

Data Analytics Research Team (DART) – 2025

陳弘軒 Hung-Hsuan Chen
Computer Science & Information
Engineering
National Central University

Mission: data science for the society

- Discover the necessity and problem (Need)
- Equip with programing and math skills along with domain knowledge to solve the problem (skill)
- Willing to practice and make it happen (Passion)
- 研究應有所本,不單為研究而研究
- 及早開始研究對學生的好處:產生學生時代的「代表作」
 - 好的論文有助於申請出國留學、好的專案有助於求職

Recent research/project direction

- Develop machine learning models that are
 - Faster (shorter training or inference time)
 - More accurate
 - Better (under certain conditions)
- Apply machine learning to applications
 - Smart sport (精準運動科學)
 - Privacy-preserving machine learning
 - Search engines & recommender systems
 - PM2.5 prediction & sensor malfunction prediction
 - Traffic prediction
 - Personality traits and personality prediction
 - Clip search within videos
 - Log analysis

Table of contents

Recent graduate projects

Recent undergraudate projects (大學專題)

Recent graduate projects

精準運動科學 - 桌球 (2023 - 2027)

- 結合AI的揮拍者能力分析系統
 - ■資料蒐集
 - 揮拍者個人運動能力分析
- 戰術分析
 - 資料蒐集與標註
 - 選手打法分析

精準運動科學 - 桌球 (結合AI的揮拍 者能力分析系統 - 資料蒐集)

智慧球拍内嵌感測器示意圖

x,y,z軸向定義

程式紀錄受測者之揮拍資訊及 揮拍模式

• 單點回擊

兩側移動回擊

C.-Y. Chou, Z.-H. Chen, Y.-H. Sheu, H.-H. Chen, M.-T. Sun and S. K. Wu, **Springer Nature**

Scientific Data, 2025

精準運動科學 - 桌球 (結合AI的揮拍 者能力分析系統)

□揮拍波形平滑化技術及自動波形切割

- □揮拍波形AI及大數據分析,產出科學化個人報告:
 - (1) 量化揮拍者的揮拍速度、加速度、穩定度數值
 - (2) 比較揮拍者的揮拍速度、加速度、穩定度數值在所有受測球員中之百分比
 - (3) 揮拍者之等級分析

精準運動科學 - 桌球 (戰術分析標註)

- □標註廣泛而詳盡
 - □已標註 100,000+ 拍
 - □涵蓋15個級別賽事(奧運、世錦賽、亞運、世大運、全國賽、大專盃等)
 - □選手涵蓋29個國家
 - □每拍包括:擊球種類 (如:正反手,發球、攻球、擰球)、落點等,並有原始影片

DeInfoReg – 實現 backprop 的分段平行化 (2023 – 2025)

Realizes model parallelism for deep learning; maintains high test accuracies across different networks and open datasets

DeInfoReg – accurate, efficient, and robust

Accurate predictions

Batch Size	64	128	256					
	IMDB							
BP	87.91 ± 0.44	87.54 ± 0.29	87.50 ± 0.42					
AL	87.93 ± 0.37	86.89 ± 0.73	87.98 ± 0.48					
SCPL	88.16 ± 0.48	88.89 ± 0.29	88.69 ± 0.32					
${\bf DeInfoReg}$	89.02 ± 0.17	89.26 ± 0.09	88.86 ± 0.30					
AGNews								
BP	91.05 ± 0.10	90.84 ± 0.11	90.74 ± 0.16					
AL	88.20 ± 1.60	86.20 ± 1.90	89.41 ± 0.86					
SCPL	91.36 ± 0.21	91.64 ± 0.07	91.66 ± 0.21					
${\bf DeInfoReg}$	91.91 ± 0.13	91.95 ± 0.06	91.90 ± 0.15					
	DE	Bpedia						
BP	97.66 ± 0.05	97.63 ± 0.01	97.59 ± 0.02					
AL	91.20 ± 2.37	92.81 ± 2.02	93.58 ± 1.62					
SCPL	97.35 ± 0.27	97.47 ± 0.04	97.58 ± 0.05					
${\bf DeInfoReg}$	97.84 ± 0.02	$\textbf{97.84}\pm\textbf{0.02}$	97.85 ± 0.03					

Fast training with multiple GPUs

Batch size	256	512	1024
BP DeInfoReg (1 GPU) DeInfoReg (2 GPUs) DeInfoReg (4 GPUs)	1x (28.74 sec)	1x (28.44 sec)	1x (28.8 sec)
	0.81x	0.85x	0.90x
	1.30x	1.35x	1.35x
	1.41x	1.44x	1.47x

Robust to noisy data

θ : noisy ratio

θ	0.0	0.2	0.4	0.6	0.8
BP	88.27 ± 0.48	83.01 ± 1.2	76.08 ± 0.13	67.71 ± 0.4	57.94 ± 1.75
${\bf DeInfoReg}$	90.15 ± 0.18	85.46 ± 0.66	81.28 ± 1.1	76.36 ± 5.18	68.1 ± 8.31

量化LLM對「職業-性別」的刻板印象 (2024 – 2025)

- ·大規模量化LLM對職業的性別刻板印象
 - 10 LLMs (include proprietary & open source)
 - 106個職業
- 發現1: LLM 嚴重高估各職業的女性比例
- 發現2: 即便如此,人類對於「職業-性別」 的刻板印象仍存在於 LLM 中
- · 發現3: LLM高估女性的原因可能來自 SFT 與 RLHF

