Data Analytics Research Team （DART）－ 2023

陳弘軒 Hung－Hsuan Chen
Computer Science \＆Information Engineering
National Central University

Mission：data science for the society

－Discover the necessity and problem （Need）
－Equip with programing and math skills along with domain knowledge to solve the problem（skill）
－Willing to practice and make it happen（Passion）
－及早開始研究對學生的好處：產生學生時代的「代表作」
－好的論文有助於申請出國留學，好的專案有助於求職
－研究應有所本，不單為研究而研究

Recent research／project direction

－Develop machine learning models that are
－Faster（shorter training or inference testing time）
－More accurate
－Better（under certain conditions）
－Apply machine learning to applications
－Smart sport（精準運動）
－Search engines \＆recommender systems
－PM2．5 prediction \＆sensor malfunction prediction
－Traffic prediction
－Personality traits and personality prediction
－Clip search within videos
－Log analysis

Table of contents

－Recent graduate projects
－Recent undergraudate projects（大學專題）

Recent graduate projects

Supervised Contrastive Parallel Learning (SCPL) (1/3)
 - Realizes model parallelism for deep learning models while maintaining high test accuracies across different networks and open datasets

Supervised Contrastive Parallel Learning (SCPL) (2/3)
 Stage | BW2 | | | | BW1 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |t_{9} $t_{10}$$t_{11}$

NMP

Device No.	Stage																
GPU0	FW1																UP
GPU1		FW2															UP
GPU2			FW3														UP
GPU3				FW4	LOSS	BW4											UP
Time point	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	t_{11}	t_{12}	t_{13}	t_{14}	t_{15}	t_{16}	t_{17}

Concept illustration

SCPL

Device No.	Stage							
GPU0	FW1	LOSS	BW1					UP
GPU1		FW2	LOSS	BW2				UP
GPU2			FW3	LOSS	BW3			UP
GPU3				FW4	LOSS	BW4		UP
Time point	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}

FW i : forward for layer i LOSS: compute loss BW i : backward for layer i UP: update parameter values

True training process on 4 GPUs

(a) Training LSTM on IMDB (using NMP).

(b) Training LSTM on IMDB (using SCPL).

Supervised Contrastive Parallel Learning（SCPL）（3／3）

Training time speedup ratios（IMDB，transformer）

Batch size	32	64	128	256	512
BP	$1 \mathrm{x}(196 \mathrm{~min})$	$1 \mathrm{x}(173 \mathrm{~min})$	$1 \mathrm{x}(156 \mathrm{~min})$	$1 \mathrm{x}(149 \mathrm{~min})$	$1 \mathrm{x}(147 \mathrm{~min})$
GPipe（1 GPU）	0.75 x	0.72 x	0.72 x	0.71 x	0.70 x
GPipe（2 GPUS）	1.00 x	0.92 x	0.93 x	0.93 x	0.92 x
GPipe（4 GPUs）	1.35 x	1.25 x	1.17 x	1.16 x	1.11 x
SCPL（1 GPU）	1.12 x	1.07 x	1.03 x	1.03 x	1.05 x
SCPL（2 GPUs）	1.43 x	1.37 x	1.32 x	1.37 x	1.38 x
SCPL（4 GPUs）	1.92 x	1.82 x	1.66 x	1.67 x	1.66 x

Test accuracies（IMDB）

	$\\|$	LSTM	Transformer
BP	$\\|$	89.68 ± 0.20	87.54 ± 0.44
Early Exit	84.34 ± 0.31	80.24 ± 0.24	
AL	86.41 ± 0.61	85.65 ± 0.77	
SCPL	$\mathbf{8 9 . 8 4} \pm 0.10 \dagger$	$\mathbf{8 9 . 0 3} \pm 0.12 \dagger$	

Associated learning (AL) (1/2)

- AL: an alternative to end-to-end backpropagation
- AL decomposes a network into small components:
- Each component has a local objective function
- Parameters in different components can be updated simultaneously
- Eliminate backward lock, so pipelined training is possible; increase throughput

D. Wu, D.-N. Lin, V. Chen, H.-H. Chen. ICLR 2022.
Y.-W. Kao and H.-H. Chen. MIT Neural Computation 2021.

Associated learning (2/2)

- Results on image classification (CIFAR-100)

