	0.320
	Random Forest	0.380	0.370	0.400	0.342	0.320
	Lasso	0.580	0.430	0.394	0.370	0.320
ML(無圖卷積)	Ridge	0.600	0.433	0.395	0.375	0.337
MD(流画/的很)	TCN	0.600	0.410	0.412	0.338	0.320
	DNN	0.500	0.430	0.374	0.344	0.312
	LSTM	0.600	0.410	0.368	0.332	0.336
ML(圖卷積)	GraphWaveNet	0.600	0.417	0.417	0.380	0.353
ML(画仓惧)	STGCN	0.640	0.450	0.398	0.386	0.360

D. Wu, T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. **IEEE Sensors Journal** 23(15), 2023 (**Featured article**) 16 T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. **IEEE Sensors Journal** 22(3), 2022

實驗結果-Recall@k

Recall@k: 按建議依序檢查k個測站,找出有問題
 的測站數量與實際有問題測站數量(28個)的比值

Type	Model	R@10	R@20	R@30	R@40	R@50
隨機巡檢		0.069	0.139	0.208	0.278	0.347
Rule based	ADF-5	0.110	0.250	0.290	0.460	0.570
Tule based	ADF-10(ROC Best)	0.180	0.360	0.430	0.540	0.570
	Random Forest	0.136	0.266	0.428	0.484	0.570
	Lasso	0.204	0.306	0.422	0.524	0.570
ML(無圖卷積)	Ridge	0.210	0.308	0.423	0.533	0.603
MID(無國心頃)	TCN	0.212	0.296	0.442	0.476	0.570
	DNN	0.180	0.308	0.398	0.484	0.560
	LSTM	0.214	0.293	0.394	0.474	0.600
ML(圖卷積)	GraphWaveNet	0.214	0.300	0.447	0.543	0.630
ML(画仓惧)	STGCN	0.230	0.322	0.428	0.550	0.642

D. Wu, T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. **IEEE Sensors Journal** 23(15), 2023 (**Featured article**) 17 T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. **IEEE Sensors Journal** 22(3), 2022

- 10000+個空汙感測器中,只有144個有「正常」或「故障」的標準答案
- Fully supervised learning: 僅有 144 筆訓練資
- Semi-supervised learning:融合有標準答案 的資料及其他沒有標準答案的資料共同訓
 練

空汗感測器故障預測 – semisupervised learning-based

北總思國羽齿刑	隨機巡檢		0.1940 ± 0.0000 0.2000 \pm 0.0000				
非機器學習模型	ADF-5 ADF-10		0.2900 ± 0.0000 0.4400 ± 0.0000				
		折線圖	熱力圖	統整性資料	統整及時序資料		
	linear regression	0.2769	0.3137	0.3339	0.3163		
	ridge regression	0.3214	0.3876	0.3337	0.3159		
監督式模型	random forest	0.3290	0.4292	0.4471	0.4588		
	SSDO with iforest	0.3374	0.4555	0.3061	0.2883		
	SSDO with COP-kmeans	0.3399	0.5158	0.3177	0.2554		
無監督式模型	Isolation fores	0.1886	0.2003	0.2375	0.2578		
	SSDO with iforest	0.3712	0.4114	0.2645	0.3773		
半監督式模型	SSDO with COP-kmeans	0.3640	0.4162	0.2809	0.3214		
	Deep SAD	0.8099	0.8048	0.3450	0.4215		

► 不同模型在不同資料中所得到的PR-AUC

主要作者:張欣茹

Extended Clickstream

- Weblog approximately records only half of a user's page visits
- 8.1% of the visits recorded in the weblog may not come from a user's conscious actions
- Clickstream is an incomplete collection of users' web visiting

