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Abstract

In calculating the solvation energy of proteins, the hydration effects, drug binding, molecular docking, etc., it is important
to have an efficient and exact algorithms for computing theestlaccessible surface area and the excluded volume of macro-
molecules. Here we present a Fortran package based on the new exact analytical methods for computing volume and surface
area of overlapping spheres. In the considered procedure the surface area and volume are expressed as surface integrals of the
second kind over the closed region. Using the stereographic projection the surface integrals are transformed to a sum of double
integrals which are reduced to the curve integriiBl Fortran version is described as well. The package is also useful for
computing the percolation probitity of continuum percolation models.
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1. Introduction

To perform its biological function the protein molecule has to fold into a certain spatial (tertiary) structure,
called “native structure”. This structure is a result of many types of competing intramolecular and intermolecular
physical interactions and is believed to be the structure of global minimum of the free energy. The most interest-
ing feature of the folding phenomenon is that the proteins with the given primary structure (aminoacid sequence)
almost always fold to the same native structure from disprdered conformation when the environmental para-
meters (temperature, solvent composition, etc.) are restored to their physiological level. In other words, the tertiary
structure is encoded in the primary structure by genetic information. There are two basic problems which are most
interesting from point of view of physics: (i) determination of the tertiary structure with a given aminoacid se-
quence gtructure prediction problejnand (ii) understanding the kinetic pathways leading to the native structure
(protein folding problern The usual way to solve the first problem is to try to minimize the free energy function
against the atomic coordinates of the molecule while the second one needs exploration of the very complicated
energy profile. In both cases the crucial point is to define the energy function of the protein—solvent system as
fully and as exactly as possible. Since the protein molecule is designed by nature to function in the water solution
the interactions between protein atoms and the surrounding solvent particles play a special role. Unfortunately,
the exact definition of the potential of protein—solvent interactions still remains a difficult problem. Solution of
the corresponding explicit equations is impossibéeduse of the tremendous number of degrees of freedom of
the protein—water system. For this reason different kinds of approximations are used to model the energy function
which help to simplify the simulations.

In so-called “explicit solvent” models thousands of water molecules are involved and molecular dynamics or
Monte Carlo simulation is performed. This approach is more exact but computationally very expensive. In “con-
tinuum solvent” approximation the water is modeled by some averaged medium with continuous electrostatic
properties. One of this kind of models is the atomic solvation parameters approach proposed by Eisenberg and
McLachlan[1], in which it has been assumed that the solvation energy of atoms or atomic groups is proportional to
the area of the part of atomic surface exposed to the solvent. The total solvation energy of the whole protein—solvent
system is then the sum of individual contributions from all atoms:

AG:ZGiAi, 1)
i

whereA; ando; are, respectively, the conformation-dependentesatiaccessible surface area and atomic solvation
parameter of the atomic groupando; can be determined from experiments with model compounds which have
low molecular weight.
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The notion of the solvent acssible area was introduced [2] in an effort to calculate quantitatively the hy-
drophobic burial[3] of the protein side chains into the solvenheTaccessible surface is a locus of the center
of probe sphere when it rolls over the Van der Vaals surface of the molecule. It may be considered as a Van der
Waals surface of a system in which all atomic radii are increased by the probe radius. The union of these expanded
overlapping atomic spheres was called excluded vol[#hdt represents an envelope enclosed by the accessible
surface. The study of the accessible surface area anexitiaded volume is very important in computing the
protein—water interaction enerf], theory of gases and liquids], in drug binding problem, etc.

The problem of computing volume and the surface area of the union of overlapping spheres was approached
both numericall{j6—14]and analyticallyj4,15—-21] The molecular surface was first computed by Greer and Bush
[22]. The list of the related literature is so vast that ibéyond our ability to cite even &most important of them.

We strongly recommend the interested reader to read a review paper with comprehensive bibliography prepared by
Conolly [23], the author 0f24,25] The package GEPOL by Silla et §6,27]for computing the molecular area

and volume is referred there. At the website of 28], one can find Conolly’s moletar surface package pre-
sentation. The basic tool for analytic surface calculations traditionally has been the global Gauss—Bonnet theorem
[4,29].

In our recent worl{30] we have proposed a new approach for analytic surface calculations using a simple
stereographic projection methfB] which leads to more simple formulas and allows to reduce the computations.

In this work we extend the developed method to calculate the excluded volume 481eWe also present the
corresponding Fortran code. Note, that the idea of stereographic projection was use{Plkalbeit in a different
aspect.

This paper is organized as follows. In Sect®mwe present equations for computing the volume of overlapping
spheres. In SectioB, we briefly review equations for computing the surface area of overlapping sfgB6iem
Sectiord, we introduce the content of the FORTRAN packagBVO. In Sectiorb, we present a packageCcCAR
for computing the surface area of overlapping spheresitargkrivatives with respect to coordinates of spheres.

In Section6, we present some examples about usiRVO. In Section7, we discuss potential applications of
ARVO, including simulation of proteins and continuum percolation model#\gdpendix A we present typical
outputs fromACCAR and that ofGETAREA [32,33]for the peptide with PDB cod&j4m, which show that two
outputs are consistent.

2. Analytical method for computing the volume

We describe the moleculd as a union of: spheres (atomsyy, ..., S,, i.e.,M = U'}:l S;. Let(x;, yi, z;) be
Cartesian coordinates of the center of ittesphere and; be its radius, where &£ i <n. Forj # i we say thafS;
is a neighbor of S; if In (S;) NIn(S;) # @, where I(S) denotes the interior of the s&t

We will compute the volume according the following scheme

Volume integrak—= Surface integra—= Double integral— Line integral

V(M):// dxdydz = //zdxdy:i //zdxdy, 2)

V(M) B(M) =1 (M)

or

where B(M) is the boundary (surface) dff and B;(M) is a part of the surface of; which is outside of all

its neighbors(“free” surface of the sphers;). Here the Gauss—Ostrogradsky theorem was used to reduce the
evaluation of volumeV (M) to the surface integrals of the second kind. All integrals at the right-hand side of
Eq. (2) can be calculated separately. Atstipoint the problem of computinyf (M) is reduced to computing
surface integrals.
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! (t.5)

Fig. 1. Stereographic projgen of the spherical surface points onto the tangential plane.

Next step is the transformation of the surface integral over the particular slféle into the double integral.
This can be done by projecting the surfag&M) from some top point of the sphere (North Pole) into the plane
tangent to the sphere at the diametrically opposite point (the South P§le[8D].