LLM對「職業-性別」的刻板印象 -高估各職業的女性比例 (2/2)

Occupation (職業1...職業106)

以Gender Ratio 排序職業時,LLM與 人類刻板印象高度一致

	Kendall'	s Tau
Model	美國社會實況	人類主觀刻板印象
Llama3.2 3B	0.6352	0.6975
Gemma2 2B	0.6642	0.7411
Gemma2 9B	0.6125	0.6919
Gemma2 27B	0.6159	0.7201
Gpt-40 mini	0.5939	0.6712
Gpt-4o	0.5375	0.5666
Gemini 1.5 flash	0.5522	0.6364
Gemini 1.5 flash-8B	0.5577	0.6368
Gemini 1.5 pro	0.3368	0.4557
Gemini 2.0 flash	0.5383	0.6362

LLM高估各職業的女性比例,但職業按 gender ratio 排序卻與人類刻板印象一致?

• 可能成因: Supervised finetuning (SFT) 與
Reinforcement Learning from Human Feedback
(RLHF)

E. Chen, R.-J. Zhan, Y.-B. Lin, H.-H. Chen. CIKM 2025.

Occupation

隱私強化技術:差分隱私與合成資料(2024)

- 技術檢測項目
- 隱私強化技術演算法適用性分析
- 概念驗證實作

隱私強化技術演算法適用性分析 -基準資料集特性

高遺失:

- 資料內總遺失筆數超過 總筆數15%,或
- 内部遺失值超過 15% 的 欄位 (column) 超過總欄 位數之 1/3

高基數:類別變項基數 (cardinality)大於 10 的欄 位超過總欄位數之 1/3

高極端:偏態係數 (skewness) 絕對值大於 3 的欄位超過總欄位數之 1/3

隱私強化技術演算法適用性分析 -資料前處理

遺失值填補:填補 mean/median/mode或移除

類別值編碼: 獨熱/均勻

/標籤編碼

極端值去除:由 zscore/四分位距/隔離森 林/局部離群因子來決定 極端值

數值標準化: scale to [0,1], scale to [-1,1], standardize

隱私強化技術演算法適用性分析 – 資料合成演算法

有 DP 保護

Adaptive Iterative
 Mechanism (AIM),
 Maximum Spanning
 Tree (MST), DP-CTGAN,
 PATE-CTGAN

無 DP 保護

Gaussian Copula

隱私強化技術演算法適用性分析 – 評估機制

保真度: 合成資料是否能夠 真實反映原始資料的特性

單欄統計特性、欄位關聯 性等

保護力: 合成資料承受攻擊 的能力

指認性、連結性、推論性 風險

實用性: 合成資料與原始資料面對下游機器學習任務的成效差距

分類: Accuracy, AUROC,

F1

• 迴歸: RMSE、R2

聚類:輪廓係數

隱私強化技術演算法適用性分析 – 前處理指引表

	重視保護力	重視保真度	重視實用性
面對高遺失資料集	使用 missing_median	使用 missing_median	使用 missing_median
(遺失值為數值)	處理遺失值	處理遺失值	處理遺失值
面對高遺失資料集	使用 missing_mode	使用 missing_drop	使用 missing_mode
(遺失值為類別值)	處理遺失值	處理遺失值	處理遺失值
面對高基數資料集	使用 encoder_label	使用 encoder_uniform	使用 encoder_label
	對類別值編碼	對類別值編碼	對類別值編碼
面對高極端資料集	無明顯差異,	使用 outlier_isolationforest	使用 outlier_isolationforest
	使用預設方法即可	或 outlier_lof 處理極端值	或 outlier_lof 處理極端值
面對一般資料集	無明顯差異,	使用 scaler_minmax	無明顯差異,
	使用預設方法即可	對數值做標準化	使用預設方法即可

空汙感測網路異質資料整合 (2021 – 2023)

- 合作單位:中大大氣系、太空遙測中心、 資工系
- 資工系負責項目:
 - 結合衛星資料與地表空汙感測器共同預測各地 空汗

利用圖像修復技術進行多來源 PM2.5的融合與補值

- 圖像修補技術
 - 從部份圖像生成整張圖像
 - 一張圖片有RGB三個頻道
- 多來源PM2.5融合
 - 從部份PM2.5測量生成全台PM2.5 濃度地圖
 - 「EPA測站」、「Airbox測站」、 及「衛星PM2.5」視為不同頻道
- 相同處
 - 均為三維陣列(長x寬x頻道數)
 - 均需無中生有
- 相異處
 - 圖像修補任務中,相同(x,y)坐標點的不同頻道「同時有值」或「同時缺值」
 - PM2.5補值任務中,相同(x,y)坐標 點的不同頻道不一定「同時有值」 或「同時缺值」

Supervised Contrastive Parallel Learning (SCPL) (1/3)

 Realizes model parallelism for deep learning; maintains high test accuracies across different networks and open datasets

Supervised Contrastive Parallel Learning (SCPL) (2/3)