Catagory		ICS -	+ ECS		C	5	I	CS	E	CS	Rank Diff
Category	Rank(1)	Count	Perc.(%)	CDF(%)	Rank(2)	Count	Rank	Count	Rank	Count	(1)-(2)
Streaming Media and Download	1	1110256	17.57	17.57	3	558327	2	541878	1	568378	-2
Social Networking	2	929709	14.72	32.29	1	608252	1	591064	2	338645	1
Search Engines and Portals	3	709671	11.23	43.52	2	559254	3	456281	5	253390	1
Education	4	558183	8.84	52.36	5	304386	5	263847	3	294336	-1
Information Technology	5	449954	7.12	59.48	6	200185	6	181300	4	268654	-1
Web-based Applications	6	390278	6.18	65.66	4	336890	4	331990	11	58288	2
Games	7	379462	6.01	71.67	7	156351	7	145209	6	234253	0
Business	8	199455	3.16	74.83	9	108063	10	95567	7	103888	-1
Shopping	9	166820	2.64	77.47	11	94739	11	86591	8	80229	-2
File Sharing and Storage	10	163682	2.59	80.06	10	106536	9	102926	10	60756	0
Entertainment	11	153140	2.42	82.48	8	117183	8	113604	14	39536	3
Reference	12	152565	2.41	84.89	12	86090	12	78747	9	73818	0
Web-based Email	13	113965	1.8	86.69	13	68743	13	66548	12	47417	0
News and Media	14	99934	1.58	88.27	14	67278	14	65898	17	34036	0
Newsgroups and Message Boards	15	71043	1.12	89.39	16	35037	17	31629	15	39414	-1
Pornography	16	68720	1.09	90.48	15	42031	15	39897	18	28823	1
Personal Websites and Blogs	17	68312	1.08	91.56	20	25497	20	24055	13	44257	-3
Instant Messaging	18	62816	0.99	92.55	18	29973	18	28458	16	34358	0
Auction	19	55353	0.88	93.43	17	33344	16	32504	20	22849	2
Travel	20	48802	0.77	94.2	19	29955	19	24893	19	23909	1

C.-Y. Hsu, T.-R. Chen, H.-H. Chen. ACM Journal of Data and Information Quality 14(2), 2022.

Multivariate Beta Mixture Model (MBMM) – ongoing

- A new probabilistic clustering algorithm
- Gaussian mixture model (GMM): each cluster has to be a Gaussian distribution
- MBMM: allow versatile shapes for each cluster
 - Uni-modal (symmetric or skewed), bi-modal

主要作者:徐永棚

• 哪條才是趨勢線?

- 不同情境,不同答案 (a) Trend line 1 (b) Trend line 2
- 有人希望趨勢線「平滑」,有人希望趨勢線仍能有「 局部起伏」
- 如何讓電腦「學習」一個人心中的趨勢線樣貌?--個人化趨勢線生成
- Training: 系統展示十張時間序列,使用者分別標注 其心目中的趨線,系統從中學習使用者想要的趨勢 線樣貌
- Generation:使用者給予系統所有需要標示趨勢線之時間序列,系統按 training 時學習到之規則自動為所有時間序列標出趨勢線
 - 挑戰:僅有十張訓練資料,如何有效的學習(且不 overfitting)

T.-Y. Kuo and H.-H. Chen, PAKDD 2023.

個人化之趨勢線生成 (2/2)

- 兩階段之個人化趨勢線生成技術
- DNN model 容易 overfitting
- Pretrain and finetune有部份效果,但仍不理想
- Petrel (我們的方法) 優於上面兩類

Туре	Algorithm	SMAPE	MSE	Algorithm	SMAPE	MSE
Our method	Petrel (averaged)	0.44	5264.34	Petrel (averaged)	0.33	6164.38
Our method	Petrel (weighted)	0.44	5258.34	Petrel (weighted)	0.32	6002.32
	ConvNet	0.83	176593.87	ConvNet	0.94	166951.8
DNN models	LSTM	1.02	497312.33	LSTM	1.11	323712.95
	Transformer	1.08	579188.89	Transformer	1.20	637955.96
	P&F ConvNet	0.44	5425.77	P&F ConvNet	1.45	241890.91
DNN with protectining and fine tuning	P&F LSTM	0.52	7394.09	P&F LSTM	1.23	1292454.44
DNN with pretraining and fine-tuning	P&F Transformer	0.47	9311.75	P&F Transformer	0.81	1357013.58
	P&F MLP	0.68	31934.92	P&F MLP	1.18	242234.14

資料集二

T.-Y. Kuo and H.-H. Chen, PAKDD 2023.

E-commerce object and behavior embedding (Behavior2Vec)

- Predict a user's next clicked item
- Predict a user's next purchased item
- Discover the relationship between items
 - E.g., Canon's camera body
 : Canon's lens ≈ Nikon's
 camera body : Nikon's
 lens

Figure 1: Vectors from the camera body to the corresponding kit lens of different brands. The vectors are generated by Behavior2Vec

Recommendation for near cold start items

- Near cold start item: items that are rarely viewed
- Recommendation for the near cold start items is difficult because of the limited clues
- Our RDF method alleviates this issue

Dataset	SVD	linear-reg	sqrt-reg	log-reg	improve ratio range
Epinions	1.1997	1.0538	1.0538	1.0538	12.16%
MovieLens-100K	0.9423	0.9422	0.9422	0.9422	0.01%
FilmTrust	0.8465	0.8194	0.8194	0.8223	2.86% to 3.20%
Yahoo! Movies	3.0799	2.9892	3.0129	3.0127	2.18% to 2.94%
AMI	1.1450	1.1405	1.1405	1.1405	0.39%

Table 1: a comparison of the methods with RDF and without RDF

H.-H. Chen and P. Chen. ACM TKDD 2019.