2.1. Stereographic projection

The points(x, y, z) on the surface ofth sphere satisfy the equation
=x)2+ (=) + @ —z)?=rf. ©)

One can easily calculate froffig. 1 that the point(x;, y;, z;) on theith sphere is projected from the top point
(NP—North Pole) of the sphere onto the pdints) € R? through the following equations

t:_ZVi(x—Xi)’ s:_ZVi(y—yi)' @

I—Zi—"li I—Zi—"hi
This an one-to-one transformation except the top pointy;, z; + r;) itself. It follows from Eqgs.(3) and (4)that
the inverse transformation can be written as
4rl.2t 4ri2s g3

it =Vi+t5——5— =it 55— 5
L2424 42 T a2 a2 Y ®)

xX=x .
t2+s2+4ri2

The points which are not inside thi¢h sphere satisfy the following inequality

x—x)P+ G —y)P+ G-z = (6)
The points of théth sphere’s surface which are outside of jitle sphere or on its surface, satisfy E(®.and (6)
Transformation of those points ontq s)-plane using Eq(5) leads to

ai(t?+s%) + bt + s +di >0, 0
where

ah =i —x)?+ i —y)? + @i +ri —z)° =1,

b; =8r2(x; — x;),

ch =8rf(yi — y)).

d} =4 [(xi —x))2 4+ i — y)? + (2 —ri —2))? — rlz]

(8)
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Let us denote by?; the set of the points ofz, s)-plane which correspond ®; (M) by the stereographic projection
and byC; the complementary to the indéxn the set of indices, i.&; ={1,2,...,n}\{i}. Then

Q2i={(t,9); a5(t® +s%) + bt +cls+d; >0forall j eC;}. (9)

Itis obvious that in practical calculations we may use in @yonly the set of indiced/; = {j € N; §; is a neigh-
bor of S;} C C; instead ofC;. So,; is a set of indices of neighbors 6f. _
Let us denote thét, s)-image of the points of théth sphere which do not fall inside thgh sphere a§9’j.

Several different types djlj are possiblg30]. (a) If theith sphere is the subset of thith sphere then the image

Ss’j is an empty sef. (b) If theith sphere touches thith sphere at a single point from inner side then the in@ge
consists of only one point. In both (a) and (b) the corresponding volume and area will be zero. Witbrsgiere
touches theth sphere from outside thexij is the whole(z, s)-plane excluding one point. (c) If the NP of thih

sphere lies inside thgth sphere thers’, is the interior of the circle, which is the image of the intersection circle
of theith and thejth spheres in 3D space. (d) When the NP lies on the intersection circle tthtaed the;th
spheres, the image of the intersection circle is a straight Iine”sgmu;ia half plane (seRemark 1below). (e) If the

NP of theith sphere lies outside thgh sphere theﬁk" is the interior of a circle. And, finally, (f) if théth sphere

lies outside theth one therrs is the whole plane. Correspondmg volume and area are the volume and area of the
wholeith sphere, respectlvely

So it is easy to see that §; has no neighbors thef?; = R2 and B; (M) is the whole surface of; and the
corresponding surface integral is equa{4¢3)nr,.3 (the volume of sphere). On the other hand, if the wisnldace
of the sphereS; is the subset of the union of its neighboS§s,C Uje/\/, S:, thenB;(M) =@, 2; =@ and the
integral equals to zero. We need to calculate the integrals only ittthgphere has a (nontrivial) neighbor and is
not a subset of some other sphere. So we need deal only with cases (c), (d), and (e).

Remark 1. Using the rotations of the whole molecule one can avoid the case when NP of some sphere lies on the
surface of some other sphere. This approach gives us the possibility to work only with cases (c) and (e). In both
cases the boundariesia; will be circles. In the following let us consider only such situation. The general case is
discussed ii31].

Since inequality(7) represents either interior of a circle;'.(< 0) or exterior of a circlez(;'. > 0) theng2; is an
intersection of such parts of, s)-plane (sed-igs. 2 and %

2.2. Computation of the integrdly. ,,, zdx dy

For computing the surface integrals in E8) we will use the known formula which transforms the surface
integral into double integral. In view of E¢5) we have the Jacobian

dx dx 2 2 2
j(t S) ‘ at as ’ 4 4ri —1m=s
i\t = | oy ay | — i .2 2 2\3°
Q2 (t2+ 52+ 4r?)
Consequently,

3
f/ZdXdy_ //|:Zl+rl_2—|-58ﬁ:|$(t S)dldS

_12&7//[3Q(Z . 5) BP;Z’S)]dZdSZIi, (10)
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Fig. 2. The bounded plane image of the surface parB; (M).

where
p f t 1 zi+ ri]
t,s) = + + - :
0.9 B(12+ 52+ 4r2)8 19212+ 52+ 4r7) (12 452+ 4rP)? [484.2 163
—S —S —S 1 zi +ri j|
P(t,s)= + + - .
9 312+ 524+ 4r2)8 19212+ 52+ 4r7) (124 52+ 4r?)2 |:48rl.2 163

The Green’s theorem says that

/f[%—%]dtds:/Pdt—i—st, (11

($) (K)

where functionsP(z,s) and Q(z,s) and their partial derivatives are continuous functiok,) is the positive
(counter clockwise) oriented piecewise smooth boundary of the région

We first assume tha®; is boundedcf. Fig. 2). Applying Green’s theorem to E€L0) we transform the double
integral into the curve integrals in the following way

I 128*1-7 7{ tds —sdr 2rl.3 tds —sdr
T3 (12452 +4r2)3 3 (12 + 52+ 4r?)
B($2;) B(£2;)
3 8ri4(3zi + 2r) % tds —sdr (12)
3 (12 + 52+ 4r?)2’
B($2;)

where B(£2;) is the boundary of2;. Fig. 2 corresponds to the case, when some splSgteas three neighbors.
So the number of indices iV; is |N;| = 3. Each sphers;,, jx € N;, k =1, 2, 3 ( is the label of circles in
Fig. 2) surface has the nontrivial intersection with the sph%reThis intersection is the circle in 3D space. The
stereographic image of this circle is again a circle in(the)-plane (seéig. 2) described by the equation

ai (> +5%) + bt + s +di =0, forsomej e ;. (13)

where (a; # 0). Eq. (9) implies that$2; is the intersection of the domains with circular boundaries (disks or
complements to disks), hendg(£2;,)—the boundary of2;—consists of circular arcs.



J. BuSa et al. / Computer Physics Communications 165 (2005) 59-96 65

s,
(ts)
To
P,
\\( ~Nia
(t0780) t

Fig. 3. Parameterization of a circular arc in thes)-plane.