Standard BP

Device No.		Stage															
GPU0	FW1	FW2	FW3	FW4	LOSS	BW4	BV	V3		BV	V2			BV	V1		UP
Time point	t_1	t ₂	t ₃	<i>t</i> ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀	t ₁₁	t ₁₂	t ₁₃	t ₁₄	t ₁₅	t ₁₆	t ₁₇

NMP

Device No.		Stage															
GPU0	FW1													BV	V1		UP
GPU1		FW2								BV	V2						UP
GPU2			FW3				BV	V3									UP
GPU3				FW4	LOSS	BW4											UP
Time point	t_1	t ₂	<i>t</i> ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t 9	t ₁₀	t ₁₁	t ₁₂	t ₁₃	t ₁₄	t ₁₅	t ₁₆	t ₁₇

Concept illustration

SCPL

Device No.		Stage						
GPU0	FW1	LOSS	OSS BW1					UP
GPU1		FW2	LOSS	LOSS BW2				UP
GPU2			FW3	LOSS	BV	V3		UP
GPU3				FW4 LOSS BW4			UP	
Time point	t_1	t ₂	t ₃	t_3 t_4 t_5 t_6 t_7				t ₈

FWi: forward for layer i LOSS: compute loss BWi: backward for layer i UP: update parameter values True training process on 4 GPUs

(a) Training LSTM on IMDB (using NMP).

(b) Training LSTM on IMDB (using SCPL).

Supervised Contrastive Parallel Learning (SCPL) (3/3)

Training time speedup ratios (IMDB, transformer)

Batch size	32	64	128	256	512
BP	1x (196 min)	1x (173 min)	1x (156 min)	1x (149 min)	1x (147 min)
GPipe (1 GPU)	0.75x	0.72x	0.72x	0.71x	0.70x
GPipe (2 GPUs)	1.00x	0.92x	0.93x	0.93x	0.92x
GPipe (4 GPUs)	1.35x	1.25x	1.17x	1.16x	1.11x
SCPL (1 GPU)	1.12x	1.07x	1.03x	1.03x	1.05x
SCPL (2 GPUs)	1.43x	1.37x	1.32x	1.37x	1.38x
SCPL (4 GPUs)	1.92x	1.82x	1.66x	1.67x	1.66x

Test accuracies (IMDB)

	LSTM	Transformer
BP	$ 89.68 \pm 0.20$	87.54 ± 0.44
Early Exit	84.34 ± 0.31	80.24 ± 0.24
AL	86.41 ± 0.61	85.65 ± 0.77
SCPL	89.84 \pm 0.10 \dagger	$89.03 \pm 0.12 \dagger$

Associated learning (AL) (1/2)

- AL: an alternative to end-to-end backpropagation
- AL decomposes a network into small components:
 - Each component has a local objective function
 - Parameters in different components can be updated simultaneously
 - Eliminate backward lock, so pipelined training is possible; increase throughput

Associated learning (2/2)

Results on image classification (CIFAR-100)

	ВР	AL
Vanilla CNN	$26.5 \pm 0.4\%$	$29.7 \pm 0.2\%$
VGG	$65.8 \pm 0.3\%$	67 . 1 ± 0 . 3%

Results on NLP-1 (IMDB)

	ВР	AL
LSTM	$88.10 \pm 0.50\%$	$89.04 \pm 0.37\%$

Results on NLP-2 (AGNews)

	ВР	AL	
LSTM	$88.56 \pm 0.97\%$	$91.42 \pm 0.42\%$	

Parametric spectral clustering (1/2)

- Spectral Clustering
 - Pro: effective for non-linearly clustering
 - Con: high computational costs and memory usage
- Proposed Parametric Spectral Clustering (PSC)
 - Learns to project data into spectral space
 - Supports incremental clustering by updating clusters without retraining the entire model
 - Efficient for real-time scenarios with dynamic datasets

Parametric spectral clustering (2/2)

- SC vs. PSC: computation cost and accuracy
 - Faster, memory-friendly, little (or no) sacrifice on accuracy

Method	Execution time (s)	Peak memory usage (MB)	ClusterAcc
SC	2462	5331	0.794 ± 0.04
PSC $(r = 1/6)$	Training: $453 (\downarrow 82\%)$ Inference: 0.443 ± 0.027	Training: 1032 (↓ 81%) Inference: 92.83 ± 1.965	0.732 ± 0.076
PSC $(r = 2/6)$	Training: 533 (↓ 78%) Inference: 0.419 ± 0.088	Training: 1717 (↓ 68%) Inference: 92.63 ± 2.09	0.739 ± 0.089
PSC $(r = 3/6)$	Training: 706 (\downarrow 71%) Inference: 0.437 ± 0.048	Training: $2532 (\downarrow 53\%)$ Inference: 96.21 ± 1.785	0.764 ± 0.041
PSC $(r = 4/6)$	Training: $1029 (\downarrow 58\%)$ Inference: 0.379 ± 0.06	Training: $3328 (\downarrow 38\%)$ Inference: 96.54 ± 2.271	0.775 ± 0.046
PSC $(r = 5/6)$	Training: $1472 (\downarrow 40\%)$ Inference: 0.491 ± 0.036	Training: $4937 (\downarrow 7\%)$ Inference: 96.5 ± 2.15	0.819 ± 0.039

偵測低調的網軍(1/3)

- 電腦容易偵測高調的網軍
 - 常發言、常回文、常推/嘘文等
- 偵測低調的網軍相對困難

AUPRC scores of detecting active and low active spammers

	active users	inactive users	diff
XGBoost	0.8892	0.5157	0.3735
LightGBM	0.7421	0.4888	0.2533
Random Forest	0.8317	0.5147	0.3163

• 但你知道大部份的網軍是「低調」的嗎?