	BP	AL
Vanilla CNN	$26.5 \pm 0.4 \%$	$\mathbf{2 9 . 7} \pm \mathbf{0 . 2} \%$
VGG	$65.8 \pm 0.3 \%$	$\mathbf{6 7 . 1} \pm \mathbf{0 . 3} \%$

- Results on NLP-1 (IMDB)

	BP	AL
LSTM	$88.10 \pm 0.50 \%$	$\mathbf{8 9 . 0 4} \pm \mathbf{0 . 3 7} \%$

- Results on NLP-2 (AGNews)

	BP	AL
LSTM	$88.56 \pm 0.97 \%$	$\mathbf{9 1 . 4 2} \pm \mathbf{0 . 4 2} \%$

D. Wu, D.-N. Lin, V. Chen, H.-H. Chen. ICLR 2022.
Y.-W. Kao and H.-H. Chen. MIT Neural Computation 2021.

偵測低調的網軍 $(1 / 3)$

- 電腦容易偵測高調的網軍
- 常發言，常回文，常推／嘘文等
- 偵測低調的網軍相對困難

AUPRC scores of detecting active and low active spammers

	active users	inactive users	diff
XGBoost	0.8892	0.5157	0.3735
LightGBM	0.7421	0.4888	0.2533
Random Forest	0.8317	0.5147	0.3163

－但你知道大部份的網軍是「低調」的嗎？

Group	Percentile of active value	Active value	\＃normal accounts	CDF of normal accounts （a）	\＃spammers	CDF of spammers （b）	（b）－（a）
G_{1}	$[0 \%, 10 \%)$	$0-18$	4112	9%	222	24%	15%
G_{2}	$[10 \%, 20 \%)$	$19-45$	4418	20%	163	42%	22%
G_{3}	$[20 \%, 30 \%)$	$46-84$	4508	30%	86	52%	22%
G_{4}	$[30 \%, 40 \%)$	$85-135$	4223	40%	59	58%	18%
G_{5}	$[40 \%, 50 \%)$	$136-211$	4453	50%	57	64%	14%
G_{6}	$[50 \%, 60 \%)$	$212-315$	4096	59%	76	73%	14%
G_{7}	$[60 \%, 70 \%)$	$316-494$	4320	69%	112	85%	16%
G_{8}	$[70 \%, 80 \%)$	$495-817$	4368	79%	67	92%	13%
G_{9}	$[80 \%, 90 \%)$	$818-1663$	4638	90%	51	98%	8%
G_{10}	$[90 \%, 100 \%]$	≥ 1664	4554	100%	19	100%	0%

偵測低調的網軍 $(2 / 3)$

－使用傳統機器學習或深度學習偵測低活躍網軍成效不彰

AUPRC scores of detecting less active and highly active spammers

	$[0 \%, 10 \%)$	$[10 \%, 20 \%)$	$[80 \%, 100 \%]$
XGBoost	0.52 ± 0.01	0.48 ± 0.03	0.89 ± 0.01
LightGBM	0.49 ± 0.02	0.40 ± 0.04	0.74 ± 0.02
Random Forest	0.51 ± 0.03	0.27 ± 0.02	0.83 ± 0.02
Fully Connected	0.35 ± 0.06	0.38 ± 0.05	0.75 ± 0.03
ConvNet	0.17 ± 0.06	0.26 ± 0.14	0.80 ± 0.33
Soft Voting［22］	0.40 ± 0.01	0.43 ± 0.01	0.76 ± 0.01
Hard Voting［22］	0.43 ± 0.02	0.47 ± 0.02	0.70 ± 0.03
Stacking［22］	0.42 ± 0.01	0.47 ± 0.03	0.67 ± 0.01

－GNN模型 vs．最佳非 GNN 模型：GNN更精確地偵測低活躍網軍

GNN vs．XGBoost（best among non－GNN models）

	$[0 \%, 10 \%)$	$[10 \%, 20 \%)$	$[80 \%, 100 \%]$	
XGBoost	$\\|$	0.52 ± 0.01	0.48 ± 0.03	
GCN	$\mathbf{0 . 6 6} \pm 0.18$	0.38 ± 0.13	0.72 ± 0.07	
TAGCN $(K=1)$	$\mathbf{0 . 6 4} \pm 0.04$	$\mathbf{0 . 7 9} \pm 0.06$	$\mathbf{0 . 8 9} \pm 0.07 \dagger$	
TAGCN $(K=2)$	$\mathbf{0 . 6 8} \pm 0.02$	$\mathbf{0 . 8 4} \pm 0.05 \dagger$	$\mathbf{0 . 8 9} \pm 0.08 \dagger$	
TAGCN $(K=3)$	$\mathbf{0 . 7 1} \pm 0.04 \dagger$	$\mathbf{0 . 8 0} \pm 0.07$	$\mathbf{0 . 8 9} \pm 0.06 \dagger$	
GAT	$\mathbf{0 . 6 2} \pm 0.09$	$\mathbf{0 . 7 7} \pm 0.05$	$\mathbf{0 . 8 9} \pm 0.06 \dagger$	