2.3. Computation of o) tds—sdi _ along the circular arcs

1) (12452 +4rP)k
The boundanB(£2;) consists of circular arcs with the ends at the intersection points of circles {n theplane
(Fig. 2). If some circle has no intersection with other a&sithen we consider the whole circle as one arc, which
may be a part of the boundaB(£2;). In Figs. 2 and 4each circle has only one arc from the bound&iy2;).
But more than one arcs are possible on the same circle which come from one boB@arysee both pictures
in Fig. 5). Let A’j be the number of arcs which generate partially the boundasy;cnd descend from thgth
sphere. Then all arosj.’A together form the boundary a®;. Circular arcst.’A are oriented positively (counter

clockwise) with respect te; if ai. < 0 and negatively (clockwise), otherwise. Then we have

% tds —sdr f tds —sdr k=123 (14)
2+ 52+ 4rD)k NA 1 (22442 T

£2i)

In order to simplify the formulas in the following we will omit the upper indgxexcept the cases when it may
cause misunderstanding. To compute the voluni&?), it is sufficient to give formulas for the following curve
integrals:

tds —sdr
= k=123
= / (12 + 52+ 4Dk

(here we omit the indiceg 2 in Ji, t00). SinceC; ;, is a circular arc given by Eq13) (wherea; # 0) thenC; ; is
parameterized as follows (s€@. 3, the indices are omitted):

t =1to+ roCOSyp,

. for iy Bia)s 15
s = 50+ rosing, we(aj,)» ﬁj,)») (15)

where(ro, so) andrg are the center and radius of the corresponding circle.
After some computations we arrive at the following relations.

Bis—ajs+(rd—Ah
2 ’ (16)
L+ 02— AL J L+ (g — A3
3 = -

J - )
2 4 8

J1=



66 J. BuSa et al. / Computer Physics Communications 165 (2005) 59-96

where
B q
1k=/ . k=123
(A + Bcosp + Csing)k
Ojn
with
b2+ 12 +s3+rd
= 02 0 0, B = toro, C = soro,
and
2, .2
bj cj bj+cj_4ajdj
R A ) an
2a; 2a; 4aj
If we denote

D=A%2—_B%2_(?

then one can verify that for the case whgpn, — o, < 27 the following formulas hold

/ 2 |:7r arct Acos + Bcos' +Csin+}
1=—| 5 — - : ,
VDl 2 VDsin~
where
S — A ai+ Bi
cosi:cosLA 5 Jok cosh = cos—* i Zﬂ”’x,
. o+ B . B —a;
sint = smw, sin” = smw,
2 2
1 —Bsinx + Ccosx |Pin
I = . +AlL|,
A2— B2 - C2| A+ Bcosy +Csinx |, |
. L[ —Bsinx+Cocosy ’SM_'_ =B sinx + § cosx | 2A2+32+C21
SrY)) (A + B cosx + Csinx)2 . A + Bcosx + Csinx 2AD z

Olj_)L
For the case8; ), — «; , = 2 the integraldy, I, I3 are given by:

27 27 A 7(2A%2 + B2+ C?)
=~ puz 2= p3jz 3= D5/2

I

For I; there exist explicit formulas (see, for exami4]).
In the case whew; is unbounded2’ = R? — 2; is bounded (cfFig. 4) and we can use the following equality

16’”,'4/f a0(t,s) _ aP(t,s) dr ds +16’”i4/f 00(t,s) B OP(t,s) drds — L—lnra,
ot as ot as 3!
2 fol

for computing the surface integral in §d.0). Computation of integrals ove?; leads to the same curve integrals,
given by Eq.(12), but with different curve orientations.
So, we come to the formula

n

V=Z[XV(9:')+I,'], (18)

i=1



J. BuSa et al. / Computer Physics Communications 165 (2005) 59-96 67

Fig. 4. Unbounded domaif; .

whereZ; is defined above by E¢10), and

0, £2; is bounded
xv(2:)=14_ 3 o : :
3ry, ; is all plane except the union of several disks

Remark 2. If £2; is unbounded, the corresponding sum of integfalsill be negative and we get the correct value
for the integral oveB(£2;) given by Eq.(10).

Remark 3. Similar method can be derived for the calculataf the partial or “free” volume of an atom (Sg&L]).
In other words, letS1 be an arbitrary sphere. Denote By, ..., Sk, all nontrivial neighbors ob;. Let F = Sf""'k
denote the part of; which isoutside of all its neighborSy, ..., Sx. We consider volum#& (F) as a “free” volume
of the atomss.
The idea of partial volume may be useful when we add a new atom to the molecule with known volume. In this
case we can compute its “free volume”, which is simply the volume change of the whole molecule.

3. Computation of surface area

The surface ared (M) is calculated as a surface integral of the first kind

aon= [ o=y / dol=Y" 4. (19)
i=1

B(M) =1 p;m)

where M, B(M) and B; (M) are described in Sectiok All integrals at right-handed side of E(19) can be
calculated separately. €hproblem of computingt (M) is reduced to computing surface integrals of the first
kind.

Remark 4. In this case one can avoid the straight line boundary by rotation onlititrephere and its neighbors,
unlike the volume computation, where the rotation of the whole molecule is necessary.
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3.1. Computation of f, ,, ldo|

Now we show how the area of the part of the spherical surface can be calculated by integration along the circular
arcs on the plane. First we transform the surface integral of the first kind into the double integral aveirttibe
(1, s)-plane, next we transform the double integral into the curve integral in a similar way as was done in &ection

If we use again the stereographic projection of the surface we can considés as parameters and obtain the
following equation for the element of the surface

|do| = |d,r x dyr|, (20)

where ‘<’ means vector product, is the radius vector of the elemend dd;r and dr are its differentials with
respect tor ands, respectively. We calculate these differentials in the following way, using the transformation
formulas(5)

dx dy 0

d[r = x y ‘ dt, (21)
at ot ot

0x . 4r’.2(s — 124 4r’.2)

o , 22
at (12 + 52+ 4r?)? (22)
dy 8rl.2ts 23)
o (124524 4r3)2
3 16r3

- i (24)

3 (12452 + 42
The term dr is calculated in the similar way and eventually we obtain

dr ds
=1 4// 2
/f dol=1& (12 + 52+ 4r2)%’ (29)

B; (M)

where the regiom2; represents (as above) the imageBpfM) on the plandt, s) € R?.

Supposes?; is a bounded region of nonzero measukg,is the set of order numbers of the spheres which
intersect theth sphere, and\i. is the number of the arcs which form partially the boundarg2pfind ascend from
the jth sphere. Now we use again Green'’s formula to replace the integration over the plane regio(2b) Byg.
the sum of the integrals over the circle arcs along the boungBlény) of the regions2;.