Train and evaluate recommender systems in the right way

- Show 4 common errors in training and evaluating recommender systems
- Propose solutions or work-arounds for these issues

Green: channel with a recommendation Blue: channel w/o recommendation

H.-H. Chen, C.-A. Chung, H.-C. Huang, W. Tsui. ACM SIGKDD Explorations 2017.

Co-learning user's browsing tendency of multiple categories

 Instead of predicting each target variable independently, our MFMT method simultaneously learns multiple targets in one model

Table: F1 scores of different models on different target categories

model	shopping	traveling	restaurant and dining	entertainment	games	education
kNN	0.574	0.615	0.528	0.440	0.492	0.484
Logreg	0.578	0.489	0.501	0.402	0.441	0.437
SVM	0.576	0.391	0.410	0.399	0.409	0.385
MFMT	0.584	0.570	0.561	0.479	0.531	0.515
	(win)		(win)	(win)	(win)	(win)

User personality and demographic profile prediction based on browsing logs

Table: errors of the personality test score prediction based on the supervised learners with and without the preprocessing step

Method	Supervised regressor				Clustering + supervised regressor (win))			
Prediction target	HH	Neu	\mathbf{Ext}	Agr	Con	Ope	HH	Neu	Ext	Agr	Con	Ope
Lasso	5.832	5.87	5.881	5.71	5.406	5.607	5.411	5.469	5.435	5.435	5.022	5.131
Ridge	5.845	5.981	5.891	5.795	5.43	5.646	5.43	5.404	5.38	5.325	5.027	5.052
Elastic net	5.813	5.769	5.743	5.622	5.366	5.44	5.417	5.383	5.422	5.317	5.022	5.095
SVR	5.789	5.78	5.746	5.643	5.232	5.38	5.432	5.623	5.402	5.328	5.048	5.165

Table: MicroF1 scores of the demographical info prediction based on the supervised learners with and without the preprocessing step

Method	Supervised classifier			Clustering + supervised classifier			(mostly win)
Prediction target	Age	Gender	Relationship	Age	Gender	Relationship	
Baseline	0.388	0.545	0.474	0.411	0.598	0.476	-
KNN	0.427	0.594	0.478	0.435	0.618	0.482	
Random Forest	0.453	0.697	0.488	0.419	0.687	0.512	
Logistic Regression	0.427	0.697	0.476	0.457	0.675	0.498	
SVM	0.388	0.591	0.474	0.411	0.642	0.512	_

Accelerating MF by Overparameterization

- Overparameterization significantly accelerates the optimization of MF
 - Theoretically derive that applying the vanilla SGD on OP_MF is equivalent to using GD with momentum and adaptive learning rate on the standard MF model

Public transportation optimization

• Predict the taxi demand in real time by deep learning

Model	RMSE	MAPE
Average	8.845 ± 7.9434	0.0840 ± 0.000413
ARIMA	15.585 ± 20.8253	0.1660 ± 0.018033
ridge regression	10.914 ± 2.4451	0.1460 ± 0.000895
XGBoost	6.498 ± 2.0542	0.0806 ± 0.000205
LSTM (2 layers)	7.037 ± 3.9747	0.0563 ± 0.000056
LSTM (4 layers)	6.694 ± 5.1110	0.0595 ± 0.000232
DMVST-Net	7.350 ± 3.7034	0.0643 ± 0.000192
ResLSTM (4 layers)	5.187 ± 2.0265	0.0584 ± 0.000048
AR-LSTM (4 layers)	4.958 ± 1.8909	0.0488 ± 0.000039

30

Dynamic ensembled learning

- Dynamically integrate multiple base learners based on the feature distribution of the test instance
- Better accuracy than the static ensembled learning approach

Table: a comparison of the base learners, static ensembled, and dynamic ensembled methods

Method	KNN	SVM	Decision Tree	Majority Voting	Dynamic ensembled
Accuracy	77.09%	72.77%	75.46%	77.64%	77.80% (win)

蘇俊儒, 陳弘軒. 動態多模型融合分析研究. TANET 2018. (最佳論文獎)

Better word embedding for synonyms and antonyms

 Adjusting word embedding to differentiate synonyms and antonyms

Deep vs shallow recommendation

Y.-C. Yang, P.-C. Lai, H.-H. Chen. TAAI 2020.