偵測低調的網軍 $(3 / 3)$

加入社群特徵可幫助所有模型更好地偵測網軍

AUPRC scores of the models when including social features

Type	Model	$[0 \%, 10 \%)$	$[10 \%, 20 \%)$	$[80 \%, 100 \%]$	$[0 \%, 100 \%]$
	XGBoost	0.83 ± 0.01	$\mathbf{0 . 7 4} \pm 0.03$	$\mathbf{0 . 9 0} \pm 0.02$	$\mathbf{0 . 8 6} \pm 0.00$
	LightGBM	$\mathbf{0 . 8 6} \pm 0.02$	0.72 ± 0.05	0.88 ± 0.02	0.82 ± 0.00
	Random Forest	0.85 ± 0.01	0.56 ± 0.05	0.85 ± 0.02	0.79 ± 0.00
Non－GNN－based models	Fully Connected	0.53 ± 0.07	0.51 ± 0.06	0.76 ± 0.05	0.64 ± 0.04
（including social features）	ConvNet	0.43 ± 0.09	0.68 ± 0.07	0.83 ± 0.04	0.66 ± 0.06
	Soft Voting［22］	0.69 ± 0.00	0.56 ± 0.01	0.76 ± 0.01	0.72 ± 0.00
	Hard Voting［22］	0.67 ± 0.01	0.63 ± 0.02	0.70 ± 0.03	0.74 ± 0.01
	Stacking［22］	0.54 ± 0.02	0.56 ± 0.03	0.67 ± 0.01	0.69 ± 0.02
	GCN	0.62 ± 0.08	0.52 ± 0.05	0.83 ± 0.08	0.69 ± 0.03
	TAGCN $(K=1)$	0.79 ± 0.03	$\mathbf{0 . 9 7} \pm 0.05$	$\mathbf{0 . 9 9} \pm 0.04$	$\mathbf{0 . 9 2} \pm 0.01$
GNN－based models	TAGCN $(K=2)$	0.82 ± 0.03	$\mathbf{0 . 9 8} \pm 0.02$	$\mathbf{0 . 9 9} \pm 0.03$	$\mathbf{0 . 9 3} \pm 0.02$
（including social features）	TAGCN $(K=3)$	0.85 ± 0.02	$\mathbf{0 . 9 8} \pm 0.03$	$\mathbf{0 . 9 8} \pm 0.01$	$\mathbf{0 . 9 4} \pm 0.01$
	GAT	0.73 ± 0.06	$\mathbf{0 . 9 1} \pm 0.06$	$\mathbf{0 . 9 2} \pm 0.07$	$\mathbf{0 . 8 7} \pm 0.05$

空汙感測器故障預測－supervised learning－based

－10，000＋空汙感測器（in 2021），但有相當比例之量測值不精準

- 採定期巡檢，但人力成本極高
- 智慧巡檢：以圖卷積網路 （Graphical Convolutional Network）與時間卷積網路整合時空資訊預測故障之感測器
－訓練資料採用 2018 年的部份資料工研院於2018年5月至12月巡檢 144個測站，以巡檢結果做為測試資料
- 28個異常
- 116個正常
- 我們以此巡檢紀錄評估各種異常偵

測演算法的優劣
D．Wu，T．－H．Lin，X．－R．Zhang，C．－P．Chen，J．－H．Chen，H．－H．Chen．IEEE Sensors Journal 23（15）， 2023 （Featured article） 14 T．－H．Lin，X．－R．Zhang，C．－P．Chen，J．－H．Chen，H．－H．Chen．IEEE Sensors Journal 22（3）， 2022

Type	Model	ROC mean	ROC std
Rule based	ADF－5（5 是［6］中給的超參數值）	0.624	0.0
	ADF－10（ROC Best）	0.694	0.0
ML（無圖卷積）$)$	Ridge	0.6878	0.006261
	Random Forest	0.7000	0.015652
	TCN	0.7085	0.013472
	DNN	0.7066	0.007701
	LSTM	0.6940	0.007211
ML（圖卷積）	GraphWaveNet	0.7090	0.007211