It is easy to see that if we choose now

—S

P(t,s 2 - t,s -
=2 24 4r? 01,5 =21 2+s2+4r
then we obtain from Eq25)in the same way as in Secti@n
tds —sdr
A =2r? 7§ -—, 26
1 1 t2+S2+4}’l-2 ( )
B($2)

where as above(£2;) is the boundary of2;.
Like in Eq.(14) we get

Al
tds — s dt tds —sdr Lo
Ji' 5. 27
yg 12452 4 4r2 sztz—hv 2+ 4r? =2 2. M (27)

B(2) JeN; A= 1. jeN; A=1
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So we come again to the same intgrwhich we deal with in Sectiop, where we denoted the integrals As
(here we omit the indices, too).

An unbounded areg; forms the whole plane except some disks union. In this case integration over the bound-
ary is taken in the negative direction (the sum of integfatssA 2rl.2(t ds —sd)/(1? +5° + 4r,.2) is negative), and

the result is added to the area of the whole sphem;zﬂas in the volume computation over the unbounded domain.
So, the general formula for surface area is similar to the forifilgfor the volume

ds - sd
A= Z[XA(9)+2VZZ Z/ t;:S i;r ] (28)

]e./\f)»
where
0, £2; is bounded
XA =1, 5 o . .
wri,  $2; is all plane except the union of several disks

Remark 5. The integrals in formul§28) have been calculated in the volume computation. So we can use about the
same computing time to get both the volume and the area values.

4. Program components and description of the algorithm

The main program ARVO is a simple module, which uses 17 functions and subroutines. Below we give the
description of these modules.

4.1. The program structure

The logical structure of the main module ARVO is simple. After reading input data, we first study the neighbor-
hood relations of the spheres/atoms. Here we construct some useful lists, which allow us to work further only with
the local subsets of atoms. Before starting the basic calculations the algorithm looks for “bad” NP points. If there
is some then the whole molecule is rotated by a random angle and checked again until there are no problematic
poles. If there is no North Pole problem then a loop is started over all spheres in which the corresponding integrals
are calculated (see the main module in SedBpi he following scheme iffable 1shows how the subroutines and
the functions are nested.

4.2. Input and output data

Program reads the data from the ASCII filaput . dat , in which theith line contains at its beginning four
real numbers—three Cartesian coordinates of the center and the radiug tf $péerex;, y;, z;, and its radius
ri, where 1< i <n.

The output is written to the ASCII fileut put . dat ; each record of which contains the values of the surface
area, the volume and the number of the atom.

4.3. Important parameters
ks=300— maximum number of spheres (atoms).

kl =300— maximum number of local circles in the, s)-plane for one atom.
ka=2000— maximum total number of arcs and angles which arise from the local circles intersections.
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Table 1
Subroutines and functions embedment

read i nput data

subroutine make_nei ghbors
i nteger function nei ghbors

i nteger function North_Pol e_test
subroutine spheres_rotation

for all spheres call
subroutine areavol une
subroutine | ocal _spheres
subroutine nake ts circles
integer function circles_to_arcs
i nteger function new arcs
subroutine circles_intersection
integer function circle_in_circle
integer function point_in_circle
subroutine nysort
subroutine nydsort
i nteger function del ete_equa
subroutine avintegra
real *8 function fract

ki =10000— maximum number of indices in theei ghbor s_i ndi ces array for all atoms; this number must
be at least equal to the total numbéneighborhood relations multiplied by 2.

rwat er / 0d0/ — radius of solvent particles.

eps_nord_pol e=1d- 8— the critical value for North Pole test; if the smallest distance from the North Poles to
the surface of other atoms is smaller tlegps_nor d_pol e, the molecule is rotated by a random angle.

eps_del t at =1d- 12— the critical value for comparison of andr coordinates of two circles in the, s)-
plane, when the intersection points are calculated ircthecl es_i nt er sect i on subroutine.

eps_angl e=1d- 12— the critical value for comparison of two anglesdel et e_equal function; if two
points on the circle are close to each other, theydaclared to be equal and only one point is left.

4.4. Important variables and data structures

spher es(ks, 4) — contains the data of all atomspher es(i, 1) =x;, spheres(i, 2) =y;,
spheres(i, 3) =z;,andspheres(i, 4) =r; for 1 <i <k;.

nei ghbor s_nunber (ks) —nei ghbor s_nunber (i) is equal to the number of neighbors of ttik sphere
for 1<i <k;.

i ndex_start(ks) —index_start (i) isthe order number of the index for the first neighbor of itie
sphere in th@ei ghbor _i ndi ces array (see also Sectigh6).

nei ghbors_i ndi ces(ki ) — contains the indices of neighbors for all atoms (see also Settn

sphere_| ocal (kl, 4) — contains coordinates and radius of tith sphere and its neighboring spheres:
sphere_l ocal (j, 1) =x;,sphere_l ocal (j,2) =y;,sphere_| ocal (j,3) =z;,and
sphere_l ocal (j, 4) =r;.

circl es(kl, 4) — the data structure of the circles {n s)-plane defined by E(13), seeFigs. 2 and 4The
corresponding center points aratlii of the circles are calculated according to E&3.and (17) Thenci r -
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cles(j,1) =t andcircles(j,2) =s; are thejth circle’s center coordinatesj r cl es(j, 3) =r;
is its radius, andi r cl es(i, 4) = +1 shows the orientation of the circle.

ar cs(ka, 3) —holds the C|rcular arce" . composing the boundary(2;) of the(z, s) domains2;. Along these
arcs the integrals in Eq$14) and (27)are calculatedar cs(k, 1) =ic is the index of thekth arc circle,
arcs(k, 2) =« is the startingcith arc’s angle, andr cs( k, 3) = & is the oriented arc’s angle, so the arc’s
end point corresponds to the angle= oy + 5.

ar csnew( ka, 3) — is the auxiliary array with the same structure as the aarays.

angl es(ka) — is the auxiliary array to remember all anglesresponding to all inteection points of some
circle with all other circles irnz, s)-plane.

av(2) —av(1) isthe value of surface integral which corresponds tdzthie Eq.(10) of the volume calculation
method;av( 2) is the value of surface integral correspondingitoin Eq.(25) of the surface area calculation
method.