Group	Percentile of active value	Active value	# normal accounts	CDF of normal accounts (a)	# spammers	CDF of spammers (b)	(b) – (a)
G_1	[0%, 10%)	0-18	4112	9%	222	24%	15%
G_2	[10%, 20%)	19-45	4418	20%	163	42%	22%
G_3	[20%, 30%)	46-84	4508	30%	86	52%	22%
G_4	[30%, 40%)	85-135	4223	40%	59	58%	18%
G_5	[40%, 50%)	136-211	4453	50%	57	64%	14%
G_6	[50%, 60%)	212-315	4096	59%	76	73%	14%
G_7	[60%, 70%)	316-494	4320	69%	112	85%	16%
G_8	[70%, 80%)	495-817	4368	79%	67	92%	13%
G_9	[80%, 90%)	818-1663	4638	90%	51	98%	8%
G_{10}	[90%, 100%]	≥ 1664	4554	100%	19	100%	0%

ΟZ

偵測低調的網軍(2/3)

使用傳統機器學習或深度學習偵測低活躍網軍成 效不彰 AUPRC scores of detecting less active and highly active spammers

	[0%, 10%)	[10%, 20%)	[80%, 100%]
XGBoost	$ 0.52 \pm 0.01$	0.48 ± 0.03	0.89 ± 0.01
LightGBM	0.49 ± 0.02	0.40 ± 0.04	0.74 ± 0.02
Random Forest	0.51 ± 0.03	0.27 ± 0.02	0.83 ± 0.02
Fully Connected	0.35 ± 0.06	0.38 ± 0.05	0.75 ± 0.03
ConvNet	0.17 ± 0.06	0.26 ± 0.14	0.80 ± 0.33
Soft Voting [22]	0.40 ± 0.01	0.43 ± 0.01	0.76 ± 0.01
Hard Voting [22]	0.43 ± 0.02	0.47 ± 0.02	0.70 ± 0.03
Stacking [22]	0.42 ± 0.01	0.47 ± 0.03	0.67 ± 0.01

GNN模型 vs. 最佳非 GNN 模型: GNN更精確地偵 測低活躍網軍

GNN vs. XGBoost (best among non-GNN models)

	[0%, 10%)	[10%, 20%)	[80%, 100%]
XGBoost	$ 0.52 \pm 0.01$	0.48 ± 0.03	$0.89 \pm 0.01 \dagger$
$\begin{array}{c} \text{GCN} \\ \text{TAGCN} \ (K=1) \\ \text{TAGCN} \ (K=2) \\ \text{TAGCN} \ (K=3) \\ \text{GAT} \end{array}$		0.38 ± 0.13 0.79 ± 0.06 $0.84 \pm 0.05 \dagger$ 0.80 ± 0.07 0.77 ± 0.05	0.72 ± 0.07 $0.89 \pm 0.07 \dagger$ $0.89 \pm 0.08 \dagger$ $0.89 \pm 0.06 \dagger$ $0.89 \pm 0.06 \dagger$

偵測低調的網軍(3/3)

加入社群特徵可幫助所有模型更好地偵測網軍

AUPRC scores of the models when including social features

Type	Model	[0%, 10%)	[10%, 20%)	[80%, 100%]	[0%, 100%]
Non-GNN-based models (including social features)	XGBoost LightGBM Random Forest Fully Connected ConvNet Soft Voting [22] Hard Voting [22] Stacking [22]	0.83 ± 0.01 0.86 ± 0.02 0.85 ± 0.01 0.53 ± 0.07 0.43 ± 0.09 0.69 ± 0.00 0.67 ± 0.01 0.54 ± 0.02	$egin{array}{l} \textbf{0.74} \pm 0.03 \\ 0.72 \pm 0.05 \\ 0.56 \pm 0.05 \\ 0.51 \pm 0.06 \\ 0.68 \pm 0.07 \\ 0.56 \pm 0.01 \\ 0.63 \pm 0.02 \\ 0.56 \pm 0.03 \\ \end{array}$	$egin{array}{l} \textbf{0.90} \pm 0.02 \\ 0.88 \pm 0.02 \\ 0.85 \pm 0.02 \\ 0.76 \pm 0.05 \\ 0.83 \pm 0.04 \\ 0.76 \pm 0.01 \\ 0.70 \pm 0.03 \\ 0.67 \pm 0.01 \end{array}$	$\begin{array}{c} \textbf{0.86} \pm 0.00 \\ 0.82 \pm 0.00 \\ 0.79 \pm 0.00 \\ 0.64 \pm 0.04 \\ 0.66 \pm 0.06 \\ 0.72 \pm 0.00 \\ 0.74 \pm 0.01 \\ 0.69 \pm 0.02 \end{array}$
GNN-based models (including social features)			0.52 ± 0.05 0.97 ± 0.05 0.98 ± 0.02 0.98 ± 0.03 0.91 ± 0.06	0.83 ± 0.08 0.99 ± 0.04 0.99 ± 0.03 0.98 ± 0.01 0.92 ± 0.07	$\begin{array}{ c c } \hline 0.69 \pm 0.03 \\ \textbf{0.92} \pm 0.01 \\ \textbf{0.93} \pm 0.02 \\ \textbf{0.94} \pm 0.01 \\ \textbf{0.87} \pm 0.05 \\ \hline \end{array}$