實驗結果－Precision＠k

－Precision＠k：若按建議依序檢查 k 個測站，實際有問題的測站在 k 個測站中的佔比

Type	Model	P＠10	P＠20	P＠30	P＠40	P＠50
隨機巡檢		0.194	0.194	0.194	0.194	0.194
Rule based	ADF－5	0.300	0.350	0.270	0.330	0.320
	ADF－10（ROC Best）	0.500	0.500	0.400	0.380	0.320
ML（無圖卷積）	Random Forest	0.380	0.370	0.400	0.342	0.320
	Ridge	0.580	0.430	0.394	0.370	0.320
	TCN	0.600	0.433	0.395	0.375	0.337
	DNN	0.600	0.410	0.412	0.338	0.320
	LSTM	0.500	0.430	0.374	0.344	0.312
	GraphWaveNet	0.600	0.410	0.368	0.332	0.336

D．Wu，T．－H．Lin，X．－R．Zhang，C．－P．Chen，J．－H．Chen，H．－H．Chen．IEEE Sensors Journal 23（15）， 2023 （Featured article） 16 T．－H．Lin，X．－R．Zhang，C．－P．Chen，J．－H．Chen，H．－H．Chen．IEEE Sensors Journal 22（3）， 2022

實驗結果－Recall＠k

－Recall＠k ：按建議依序檢查 k 個測站，找出有問題的測站數量與實際有問題測站數量（28個）的比值

Type	Model	R＠10	R＠20	R＠30	R＠40	R＠50
隨機巡檢		0.069	0.139	0.208	0.278	0.347
Rule based	ADF－5	0.110	0.250	0.290	0.460	0.570
	ADF－10（ROC Best）	0.180	0.360	0.430	0.540	0.570
ML（無圖卷積）	Random Forest	0.136	0.266	0.428	0.484	0.570
	Raso	0.204	0.306	0.422	0.524	0.570
	TCN	0.210	0.308	0.423	0.533	0.603
	DNN	0.212	0.296	0.442	0.476	0.570
	LSTM	0.180	0.308	0.398	0.484	0.560
	GraphWaveNet	0.214	0.293	0.394	0.474	0.600

D．Wu，T．－H．Lin，X．－R．Zhang，C．－P．Chen，J．－H．Chen，H．－H．Chen．IEEE Sensors Journal 23（15）， 2023 （Featured article） 17 T．－H．Lin，X．－R．Zhang，C．－P．Chen，J．－H．Chen，H．－H．Chen．IEEE Sensors Journal 22（3）， 2022

空汙感測器故障預測－semi－ supervised learning－based

－10000＋個空汙感測器中，只有 144 個有「正常」或「故障」的標準答案
－Fully supervised learning：僅有 144 筆訓練資料
－Semi－supervised learning：融合有標準答案的資料及其他沒有標準答案的資料共同訓練

空汙感測器故障預測－semi－ supervised learning－based

非機器學習模型	隨機巡檢		0.1940 ± 0.0000		
	ADF－5		0.2900 ± 0.0000		
	ADF－10		0.4400 ± 0.0000		
	折線圖	熱力圖	統整性資料 統整及時序資料		
監督式模型	linear regression	0.2769	0.3137	0.3339	0.3163
	ridge regression	0.3214	0.3876	0.3337	0.3159
	random forest	0.3290	0.4292	$\mathbf{0 . 4 4 7 1}$	$\mathbf{0 . 4 5 8 8}$
	SSDO with iforest	0.3374	0.4555	0.3061	0.2883
	SSDO with COP－kmeans	0.3399	0.5158	0.3177	0.2554
	Isolation fores	0.1886	0.2003	0.2375	0.2578
	SSDO with iforest	0.3712	0.4114	0.2645	0.3773
半監督式模型	SSDO with COP－kmeans	0.3640	0.4162	0.2809	0.3214
	Deep SAD	$\mathbf{0 . 8 0 9 9}$	$\mathbf{0 . 8 0 4 8}$	0.3450	0.4215

－不同模型在不同資料中所得到的PR－AUC
主要作者：張欣茹

Extended Clickstream

- Weblog approximately records only half of a user's page visits
- 8.1% of the visits recorded in the weblog may not come from a user's conscious actions
- Clickstream is an incomplete collection of users' web visiting