4.5. Description of subroutines and functions

In this subsection we give only a brief description of all subroutines and function3gbée1). More detailed
description of some of them will be given later in the text.

subrouti ne make_nei ghbor s— determination of neighborhood relationship data for all atoms (see Sec-
tion 4.6).

i nteger function neighbors(i, spheres,ind,ks, kl, ns)— returns the neighbors number for
theith sphere—nei ghbor s: ns, and also the indices of the corresponding spheres in array:

i nteger function North_Pol e_test—returns 1 if all North Poles are far enough from other spheres
surfaces, otherwise returns O (see also Sedtign

subrouti ne spheres_rotati on— if the Nort h_Pol e _t est function returns 0O, the rotation of the
whole molecule is necessary, to avoid straight lines in the bounda®ysef).

subrouti ne areavol ume— this is the main subroutine for computation of the surface area and the volume
of the molecule (see Secti@n8below).

subroutine | ocal spheres(spheres,ind, sphere_ | ocal,nls, ks, kl ) —transferstsphe-
re_| ocal array the datain a correspondence to the indices st

subroutine make_ts_circles(sphere_local, circle,kl,nls)—preparesthe circles structure
for the 1st sphere of arragpher e_I| ocal inarrayci r cl es according to Eq98) and (17)

i nteger function circles_to_arcs—returnsthe number of arcs which compose the boundés3;).
This function prepares the array cs too (see below Sectiofh.8.1).

i nteger function new_arcs(k,circles,arcsnew, kl, ka, nl s) — prepares arcs, which are the
parts of thekth circle in arrayci r cl es which are parts of the boundaB(£2;) (see Sectiod.8.1).

subroutine circles_intersection(icl,ic2,circles,kl,al,az, bl, b2) — returns angles
of two intersection points of circles with indicex1 andi c2 in arrayci r cl es. We use itonly in the
case, when 2 different intersection points éxidtenal anda?2 are corresponding angles with respect to the
center of 1st circleh1 andb2 are corresponding angles with respect to the center of 2nd circle.

integer function circle_in_circle(i,k,circles,kl)—returns 1 if theith circle is inside of
thekth positive oriented circle or outside of théh negative oriented circle, and returns 0 otherwise.

i nteger function point_in_circle(t,s,k,circles,kl)—returns 1 if the pointz, s) is inside
of the kth positive oriented circle or outside of théh negative oriented circle and returns 0 otherwise.

subroutine nysort (angl es, ka, num angl e) — sorts the arrapngl es in ascending order
(num_angl e is the angles number).

subrouti ne nmydsort (angl es, ka, num angl e) — sorts arrayangl es in descending order
(num_angl e is the angles number).
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i nteger function del ete_equal (angl es, ka, num angl e) —if some angles in arragngl es are
equal (to the precisiorps_angl e) only one such angle is left; the function returns the number of angles
after possible deletions.

subroutine avintegral (circles,arcs, kl, ka, narcs, r1, z1, avi ) — calculates the sum of in-
tegrals along all arcs corresponding to the boundiig;) according to Eq(16); avi ( 1) is the value of the
surface integral which correspondsZoin Eq. (10) of the volume calculation methodyi ( 2) is the value of
the surface integral which correspondstpin Eq. (25) of the surface area calculation method.

real *8 function fract — auxiliary function for some fraction calculation.

4.6. Neighborhood relations

It is useful to have information about neighborhoodtielas for each atom. This may make the program more
clear, and the work with smaller arrays may speed up. Therefore, at the beginning of the ARVO program, we
construct these relations.

For the determination of neighbors for all atoms we construct three arrays:

(1) nei ghbors_nunber (i) is the number of neighbors for the followirth atom.

(2) i ndex_start (i) isthe first neighbor index for thigh atom in the arrapei ghbor s_i ndi ces.

(3) nei ghbor s_i ndi ces isthe array of neighbors indices for all atoms. The neighbors indices dtttisphere
begin atthe positionndex_st art (i ) and finish atthe positionndex_st art (i ) +nei ghbors_num

ber (i) -1 of the arraynei ghbor s_i ndi ces.
For example let us consider the following configuration of spheres:

the 1st sphere has neighbors with indices 2, 4, 7
the 2nd sphere has neighbors with indices 1, 3
the 3rd sphere has neighbors with indices 2, 4
the 4th sphere has neighbors with indices 1, 3
the 5th sphere is subset of some other sphere
the 6th sphere has no neighbors

the 7th sphere has neighbors with index 1

After the call of subroutineake_nei ghbor s, we will have the following arrays:

nei ghbors_nunber=(3,2,2,2,-1,0,1),
i ndex_start=(1,4,6,8, 10,10, 10, 11) and
nei ghbors_indices(2,4,7,1,3,2,4,1,3,1).

Remark 6. If a sphere is a subset of some other sphere ttenghbor s_nunber is set to—1. In the array

i ndex_start, we add at the end one extra index which represents the starting position for the “next” (not
existing at the present) sphere if it is added to the system. One can easily see, that theiagtdyor s_nunber

is in some sense redundant, because except the subset case represertédbids:

nei ghbors_nunber (i) =i ndex_start(i+1)-index_start(i).
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4.7. North Pole check and molecule rotation

As explained above, if the North Pole of sontie sphere lies on the surface of some other sphere, the intersection
image for such two spheres will be a straight line inthe)-plane tangent to thith sphere. To avoid this situation,
the whole molecule should be rotated. We calculate thémal distance to the surface of other spheres for each
North Pole and compare this minimal value to #@s_nort h_pol e value. If we take this value larger, the
circles in the(z, s)-plane with very large radius will be forbidden, and the computations may be more exact. The
random rotation about the-axis is made with the random number sa (the usé&R¥VO should call a function to
generate the random number), if necessary:

subroutine spheres_rotation(spheres, ks, ns, sa)

c Random rotati on of nol ecul e about the y-axis
c after bad North Pole test.
c Sone North Pole is near other spheres surface

inmplicit real*8 (a-h, 0-2)
di nensi on spheres(ks, 4)

ca=dsqrt (1d0-sa*sa)

do i=1,ns
x=spheres(i, 1)
z=spheres(i, 3)
spheres(i, 1) =ca*x-sa*z
spheres(i, 3)=sa*x+ca*z

enddo

return

end

4.8. Implementation of the basic algorithm

After the North Pole test we are ready to act accordinthpé algorithm’s description given above in Secti@ns
and 3 For each sphere/atom with indethe following steps are implemented:

(1) Calling the subroutinkocal _spher es. The arrayspher e_| ocal is prepared, collecting data of th#n
sphere and its neighbors.