空汙感測器故障預測 – supervised

learning-based

- 10,000+ 空汙感測器 (in 2021), 但 有相當比例之量測值不精準
- 採定期巡檢,但人力成本極高
- 智慧巡檢:以圖卷積網路 (Graphical Convolutional Network) 與時間卷積網路整合時空資訊預 測故障之感測器
- 訓練資料採用 2018 年的部份資料
- 工研院於2018年5月至12月巡檢 144個測站,以巡檢結果做為測試 資料
 - 28個異常
 - 116個正常
 - 我們以此巡檢紀錄評估各種異常偵 測演算法的優劣

D. Wu, T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. **IEEE Sensors Journal** 23(15), 2023 (**Featured article**) ₃₅ T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. **IEEE Sensors Journal** 22(3), 2022

實驗結果 - AUROC 分數

Type	Model	ROC mean	ROC std
	ADF-5 (5 是 [6] 中給的超參數值)	0.624	0.0
Rule based	ADF-10(ROC Best)	0.694	0.0
ML(無圖卷積)	Random Forest	0.6878	0.006261
	Lasso	0.7000	0.015652
	Ridge	0.7085	0.013472
	TCN	0.7066	0.007701
	DNN	0.6940	0.007211
	LSTM	0.7090	0.007211
ML(圖卷積)	GraphWaveNet	0.7260	0.010826
	STGCN	0.7214	0.018569

D. Wu, T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. IEEE Sensors Journal 23(15), 2023 (Featured article) 36 T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. IEEE Sensors Journal 22(3), 2022

實驗結果 - Precision@k

Precision@k: 若按建議依序檢查k個測站, 實際有問題的測站在k個測站中的佔比

Type	Model	P@10	P@20	P@30	P@40	P@50
隨機巡檢		0.194	0.194	0.194	0.194	0.194
Rule based	ADF-5	0.300	0.350	0.270	0.330	0.320
Tule based	ADF-10(ROC Best)	0.500	0.500	0.400	0.380	0.320
	Random Forest	0.380	0.370	0.400	0.342	0.320
	Lasso	0.580	0.430	0.394	0.370	0.320
ML(無圖卷積)	Ridge	0.600	0.433	0.395	0.375	0.337
MID(無國也消)	TCN	0.600	0.410	0.412	0.338	0.320
	DNN	0.500	0.430	0.374	0.344	0.312
	LSTM	0.600	0.410	0.368	0.332	0.336
ML(圖卷積)	${\bf Graph Wave Net}$	0.600	0.417	0.417	0.380	0.353
1111(圖(记(頁)	STGCN	0.640	0.450	0.398	0.386	0.360

D. Wu, T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. IEEE Sensors Journal 23(15), 2023 (Featured article) 37 T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. IEEE Sensors Journal 22(3), 2022

實驗結果 - Recall@k

Recall@k: 按建議依序檢查k個測站,找出有問題的測站數量與實際有問題測站數量(28個)的比值

Type	Model	R@10	R@20	R@30	R@40	R@50
隨機巡檢		0.069	0.139	0.208	0.278	0.347
Rule based	ADF-5	0.110	0.250	0.290	0.460	0.570
Tule based	ADF-10(ROC Best)	0.180	0.360	0.430	0.540	0.570
	Random Forest	0.136	0.266	0.428	0.484	0.570
	Lasso	0.204	0.306	0.422	0.524	0.570
ML(無圖卷積)	Ridge	0.210	0.308	0.423	0.533	0.603
MID(無國心頂)	TCN	0.212	0.296	0.442	0.476	0.570
	DNN	0.180	0.308	0.398	0.484	0.560
	LSTM	0.214	0.293	0.394	0.474	0.600
 ML(圖卷積)	GraphWaveNet	0.214	0.300	0.447	0.543	0.630
	STGCN	0.230	0.322	0.428	0.550	0.642

D. Wu, T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. **IEEE Sensors Journal** 23(15), 2023 (**Featured article**) ₃₈ T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, H.-H. Chen. **IEEE Sensors Journal** 22(3), 2022

空汙感測器故障預測 – semisupervised learning-based

- 10000+個空汙感測器中,只有144個有「正常」或「故障」的標準答案
- Fully supervised learning: 僅有 144 筆訓練資料
- Semi-supervised learning: 融合有標準答案 的資料及其他沒有標準答案的資料共同訓練

主要作者: 張欣茹

空汙感測器故障預測 – semisupervised learning-based

	隨機巡檢	0.1940	0.1940 ± 0.0000			
非機器學習模型	ADF-5		0.2900	± 0.0000		
	ADF-10		0.4400	± 0.0000		
		折線圖	熱力圖	統整性資料	統整及時序資料	
	linear regression	0.2769	0.3137	0.3339	0.3163	
	ridge regression	0.3214	0.3876	0.3337	0.3159	
監督式模型	random forest	0.3290	0.4292	0.4471	0.4588	
	SSDO with iforest	0.3374	0.4555	0.3061	0.2883	
	SSDO with COP-kmeans	0.3399	0.5158	0.3177	0.2554	
無監督式模型	Isolation fores	0.1886	0.2003	0.2375	0.2578	
	SSDO with iforest	0.3712	0.4114	0.2645	0.3773	
半監督式模型	SSDO with COP-kmeans	0.3640	0.4162	0.2809	0.3214	
	Deep SAD	0.8099	0.8048	0.3450	0.4215	