Category	ICS + ECS				CS		ICS	ECS	$\begin{gathered} \text { Rank Diff } \\ (1)-(2) \\ \hline \end{gathered}$
	Rank(1)	Count	Perc.(\%)	CDF (\%)	Rank(2)	Count	Rank Count	Rank Count	
Streaming Media and Download		1110256	17.57	17.57		358327	2541878	1568378	-2
Social Networking	2	929709	14.72	32.29		1608252	1591064	2338645	1
Search Engines and Portals	3	709671	11.23	43.52		559254	3456281	5253390	1
Education	4	558183	8.84	52.36		5304386	5263847	3294336	-1
Information Technology	5	449954	7.12	59.48		6200185	6181300	4268654	-1
Web-based Applications	6	390278	6.18	65.66		4336890	4331990	1158288	2
Games	7	379462	6.01	71.67		7156351	7145209	6234253	0
Business	8	199455	3.16	74.83		9108063	1095567	7103888	-1
Shopping	9	166820	2.64	77.47		194739	1186591	880229	-2
File Sharing and Storage	10	163682	2.59	80.06		106536	9102926	1060756	0
Entertainment	11	153140	2.42	82.48		8117183	8113604	1439536	3
Reference	12	152565	2.41	84.89		86090	1278747	973818	0
Web-based Email	13	113965	1.8	86.69		68743	1366548	1247417	0
News and Media	14	99934	1.58	88.27		467278	1465898	$17 \quad 34036$	0
Newsgroups and Message Boards	15	71043	1.12	89.39		35037	$17 \quad 31629$	1539414	-1
Pornography	16	68720	1.09	90.48		42031	$15 \quad 39897$	1828823	1
Personal Websites and Blogs	17	68312	1.08	91.56		25497	$20 \quad 24055$	1344257	-3
Instant Messaging	18	62816	0.99	92.55		29973	1828458	$16 \quad 34358$	0
Auction	19	55353	0.88	93.43		733344	1632504	$20 \quad 22849$	2
Travel	20	48802	0.77	94.2		29955	1924893	$19 \quad 23909$	1

C.-Y. Hsu, T.-R. Chen, H.-H. Chen. ACM Journal of Data and Information Quality 14(2), 2022^{20}.

Multivariate Beta Mixture Model （MBMM）－ongoing

－A new probabilistic clustering algorithm
－Gaussian mixture model（GMM）：each cluster has to be a Gaussian distribution
－MBMM：allow versatile shapes for each cluster
－Uni－modal（symmetric or skewed），bi－modal

MBMM vs GMM clustering

個人化之䞶褺線生成（1／2）

- 哪條才是䞶勢線？
- 不同情境，不同答案
（a）Trend line 1
（b）Trend line 2
－有人希望趨勢線「平滑」，有人希望趨勢線仍能有「局部起伏」
－如何讓電腦「學習」一個人心中的趨勢線樣貌？－－個人化趨勢線生成
－Training：系統展示十張時間序列，使用者分別標注其心目中的趨線，系統從中學習使用者想要的趨勢線樣貌
－Generation：使用者給予系統所有需要標示趨勢線之時間序列，系統按 training 時學習到之規則自動為所有時間序列標出趨勢線
－挑戰：僅有十張訓練資料，如何有效的學習（且不 overfitting）

個人化之䞶勢缐生成（2／2）

- 兩階段之個人化趨勢線生成技術
- DNN model 容易 overfitting
- Pretrain and finetune有部份效果，但仍不理想
- Petrel（我們的方法）優於上面兩類

Type	Algorithm	SMAPE	MSE
Our method	Petrel（averaged）	$\mathbf{0 . 4 4}$	5264.34
	Petrel（weighted）	$\mathbf{0 . 4 4}$	$\mathbf{5 2 5 8 . 3 4}$
DNN models	ConvNet	0.83	176593.87
	LSTM	1.02	497312.33
	Transformer	1.08	579188.89
DNN with pretraining and fine－tuning	P\＆F ConvNet	$\mathbf{0 . 4 4}$	5425.77
	P\＆F LSTM	0.52	7394.09
	P\＆Transformer	0.47	9311.75
	P\＆F MLP	0.68	31934.92