(2) The procedurgake _ts_ci rcl es defines the circles ity, s)-plane, according to the formulé) and (17)

(3) Intersection points for all cirek are calculated using the functionr cl es_t o_ar cs. The list of all arcs
which define the boundary of the, s) domains2; is constructed (see in more details below in Secti@l).

(4) When all necessary arcs are known call subrowirient egr al at the end of the subroutiree eavol une.
All calculations according to E16) are done (see in more details below in Secddh .

4.8.1. Preparation of the structure of arcs

Fig. 5shows the situation after the procedoeke_t s_ci r cl es is finished. At this point all circles and their
orientations are known.

Now it is necessary to prepare the structure of the arcs corresponding to the boundary of@arhafhpicture
of Fig. 5shows the case of bound&] when there exists at least one positive oriented circle (in this case it is only
the largest circle); right picture shows an unboungkdin this case the boundaB(£2;) consists only of negative
oriented arcs, the domai®; is outside of this boundary.

Using the functionci r cl es_t o_ar cs intersection points for all circleare calculated. The intersection
points are described by their angles with respect to theecefieach circle. The angles are sorted by the ascending
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Fig. 5. Generation of the structure of arcs.

order for the positive oriented circles and by the descending order for the negative oriented circles which is done
by calling the subroutinernysort (angl es, ka, num angl e) or nydsort (angl es, ka, num angl e),
respectively. By this the inheritance of the arcs orientation from orientation of the circles is established. If there
exists an intersection point of three or more circleshiould be taken into account only once for each circle. This
is done by functiordel et e_equal (angl es, ka, num angl e) .

The sorted angles define all possible arcs Ege5). But, certainly, not all of these arcs define the boundary
B(£2;). One can easily see, that only in the arcs, which liesiolgt of all other negative oriented circlasdinside
of all other positive oriented circles are importand.\Be check the central point of each arc. This is done by the
functionnew_ar cs. At last we get all arcs of which the boundaBys2;) consists of in the arragir cs and we
can proceed with evaluation of the curve integral.

4.8.2. Evaluation of the integral

First we check whether the valugs (£2;) in Eq. (18) and x4 (£2;) in Eq. (28) are zero or not. If there exists
a positive oriented circle in the array r cl es thenyy (£2;) = xa(£2;) = 0. Otherwise, the valuegy (£2;) and
x4(£2;) will those described above in Sectiodsind 3 The check is done in the procedaneeavol une before
calling the integral evaluation subroutirasi nt egral (circles, arcs, kl, ka, narcs,r1, z1, avi),
where the values; andz; are the corresponding values of the first sphere it theal _spher es array.

In the subroutineavi nt egr al the formula(16) is used to get the values of corresponding integrals in
Eqgs.(10), (12), (14) and (26), (27)

5. Module ACCAR for computing derivatives of surface area

In molecular dynamics simulations one needs the derivatives of the potential energy against the coordinates of
the particles. It follows from Eq(1) that calculation of the derivatives (gradients) of the solvation energy requires
calculation of the gradients of the accessible area. Ththod, described in this article allows to obtain these
gradients analytically. Evaluation of the corresponding formulas is presented els¢8@jekere we just mention
the Fortran module and bring the testing data. Since most simulations do not require computation of the molecular
volume we have created a separate module ACCAR whidatulzies only the accessible area and its gradients
against the atomic coordinates. The input of the program is the array of the atomic coordinates, the atomic radii,
and the number of atoms. The outpwintains the total accessible areag thartial accessible area per atom as
well as the gradients against the coordinates of eaam. The user can easily organize the input data in his own
way. In the presented version the program has twssitdlities for this input from user-created file, and input
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from the file compatible with PDB35] format. In this case the additional module PDBREAD must be called with

the corresponding file name. A special version of the subroutine is developed to be used in the environment of
SMMP packagg36]. The users of SMMP can run it in the way like any other SMMP subroutine is used through
CALL instruction. In this case ACCAR takes the atomic coordinates from the internal artaysat, zat of

SMMP. We have tested the accuracy and performafi@ar module by comparing it with GETAREA module

from FANTOM packagég21,32,33] The computations are done for the peptide with PDB ctiden The results

are shown inAppendix A One can see that both programs give identical results. Note that the online version of
GETAREA which we have exploited pris the output numbers with the accuraéywo digits after decimal point.

To save space we have omitted all recopértaining to hydrogen atoms becabsth programs set the radius of the
hydrogen atom equal to zero and hence the area and the gradients are identically zero. For this reason the atomic
numbers in the first column of the output from GETAREA are not continuously consecutive.

6. Using theprogram
6.1. The main ARVO module

In this section we bring the text of the main ARVO module with short comments. The module can be easily
modified to be included into other programs so that the later can also be used to calculate volume and surface area
of overlapping spheres. Parameters, kiss ki , ka, ki , are defined in Sectiof.3, arrays are defined in Sections
4.4 and 4.6

pr ogram ARVO

c Conputing surface area and vol une of the overl appi ng spheres
inmplicit real *8(a-h, 0-2)
par anet er (pi=3.14159265358979323846264d0, ks=300, kl =300, ka=2000,

1 ki =10000)
c ks - maxi mal spheres’ nunber
c kl - maxi mal nei ghbors’ nunber of one sphere (local spheres’ numnber)
c ka - maxi mal angles’ or arcs’ nunber
c ki - maxi mal neighbors’ relations’ nunmber = cca
c spheres’ nunmber * maxi mal nei ghbors’ nunber
c
c eps_north_pole - accuracy level in the function North_Pol e_test
c eps_deltat - accuracy level in the subroutine circles_intersection
c eps_angl e - accuracy level in the subroutine delete_equal (angles)
c

di nensi on spheres(ks, 4), nei ghbors_nunber (ks), i ndex_start (ks),

1 nei ghbor s_i ndi ces(ki), av(2)
c
c spheres(i, 1) =xi
c spheres(i, 2)=yi - ith sphere center coordinates
c spheres(i, 3)=z
c spheres(i, 4)=ri - ith sphere radius
c
c nei ghbors_nunber, index_start, neighbors_indices description
c is given in the subrouti ne make_nei ghbors
c

data rwater/0d0/
c Sol vent particle’s radius
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open(10,fil e=" output.dat’)
open(unit=11,file="input.dat’)

i nput spheres data

ns=0
conti nue
ns=ns+1
read(11, *, end=2) spheres(ns, 1), spheres(ns, 2), spheres(ns, 3),
1 spheres(ns, 4)
spher es(ns, 4) =spher es(ns, 4) +rwat er
goto 1
conti nue
cl ose(11)
ns=ns-1

ns - spheres nunber

Study the nei ghborhood rel ations
cal | make_nei ghbors(1, ns, spheres, nei ghbors_nunber,
1 i ndex_start, nei ghbors_i ndi ces, ks, kl, ns, ki)