不同模型在不同資料中所得到的PR-AUC

主要作者: 張欣茹

Privacy-preserving machine learning (1/2)

- 政府開放資料可促進創新,但帶有隱私資訊的資料難以直接開放
- 假名化:將可識別個人的資訊 (e.g.,姓名、身份證字號)替換為假名或代號
- 假名化 (pseudonymization) 仍會洩露隱私
 - 莊智淵是台灣唯一40+的桌球國手
 - 中央大學資工系學生中來自金門高中僅個位數
- 差分隱私 (Differential privacy):
 - (Layman's language) 資料中加入雜訊,使得難以 從資料中推測出具體個人的資訊
 - 但差分隱私會讓資料的實用性降低

Privacy-preserving machine learning (2/2)

Extended Clickstream

- Weblog approximately records only half of a user's page visits
- 8.1% of the visits recorded in the weblog may not come from a user's conscious actions
- Clickstream is an incomplete collection of users' web visiting

Catagory		ICS -	+ ECS		CS	S	I	CS	E	CS	Rank Diff
Category	Rank(1)	Count	$\mathrm{Perc.}(\%)$	$\mathrm{CDF}(\%)$	Rank(2)	Count	Rank	Count	Rank	Count	(1)-(2)
Streaming Media and Download	1	1110256	17.57	17.57	3	558327	2	541878	1	568378	-2
Social Networking	2	929709	14.72	32.29	1	608252	1	591064	2	338645	1
Search Engines and Portals	3	709671	11.23	43.52	2	559254	3	456281	5	253390	1
Education	4	558183	8.84	52.36	5	304386	5	263847	3	294336	-1
Information Technology	5	449954	7.12	59.48	6	200185	6	181300	4	268654	-1
Web-based Applications	6	390278	6.18	65.66	4	336890	4	331990	11	58288	2
Games	7	379462	6.01	71.67	7	156351	7	145209	6	234253	0
Business	8	199455	3.16	74.83	9	108063	10	95567	7	103888	-1
Shopping	9	166820	2.64	77.47	11	94739	11	86591	8	80229	-2
File Sharing and Storage	10	163682	2.59	80.06	10	106536	9	102926	10	60756	0
Entertainment	11	153140	2.42	82.48	8	117183	8	113604	14	39536	3
Reference	12	152565	2.41	84.89	12	86090	12	78747	9	73818	0
Web-based Email	13	113965	1.8	86.69	13	68743	13	66548	12	47417	0
News and Media	14	99934	1.58	88.27	14	67278	14	65898	17	34036	0
Newsgroups and Message Boards	15	71043	1.12	89.39	16	35037	17	31629	15	39414	-1
Pornography	16	68720	1.09	90.48	15	42031	15	39897	18	28823	1
Personal Websites and Blogs	17	68312	1.08	91.56	20	25497	20	24055	13	44257	-3
Instant Messaging	18	62816	0.99	92.55	18	29973	18	28458	16	34358	0
Auction	19	55353	0.88	93.43	17	33344	16	32504	20	22849	2
Travel	20	48802	0.77	94.2	19	29955	19	24893	19	23909	1

Multivariate Beta Mixture Model (MBMM) – ongoing

- A new probabilistic clustering algorithm
- Gaussian mixture model (GMM): each cluster has to be a Gaussian distribution
- MBMM: allow versatile shapes for each cluster
 - Uni-modal (symmetric or skewed), bi-modal

MBMM vs GMM clustering

Math Information Retrieval (MathIR) (1/2)

- Query: " $ax^2 + bx + c = 0$ "
 - Does " $\alpha\theta^2 \beta\theta = \gamma$ " count as a match?
 - If x is the unknown in Eq1, θ is the unknown in Eq2, the two equations are equivalent
 - However, if compute similarity based on text-matchingbased methods (e.g., TF-IDF), Eq1 and Eq2 are not similar
- Challenge
 - 1. MathIR is beyond text-matching
 - 2. Labeled data (i.e., which pairs of equations are similar) is limited

Math Information Retrieval (MathIR) (2/2)

- Convert equation into graphs
 - Capture the notation structures
 - Tackles challenge 1 (MathIR is beyond text matching)
- Graph Contrastive Learning (GCL)
 - Generate similar equation pairs based on graph augmentation techniques
 - Tacks challenge 2 (limited labeled data)
- Bpref scores (TangentCFT is a SOTA)

Model	SLT	OPT	F1
TangentCFT	0.680 ± 0.0053	0.660 ± 0.0064	0.670
$\operatorname{InfoGraph}$	0.691 ± 0.0066	0.685 ± 0.0070	0.688
BGRL	0.701 ± 0.0089	0.683 ± 0.0077	0.692
$\operatorname{GraphCL}$	0.685 ± 0.0090	0.703 ± 0.0072	0.694

個人化之趨勢 線生成 (1/2)