資料集一

Algorithm	SMAPE	MSE
Petrel（averaged）	0.33	6164.38
Petrel（weighted）	$\mathbf{0 . 3 2}$	$\mathbf{6 0 0 2 . 3 2}$
ConvNet	0.94	166951.8
LSTM	1.11	323712.95
Transformer	1.20	637955.96
P\＆F ConnNet	1.45	241890.91
P\＆F LSTM	1.23	1292454.44
P\＆F Transformer	0.81	1357013.58
P\＆F MLP	1.18	242234.14

資料集二

E-commerce object and behavior embedding (Behavior2Vec)

Predict a user's next
clicked item
2. Canon

Panasonic
Predict a user's next purchased item
Discover the relationship between items

- E.g., Canon's camera body
: Canon's lens \approx Nikon's camera body : Nikon's lens

Figure 1: Vectors from the camera body to the corresponding kit lens of different brands. The vectors are generated by Behavior2Vec

Recommendation for near cold start

items

- Near cold start item: items that are rarely viewed
- Recommendation for the near cold start items is difficult because of the limited clues
- Our RDF method alleviates this issue

Table 1: a comparison of the methods with RDF and without RDF

Dataset	SVD	linear-reg	sqrt-reg	log-reg	improve ratio range
Epinions	1.1997	$\mathbf{1 . 0 5 3 8}$	$\mathbf{1 . 0 5 3 8}$	$\mathbf{1 . 0 5 3 8}$	12.16%
MovieLens-100K	0.9423	$\mathbf{0 . 9 4 2 2}$	$\mathbf{0 . 9 4 2 2}$	$\mathbf{0 . 9 4 2 2}$	0.01%
FilmTrust	0.8465	$\mathbf{0 . 8 1 9 4}$	$\mathbf{0 . 8 1 9 4}$	0.8223	2.86% to 3.20%
Yahoo! Movies	3.0799	$\mathbf{2 . 9 8 9 2}$	3.0129	3.0127	2.18% to 2.94%
AMI	1.1450	$\mathbf{1 . 1 4 0 5}$	$\mathbf{1 . 1 4 0 5}$	$\mathbf{1 . 1 4 0 5}$	0.39%

Train and evaluate recommender

systems in the right way

- Show 4 common errors in training and evaluating recommender systems
- Propose solutions or work-arounds for these issues

recommendation revenue

Green: channel with a recommendation Blue: channel w/o recommendation

Co-learning user's browsing tendency of multiple categories

- Instead of predicting each target variable independently, our MFMT method simultaneously learns multiple targets in one model

Table: F1 scores of different models on different target categories

model	shopping	traveling	restaurant and dining	entertainment	games	education
kNN	0.574	$\mathbf{0 . 6 1 5}$	0.528	0.440	0.492	0.484
Logreg	0.578	0.489	0.501	0.402	0.441	0.437
SVM	0.576	0.391	0.410	0.399	0.409	0.385
MFMT	$\mathbf{0 . 5 8 4}$	0.570	$\mathbf{0 . 5 6 1}$	$\mathbf{0 . 4 7 9}$	$\mathbf{0 . 5 3 1}$	$\mathbf{0 . 5 1 5}$
	(win)		(win)	(win)	(win)	(win)

User personality and demographic profile prediction based on browsing logs

Table: errors of the personality test score prediction based on the supervised learners with and without the preprocessing step

Method	Supervised regressor				Clustering + supervised regressor				(win)			
Prediction target	HH	Neu	Ext	Agr	Con	Ope	HH	Neu	Ext	Agr	Con	Ope
Lasso	5.832	5.87	5.881	5.71	5.406	5.607	$\mathbf{5 . 4 1 1}$	$\mathbf{5 . 4 6 9}$	$\mathbf{5 . 4 3 5}$	$\mathbf{5 . 4 3 5}$	$\mathbf{5 . 0 2 2}$	$\mathbf{5 . 1 3 1}$
Ridge	5.845	5.981	5.891	5.795	5.43	5.646	$\mathbf{5 . 4 3}$	$\mathbf{5 . 4 0 4}$	$\mathbf{5 . 3 8}$	$\mathbf{5 . 3 2 5}$	$\mathbf{5 . 0 2 7}$	$\mathbf{5 . 0 5 2}$
Elastic net	5.813	5.769	5.743	5.622	5.366	5.44	$\mathbf{5 . 4 1 7}$	$\mathbf{5 . 3 8 3}$	$\mathbf{5 . 4 2 2}$	$\mathbf{5 . 3 1 7}$	$\mathbf{5 . 0 2 2}$	$\mathbf{5 . 0 9 5}$
SVR	5.789	5.78	5.746	5.643	5.232	5.38	$\mathbf{5 . 4 3 2}$	$\mathbf{5 . 6 2 3}$	$\mathbf{5 . 4 0 2}$	$\mathbf{5 . 3 2 8}$	$\mathbf{5 . 0 4 8}$	$\mathbf{5 . 1 6 5}$