If some North Pole is close to the other atonis surface

nol ecul e’ s rotation i s necessary

do while (North_Pol e_test(1,ns, spheres, nei ghbors_nunber

1 i ndex_start, nei ghbors_indi ces, ks, ki). EQ 0)

print * 'Rotation after bad North Pole test!

wite(10,*)’ Rotation after bad North Pole test!

sa=0.324d0 ! "Randon" sin val ue

call spheres_rotation(spheres, ks, ns,sa)! random nol ecul e rotation
enddo

Conput ation of area and volunme as a sum of surface integrals
V=0d0

A=0d0

do i =1, ns

call areavol une(i, spheres, nei ghbors_nunber, i ndex_start,

1 nei ghbor s_i ndi ces, ks, kI, ka, ki, av)
V=V+av (1)

A=At+av(2)

enddo

print * 'Volunme: ",V,” Area: ',A’ Spheres num ', ns
Witing final result in file res. dat

wite(10,*)"Volume: ',V,” Area: ',A,’ Spheres num ’',ns
cl ose( 10)

stop ' End’
end
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Fig. 6. Different positions of two spheres.

6.2. Running the program—input and output data

6.2.1. An example with two spheres

Here we consider the case of two spheres of equal size with radiiet the distance between centers of two
spheres bé = r, so that the centers of both spheres lie on the surface of another sph&ig.(6feft). In this case
the exact formulas for the surface aeand the volumé/ can be easily derived. These are

9
V(r)= ans and A(r)=6rnr2. (29)
Forr =2 we get

V(2) =187 =56.54866776461628 andA(2) =24r =75.39822368615504

The filei nput . dat consists only of two lines

000 2 - 1st sphere: center at (0,0,0) and radius=2
002 2 - 2nd sphere: center at (0,0,2) and radius=2

we have obtained the following results written in thet put . dat files for PC and SPP’2000 machine, re-
spectively:

Vol ume: 56.54866776461628 Area: 75.39822368615504 Spheres num 2

Vol ume: 56.54866776461628 Area: 75.39822368615503 Spheres num 2

In the following, we will give only the rsults received by SPP’2000 machine, exdeipgt 9 whose data were
calculated by a PC parallel computer.

Let us compare these results with numerical calculations. The volume was calculated by embedding the union of
spheres into the cube, which was divided infocubic elements, each one of theseneents (its center point) was
checked for belonging to the molecule. The common volume of the cubes was taken as a numerical approximation
of the molecular volume. The surface area waswated by division of each sphere surface intg parts with
equal area. The center of each part was checked fongaig to the molecular surface. The sum the areas of this
parts is a numerical approximation to the area value.

Table 2shows the numerical values for somgtogether with their relative errots, ande 4, respectively.
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Table 2

Numerical values for two spheres with equal radii

n Volume ey Area €A
10 576 186-102 72.8849495632832 33.1072
20 56448 1781073 75.39822368615503 0
50 56567808 338.10~4 75.11673698439338 23-1073

100 56537088 205.10~4 75.39822368615503 0
200 56548704 641107 75.39822368615503 0

Fig. 7. Intersection of three spheres.

6.2.2. Three spheres intersection example

Another check for correctness with thie s) domains2; having a boundary with circular arcs, can be done
using the results dfL7,18] In these papers, the formulas for the volume and surface area ofténsection of
three spherewith unequal radii are given.

Following [17], let A, B, andC be the centers of three sphetes Sp, andS¢, respectively (se€ig. 7). We
consider spheres of radii 1.0, 2.0, and 3.0 A centered &, andC, respectively, with distance$B, BC, andC A
equal to 2.0, 4.0, and 3.0 A, respectively. Then the voluntkthe surface area of the triple intersection calculated
by formula, given if17,18]are 0.5736 A and 4.214 &, respectively.

The filei nput . dat containing three lines (90473750965556:3/15/4)

00O
200

NN B

0.7 . 90473750965556 0 3

Due to the equalities

V(SaNSpNSc)=V(SaUSpUSe) —[V(SaUSp)+ V(SpUSc) + V(SaUSe)]
+[V(Sa) + V(SB) + V(Sc)] (30)
and

A(SANSENSc)=A(SaUSpUSc) —[A(Sa U Sp) + A(Sp U Sc) + A(Sa U Sc)]
+ [A(Sa) + A(SB) + A(Se)]., (1)
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Table 3

Three spheres intersection volume and surface area results

Set Volume [&] Area [A?]
SaNSpNSc 0.5736544730318 2139413434876
SAUSpUSc 1443669682217146 148890027964171
SAUSp 35.9974158223830 59778714378214
SpUSc 1431388152791849 148402528821177
SaUSc 1154535300194249 112861257340189

1507964473723101 179291886010284

we can compute the triple intersection’s voluwiéS, N Sp N S¢) and surface ared (S4 N Sp N S¢) using the
program ARVO for calculation of the spheres’ unions in the right sides of &§§.and (31) respectively. The
values for the corresponding volumes and surface area are giVable3 In the last row the sums of volumes and
surface areas of three separated spheigsys, andSc) are given. The results for the three spheres’ intersection
volume and surface area were cditad using the formulas given [47,18], respectively. One can easily check,
that Eqs(30) and (31hold true. This is a successful test for the correctness of the ARVO program.

6.3. MPI parallel version of the main module

Due to the cycles over the (probably) large number of spheres in the ARVO main module, it is possible to
solve the problem effectively on multiprocessor systems ulliessage Passing Interface (MPI) Fortran, creating
a parallel program. Below in this subsection el Fortran code of the main module of the program PARVO is
presented. All subroutines and functions are the same as for the serial program.