- 哪條才是趨勢線?
 - 不同情境,不同答案

(a) Trend line 1

- (b) Trend line 2
- 有人希望趨勢線「平滑 | 有人希望趨勢線仍能有
- 一個人心中的趨勢線樣貌?
- Training: 系統展示十張時間序列, 使用者分別標注 其心目中的趨線, 系統從中學習使用者想要的趨勢
- Generation: 使用者給予系統所有需要標示趨勢線之時間序列,系統按 training 時學習到之規則自動為
 - 僅有十張訓練資料,如何有效的學習(且不 overfitting)

個人化之趨勢線生成 (2/2)

- 兩階段之個人化趨勢線生成技術
- DNN model 容易 overfitting
- Pretrain and finetune有部份效果,但仍不理想
- Petrel (我們的方法) 優於上面兩類

Type	Algorithm	SMAPE	MSE
Our method	Petrel (averaged)	0.44	5264.34
Our method	Petrel (weighted)	0.44	5258.34
	ConvNet	0.83	176593.87
DNN models	LSTM	1.02	497312.33
	Transformer	1.08	579188.89
	P&F ConvNet	0.44	5425.77
DNN with pretraining and fine-tuning	P&F LSTM	0.52	7394.09
Diviv with pretraining and fine-tuning	P&F Transformer	0.47	9311.75
	P&F MLP	0.68	31934.92

SMAPE	MSE
0.33	6164.38
0.32	6002.32
0.94	166951.8
1.11	323712.95
1.20	637955.96
1.45	241890.91
1.23	1292454.44
0.81	1357013.58
1.18	242234.14
	0.33 0.32 0.94 1.11 1.20 1.45 1.23 0.81

資料集一

資料集二

E-commerce object and behavior embedding (Behavior2Vec)

- Predict a user's next clicked item
- Predict a user's next purchased item
- Discover the relationship between items
 - E.g., Canon's camera body
 : Canon's lens ≈ Nikon's
 camera body : Nikon's
 lens

Figure 1: Vectors from the camera body to the corresponding kit lens of different brands. The vectors are generated by Behavior2Vec

Recommendation for near cold start items

- Near cold start item: items that are rarely viewed
- Recommendation for the near cold start items is difficult because of the limited clues
- Our RDF method alleviates this issue

Table 1: a comparison of the methods with RDF and without RDF

Dataset	SVD	linear-reg	sqrt-reg	log-reg	improve ratio range
Epinions	1.1997	1.0538	1.0538	1.0538	12.16%
MovieLens-100K	0.9423	0.9422	0.9422	0.9422	0.01%
FilmTrust	0.8465	0.8194	0.8194	0.8223	2.86% to 3.20%
Yahoo! Movies	3.0799	2.9892	3.0129	3.0127	2.18% to 2.94%
AMI	1.1450	1.1405	1.1405	1.1405	0.39%

Train and evaluate recommender systems in the right way

 Show 4 common errors in training and evaluating recommender systems

Propose solutions or work-arounds for these

issues

Green: channel with a recommendation

Blue: channel w/o recommendation

Co-learning user's browsing tendency of multiple categories

 Instead of predicting each target variable independently, our MFMT method simultaneously learns multiple targets in one model

Table: F1 scores of different models on different target categories

model	shopping	traveling	restaurant and dining	entertainment	games	education
kNN	0.574	0.615	0.528	0.440	0.492	0.484
Logreg	0.578	0.489	0.501	0.402	0.441	0.437
SVM	0.576	0.391	0.410	0.399	0.409	0.385
MFMT	0.584	0.570	0.561	0.479	0.531	0.515
	(win)		(win)	(win)	(win)	(win)

User personality and demographic profile prediction based on browsing logs

Table: errors of the personality test score prediction based on the supervised learners with and without the preprocessing step

Method	Superv	vised reg	gressor				Cluster	ing + su	pervised	regresso	r (win)
Prediction target	HH	Neu	\mathbf{Ext}	Agr	Con	Ope	HH	Neu	Ext	Agr	Con	Ope
Lasso	5.832	5.87	5.881	5.71	5.406	5.607	5.411	5.469	5.435	5.435	5.022	5.131
Ridge	5.845	5.981	5.891	5.795	5.43	5.646	5.43	5.404	5.38	$\bf 5.325$	5.027	$\bf 5.052$
Elastic net	5.813	5.769	5.743	5.622	5.366	5.44	5.417	5.383	$\bf 5.422$	5.317	5.022	5.095
SVR	5.789	5.78	5.746	5.643	5.232	5.38	5.432	5.623	$\bf 5.402$	5.328	5.048	5.165

Table: MicroF1 scores of the demographical info prediction based on the supervised learners with and without the preprocessing step

Method	Supervised classifier			Cluster	ing + sup	(mostly win)	
Prediction target	Age	Gender	Relationship	Age	Gender	Relationship	(mostry wm)
Baseline	0.388	0.545	0.474	0.411	0.598	0.476	
KNN	0.427	0.594	0.478	0.435	0.618	0.482	
Random Forest	0.453	0.697	0.488	0.419	0.687	0.512	
Logistic Regression	0.427	0.697	0.476	0.457	0.675	0.498	
SVM	0.388	0.591	0.474	0.411	0.642	0.512	_