Table: MicroF1 scores of the demographical info prediction based on the supervised learners with and without the preprocessing step

Method	Supervised classifier			Clustering + supervised classifier		
Prediction target	Age	Gender	Relationship	Age	Gender	Relationship
Baseline	0.388	0.545	0.474	$\mathbf{0 . 4 1 1}$	$\mathbf{0 . 5 9 8}$	$\mathbf{0 . 4 7 6}$
KNN	0.427	0.594	0.478	$\mathbf{0 . 4 3 5}$	$\mathbf{0 . 6 1 8}$	$\mathbf{0 . 4 8 2}$
Random Forest	$\mathbf{0 . 4 5 3}$	$\mathbf{0 . 6 9 7}$	0.488	0.419	0.687	$\mathbf{0 . 5 1 2}$
Logistic Regression	0.427	$\mathbf{0 . 6 9 7}$	0.476	$\mathbf{0 . 4 5 7}$	0.675	$\mathbf{0 . 4 9 8}$
SVM	0.388	0.591	0.474	$\mathbf{0 . 4 1 1}$	$\mathbf{0 . 6 4 2}$	$\mathbf{0 . 5 1 2}$

C.-Y. Lien, G.-J. Bai, H.-H. Chen. IEEE/WIC/ACM International Conference on Web Intelligence 2019.

Accelerating MF by Overparameterization

Overparameterization significantly accelerates the optimization of MF

- Theoretically derive that applying the vanilla SGD on OP_MF is equivalent to using GD with momentum and adaptive learning rate on the standard MF model

Public transportation optimization

－Predict the taxi demand in real time by deep learning

Model	RMSE	MAPE
Average	8.845 ± 7.9434	0.0840 ± 0.000413
ARIMA	15.585 ± 20.8253	0.1660 ± 0.018033
ridge regression	10.914 ± 2.4451	0.1460 ± 0.000895
XGBoost	6.498 ± 2.0542	0.0806 ± 0.000205
LSTM（2 layers）	7.037 ± 3.9747	0.0563 ± 0.000056
LSTM（4 layers）	6.694 ± 5.1110	0.0595 ± 0.000232
DMVST－Net	7.350 ± 3.7034	0.0643 ± 0.000192
ResLSTM（4 layers）	5.187 ± 2.0265	0.0584 ± 0.000048
AR－LSTM（4 layers）	4.958 ± 1.8909	0.0488 ± 0.000039

Dynamic ensembled learning

－Dynamically integrate multiple base learners based on the feature distribution of the test instance
－Better accuracy than the static ensembled learning approach

Table：a comparison of the base learners，static ensembled，and dynamic ensembled methods

Method	KNN	SVM	Decision Tree	Majority Voting	Dynamic ensembled
Accuracy	77.09%	72.77%	75.46%	77.64%	77.80% （win）

Better word embedding for synonyms and antonyms

－Adjusting word embedding to differentiate synonyms and antonyms

Deep vs shallow recommendation

Y.-C. Yang, P.-C. Lai, H.-H. Chen. TAAI 2020.

Recent undergraduate projects （大學專題）

抗旋轉之卷積網路設計

- 卷積網路難以判斷旋轉的圖片
- 從電腦的角度來看，旋轉前後的圖片之pixel排列方式不同，故可能認定圖片中為不同的物件
－深度學習通常需要讓電腦看過各種旋轉角度的圖片，讓電腦「認得」不同旋轉角度的相同物件
－我們設計新的模型，電腦只需看過一張圖，即可認得各種旋轉角度的圖片

Test accuracy

	MNIST		FashionMNIST		CIFAR－10			
	轉90度	任意旋轉	轉90度	任意旋轉	轉90度	任意旋轉		
ConvNet1	0.17	0.42	0.07	0.22	0.29	0.30		
ConvNet2	0.16	0.33	0.02	0.19	0.24	0.23		
Our model	0.72	0.43	0.79	0.33	0.36	0.26		佳誠，陳弘軒．TAAI 2022
:---								