Recent undergraduate projects (大學專題)

• 卷積網路難以判斷旋轉的圖片

- 從電腦的角度來看,旋轉前後的圖片之pixel排列方式不同,故可能認定圖片中為不同的物件
- 深度學習通常需要讓電腦看過各種旋轉角度的圖
 片,讓電腦「認得」不同旋轉角度的相同物件
- 我們設計新的模型,電腦只需看過一張圖,即可
 認得各種旋轉角度的圖片

Test accuracy

	MNIST		Fashior	nMNIST	CIFAR-10	
	轉90度	任意旋轉	轉90度	任意旋轉	轉90度	任意旋轉
ConvNet1	0.17	0.42	0.07	0.22	0.29	0.30
ConvNet2	0.16	0.33	0.02	0.19	0.24	0.23
Our model	0.72	0.43	0.79	0.33	0.36	0.26

楊佳誠、陳弘軒. TAAI 2022

2022 資工系專題競賽**最佳創意獎** ³²

學術搜尋引擎/關鍵字標註器

- Build an academic search engine for the Taiwanese Associationfor Artificial Integlligence (中華民國人工智慧學會)
 - http://search.taai.org.tw/
- Keyword search
- Paper keyphrase extractor

 利用 TAAI 論文發表內容分析研究主題歷年 趨勢

作者:林冠甫、王承隆

作者:陳映璇,楊沂潔

- Generate highlight clips and thumbnails for videos based on bullet-screen (彈幕) information
- Our model is better than the software used by video streaming companies

Table 1: Users' evaluation on the representativeness of theoutputted video clips

	All users	Group 1	Group 2
Busk	52.12% 47.88%	67.38%	47.45%
Stiller	47.88%	32.62%	52.55%

Table 2: Users' evaluation on the representativeness of the outputted thumbnail images

	All users	Group 1	Group 2
	47.62%	63.08%	43.39%
Stiller	52.38%	36.92%	56.61%

• Group 1: users who are familiar with the videos

Group 2: others

Yun-Ya Huang (黃筠雅), Tong-Yi Kuo (郭同益), Hung-Hsuan Chen (陳弘軒). WWW 2020, TAAI 2019

影片「片段」搜尋

 Search for the video clips inside long videos based on bullet-screen (彈幕) information

【老邪吐槽】崩溃级RAP! 逆天吐槽全员诗朗诵的《青春有你2》 娱乐>综艺 2020-03-28 11:01:39 最高全站目排行49名 248.4万插放 - 4.0万弹幕 ② 未经作者授权,禁止转载

作者:呂晨瑀、王心玓

2020 資工系專題競賽最佳人氣獎

從FAQ自動產生 Chatbot

- 從常見問題集 (FAQ) 自動產生客服對話機器人
- 對話機器人利用 Elasticsearch、Word2Vec、及 BERT 判斷「使用者的問題」與「常見問題集 中各問題」的相似度
- 對話機器人回傳相似的常見問題及答案

Top 3 matches:
(1) 我是畢業生,忘記密碼,無學
生證認證身分,該如何修改密碼?
(2) 我的帳號仍未失效,要如何更
改密碼?
(3) 我是教職員身分,忘記密碼該
如何處理?

周冠玲、歐亭昀、陳弘軒. TAAI 2021 2021 資工系專題競賽入選獎

PDF 數學式解析器

- 要讓電腦"瞭解"文件中的數學式,第一步需
 要讓電腦能解析數學式
 - E.g., $(a + b)^2 \Rightarrow (a + b)^2$
- PDF是科學論文最常見的格式
- 為了在不同裝置能有一樣的文件外觀, PDF 描述每個符號應該以怎樣的型式 (e.g., 大小、字型、顏色等) 出現在哪個位置
 - 這使得數學式很難被自動化的解析
- 我們採機器學習+自訂規則解析PDF中的數學式

$$ax^2 + bx + c = 0$$
軟學式
解析器 $ax^2 + bx + c = 0$
e^{int + 1 = 0 $e^{i\pi} + 1 = 0$ LaTeX 格式

作者:謝欣玉

2021 資工系專題競賽入選獎

Predict the "purposes" of each sentence in an abstract

RESULTS

Predicted 0 Predicted 1

485

FP

943

TP

2994

TN

255

FN

Actual 0

Actual 1

METHODS

Predicted 0 Predicted 1

504

FP

2813

TN

2500

2000

1500

1000

500

Actual 0

Actual 1

作者:許力元、高嘉豪、鄭易昇、陳弘軒. IEEE Access 2021

1000

500

我是大明星-明星臉分析

作者:蔡文傑

行動應用服務APP競賽第三名