Accelerating MF by Overparameterization

- Overparameterization significantly accelerates the optimization of MF
 - Theoretically derive that applying the vanilla SGD on OP_MF is equivalent to using GD with momentum and adaptive learning rate on the standard MF model

Public transportation optimization

Predict the taxi demand in real time by deep learning

Model	RMSE	MAPE
Average	8.845 ± 7.9434	0.0840 ± 0.000413
ARIMA	15.585 ± 20.8253	0.1660 ± 0.018033
ridge regression	10.914 ± 2.4451	0.1460 ± 0.000895
XGBoost	6.498 ± 2.0542	0.0806 ± 0.000205
LSTM (2 layers)	7.037 ± 3.9747	0.0563 ± 0.000056
LSTM (4 layers)	6.694 ± 5.1110	0.0595 ± 0.000232
DMVST-Net	7.350 ± 3.7034	0.0643 ± 0.000192
ResLSTM (4 layers)	5.187 ± 2.0265	0.0584 ± 0.000048
AR-LSTM (4 layers)	4.958 ± 1.8909	0.0488 ± 0.000039

Dynamic ensembled learning

- Dynamically integrate multiple base learners based on the feature distribution of the test instance
- Better accuracy than the static ensembled learning approach

Table: a comparison of the base learners, static ensembled, and dynamic ensembled methods

Method	KNN	SVM		Majority Voting	Dynamic ensembled
Accuracy	77.09%	72.77%	75.46%	77.64%	77.80% (win)

Better word embedding for synonyms and antonyms

 Adjusting word embedding to differentiate synonyms and antonyms

Deep vs shallow recommendation

Recent undergraduate projects (大學專題)

抗旋轉之卷積網路設計

- 卷積網路難以判斷旋轉的圖片
 - 從電腦的角度來看,旋轉前後的圖片之pixel排列方式不同,故可能認定圖片中為不同的物件
- 深度學習通常需要讓電腦看過各種旋轉角度的圖片,讓電腦「認得」不同旋轉角度的相同物件
- 我們設計新的模型,電腦只需看過一張圖,即可認得各種旋轉角度的圖片

Test accuracy

	MNIST		FashionMNIST		CIFAR-10	
	轉90度	任意旋轉	轉90度	任意旋轉	轉90度	任意旋轉
ConvNet1	0.17	0.42	0.07	0.22	0.29	0.30
ConvNet2	0.16	0.33	0.02	0.19	0.24	0.23
Our model	0.72	0.43	0.79	0.33	0.36	0.26

學術搜尋引擎/關鍵字標註器

- Build an academic search engine for the Taiwanese Association for Artificial Integligence (中華民國人工智慧學會)
 - http://search.taai.org.tw/
- Keyword search
- Paper keyphrase extractor

基於學術搜尋引擎之研究趨勢分析

利用 TAAI 論文發表内容分析研究主題歷年 趨勢

作者: 林冠甫、王承隆

Instagram騷擾帳號偵測

初始畫面

自動判斷該帳號是否為騷擾帳號

陳映璇,楊沂潔

• 模型效能

Accuracy: 0.925

Precision: 0.932

Recall: 0.917

• AUROC: 0.99

精彩影片片段自動截取

- Generate highlight clips and thumbnails for videos based on bullet-screen (彈幕) information
- Our model is better than the software used by video streaming companies

Table 1: Users' evaluation on the representativeness of the outputted video clips

Table 2: Users' evaluation on the representativeness of the outputted thumbnail images

	All users	Group 1	Group 2
Busk	52 .12 % 47.88%	67.38%	47.45%
Stiller	47.88%	32.62%	52.55%

	All users	Group 1	Group 2
Busk	47.62% 52.38 %	63.08%	43.39%
Stiller	52.38%	36.92%	56.61%

- Group 1: users who are familiar with the videos
- Group 2: others

影片「片段」搜尋

 Search for the video clips inside long videos based on bullet-screen (彈幕) information

從 FAQ 自動產生 Chatbot

- · 從常見問題集 (FAQ) 自動產生客服對話機器人
- 對話機器人利用 Elasticsearch、Word2Vec、及 BERT 判斷「使用者的問題」與「常見問題集中各問題」的相似度
- 對話機器人回傳相似的常見問題及答案

重設密碼

Top 3 matches:

- (1) 我是畢業生,忘記密碼,無學生證認證身分,該如何修改密碼?
- (2) 我的帳號仍未失效,要如何更改密碼?
- (3) 我是教職員身分,忘記密碼該 如何處理?

PDF 數學式解析器

- 要讓電腦 "瞭解" 文件中的數學式,第一步需要讓電腦能解析數學式
 - E.g., $(a + b)^2 \Rightarrow (a + b)^2$
- PDF是科學論文最常見的格式
- 為了在不同裝置能有一樣的文件外觀, PDF 描述每個符號應該以怎樣的型式 (e.g., 大小、字型、顏色等) 出現在哪個位置
 - 這使得數學式很難被自動化的解析
- 我們採機器學習+自訂規則解析PDF中的數學式

PDF 文件

論文摘要的句子之撰寫目的預測

 Predict the "purposes" of each sentence in an abstract

作者: 許力元、高嘉豪、鄭易昇、陳弘軒. IEEE Access 2021

我是大明星 - 明星臉分析

作者: 蔡文傑

行動應用服務APP競賽第三名