－Build an academic search engine for the Taiwanese Associationfor Artificial Integlligence（中華民國人工智慧學會）
－http：／／search．taai．org．tw／
－Keyword search
－Paper keyphrase extractor

－中華民国人工智等举会
學術搜索 請輸入關鍵字
Q
keywords．．．

S Hottest Top 10 Paper

多層式短中長期記境模型之即時計程車需求碩测

2018 Taai Domestic track

作者：徐志榮，陳弘吁
跕等： 11 次

Multi－dependent Latent Dirichlet Allocation
2017 Taai International track
作者：WEI CHENG HSIN，Jen－Wei Huang
點撃：6－欠
top 10 term frequency

36

基於學術搜尋引擎之研究趨勢分析

－利用TAAI 論文發表内容分析研究主題歷年趨勢

CNN
RNN
LSTM

Instagram騒擾帳號偵測

初始畫面

（0）Fake Account Detector

輸入使用者悵號 Plessenter usemame

Submit

The result is inferred by the following information：
Have profile picture or not：Yes
User＇s 10：cijs520
User＇s fullname：숭
How many words in the biography：
Have url or not：No
Private or not：No
How many posts： 0
How many followers：0
How many followees： 9
自動判斷該帳號是否為騒擾帳號
－模型效能
－Accuracy： 0.925
－Precision： 0.932
－Recall： 0.917
－AUROC： 0.99

－Generate highlight clips and thumbnails for videos based on bullet－screen（彈幕） information

－Our model is better than the software used by video streaming companies

Table 1：Users＇evaluation on the representativeness of the outputted video clips

	All users	Group 1	Group 2
Busk	$\mathbf{5 2 . 1 2 \%}$	$\mathbf{6 7 . 3 8 \%}$	47.45%
Stiller	47.88%	32.62%	$\mathbf{5 2 . 5 5 \%}$

Table 2：Users＇evaluation on the representativeness of the outputted thumbnail images

	All users	Group 1	Group 2
Busk	47.62%	$\mathbf{6 3 . 0 8 \%}$	43.39%
Stiller	$\mathbf{5 2 . 3 8 \%}$	36.92%	$\mathbf{5 6 . 6 1 \%}$

－Group 1：users who are familiar with the videos
－Group 2：others

影片「片段」 搜尋

－Search for the video clips inside long videos based on bullet－screen（彈幕）information

從 FAQ 自動產生 Chatbot

- 從常見問題集（FAQ）自動產生客服對話機器人
- 對話機器人利用 Elasticsearch，Word2Vec，及 BERT判斷「使用者的問題」與「常見問題集中各問題」的相似度
－對話機器人回傳相似的常見問題及答案
重設密碼
Top 3 matches：
（1）我是畢業生，忘記密碼，無學

生證認證身分，該如何修改密碼？
（2）我的帳號仍未失效，要如何更改密碼？
（3）我是教職員身分，忘記密碼該如何處理？

PDF 數學式解析器

－要讓電腦＂瞭解＂文件中的數學式，第一步需要讓電腦能解析數學式
－E．g．，$(a+b)^{2} \Rightarrow(\mathrm{a}+\mathrm{b})^{\wedge} 2$

- PDF是科學論文最常見的格式
- 為了在不同装置能有一樣的文件外觀，PDF 描述每個符號應該以怎樣的型式（e．g．，大小，字型，顔色等）出現在哪個位置
- 這使得數學式很難被自動化的解析
- 我們採機器學習＋自訂規則解析PDF中的數學式

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
e^{i \pi}+1=0 \\
\text { PDF 文件 }
\end{gathered}
$$

$$
\downarrow \begin{array}{|c|}
\hline \begin{array}{c}
\text { 數學式 } \\
\text { 解析器 }
\end{array} \\
\cline { 2 - 4 }
\end{array} \sqrt[\begin{array}{l}
\mathrm{ax} \wedge 2+\mathrm{bx}+\mathrm{c}=0 \\
\mathrm{e}^{\wedge}\{i \backslash \mathrm{pi}\}+1=0
\end{array}]{\operatorname{LaTeX} \text { 格式 }}
$$

－Predict the＂purposes＂of each sentence in an abstract

BACKGROUND
Predicted 0 Predicted 1

RESULTS
Predicted 0 Predicted 1

OBJECTIVES
Predicted 0 Predicted 1

CONCLUSIONS
Predicted 0 Predicted 1

METHODS
Predicted 0 Predicted 1

我是大明星－明星臉分析