This code may serve as a good example of processors communication. For instance, we said, that a random
rotation of the molecule is necessary, if the North Pek failed. But, because each processor make the rotation
of only a part of the molecule, the random value should be generated only once by the Oth processor and than it
should be transfered to other processors.

program PARVO
c MPI parallel conputing the surface area and the vol une
c of the overl appi ng spheres
inmplicit real *8(a-h, 0-2)
paraneter (pi=3.14159265358979323846264d0, ks=300, kl =300
1, ka=2000, ki =10000)

c ks - maxi mal spheres’ nunber
c kl - maxi mal nei ghbors’ nunber of one sphere (local spheres’ nunber)
c ka - maxi mal angles’ or arcs’ nunber
c ki - mexi mal neighbors’ relations’ nunber = cca
c spheres’ nunber * maxi mal nei ghbors’ nunber
c
c eps_north_pole - accuracy level in the function North_Pol e_test
c eps_deltat - accuracy level in the subroutine circles_intersection
c eps_angl e - accuracy level in the subroutine delete_equal (angles)
c
di nensi on spheres(ks, 4), nei ghbors_nunber (ks), i ndex_start (ks),

1 nei ghbors_i ndi ces(ki), av(2)
c
c spheres(i, 1) =xi
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spheres(i, 2)=yi - ith sphere center coordinates
spheres(i, 3)=zi
spheres(i, 4)=ri - ith sphere radius

nei ghbors_nunber, index_start, neighbors_indices description
is given in the subrouti ne nmake_nei ghbors

Definitions for MPI objects are in file npif.h

include "nmpif.h ! definition of MPI-objects

We will use arrays

i nteger status(MPl_STATUS SIZE) ! nmatrix

Paranmeters for MPI:

comm - conmuni cat or
typ - variables typ (for exanple MPI _| NTEGER)

tag - integer communications argunment
ierr - error nessages

nyP - name of "actual processor nunber"
Pr - processors nunber

i nteger commtypDP,typl,tag,ierr,nyP, Pr
data tag/ 0/, typDP/ MPI _DOUBLE_PRECI SI ON/, conni MPI _COMM WORLDY ,
1 typl/ MPl _| NTEGER/

data rwat er/ 0d0/

Initialization of MI

call MPI_Init(ierr)

Defining the "actual" processor

call MPI_Comm rank(comm nyP,ierr) ! which processor
Defini ng processors nunber

call MPlI_Comm size(commPr,ierr) ! how many processors

Al'l processors will be done next conmands !!!!!

Al'l processors open device
open(unit=11,file="input.dat’)

Al processors read input data
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i nput spheres data

ns=0
conti nue
ns=ns+1
read(11, *, end=2) spheres(ns, 1), spheres(ns, 2), spheres(ns, 3),
spheres(ns, 4)
spheres(ns, 4) =spher es(ns, 4) +rwat er
goto 1
conti nue
cl ose(11)
ns=ns- 1

ns - spheres nunber

Tasks’ managenent

print *,’ Processor nunber: ', Pr
nc=ns/ Pr I mni mal tasks numnber
ncmyP=nc* nyP+1 I order of 1st task nunber for nyP (if all are |azy)

nres=nod(ns, Pr) ! busy processors nunber (a task nore)
i f(nyP. Eq.0) then

Oth processor will wite output

open( 10, fil e=" out put.dat’)

if (nc.Eqg.0) then

nbPr =ns
el se
nbPr=Pr ! busy processors number
endi f

endi f
all processors conpute correspondi ng tasks’ indices

if(nyP.It.nres) then ! nyP is busy

ncl=ncnyP+nyP ! 1st task index for nyP processor

nc2=ncl+nc I last task index for mnmyP processor
el se ' myP is lazy

ncl=nres+ncnyP ! 1st task index for nyP processor

nc2=ncl+nc-1 I last task index for myP processor
endi f

if (ncl.le.nc2) then

Al'l processors (in unknown order) wite out task information

wite(*,*) ' P: ', nmyP,’ of’,Pr

81



82 J. BuSa et al. / Computer Physics Communications 165 (2005) 59-96

c 1 " started from’,ncl,’ till ', nc2
c 2 " (nc,nres: ',nc,’ ',nres,’) ENTER
c
c Al'l processors solve correspondi ng tasks
c
c Study the nei ghborhood rel ations
cal | make_nei ghbors(ncl, nc2, spheres, nei ghbor s_nunber
1 i ndex_start, nei ghbors_i ndi ces, ks, kl , ns, ki)
3 conti nue
[ print *, nyP,’: idemna NPT',” ns: ',ns
c Here we check, that Nord Pole of no sphere lies on other sphere
c nei ghbor sphere
c npt=0 - BAD NEWS
npt =Nort h_Pol e_t est (ncl, nc2, spheres, nei ghbor s_nunber,
1 i ndex_st art, nei ghbors_i ndi ces, ks, ki)
c print *, nyP,’: ', npt,ns
c
c Al'l processors send nnp val ue to ZERO processor
c
if (nmyP.Eq.0) then
do i=1,nbPr-1 ! Oth processor obtains results of other ones
c
c Receiving result fromith processor - put it in v_work variable
[ MPlI _Recv(sa, 1,typ,0,tag, comm status,ierr)
c print *, nyP, ': cakamnpt od ',
c print *, nyP,’: pred n_work’,ns
call MPI _Recv(n_work, 1,typl,i,tag, commstatus,ierr)
c print *, nmyP, ': dostal somans od ',i,’ ns: ',ns
if (n_work.Eq.0) npt=0
enddo
do i=1,nbPr-1 ! Oth processor obtains results of other ones
call MPI_i Send(npt,1,typl,i,tag,conmstatus,ierr)
enddo
el se
c print *, myP, ': poslemans 0
call MPI_i Send(npt,1,typl,0,tag, conmstatus,ierr)
li Send = i medi ate Send
c print *, nmyP, ': poslal somans 0
call MPI_Recv(n_work, 1,typl, 0, tag, comm status,ierr)
npt =n_wor k
endi f
c if (nmyP.Eqg.0) continue
c
[ print *,”Mnimal North Pol e distance: ",dmn
c Change continue by print!ttiirrnni
c

if (npt.Eq.0) then ! nolecule rotation by random matri x
if (nmyP.Eq.0) then
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print * 'Rotation after bad Nord Pole test!’
wite(10,*)’' Rotation after bad Nord Pole test!’
i seed=3 ! iseed=3 ???

call srand(iseed)

sa=rand()/33536. 0

CALL RANDOM SEEIX)

CALL RANDOM NUVBER( sa)

sa=0. 324d0
do i=1,nbPr-1 ! Oth processor obtains results of other ones
call MPI _i Send(sa, 1,typDP,i,tag, conmstatus,ierr)
print *, nmyP, ': poslal somsa pre ',i, sa
enddo
el se
print *, nyP, ': sompred citanimsa
call MPI_Recv(sa, 1, typDP, 0, tag, comm status,ierr)
print *, nyP, ': dostal somsa’,sa
endi f
call spheres_rotation(spheres,ks, ns, sa)
goto 3

endi f

Al'l processors solve correspondi ng tasks

V=0d0

A=0d0

do i=ncl, nc2
cal |l areavol une(i, spheres, nei ghbors_nunber, i ndex_start,

nei ghbor s_i ndi ces, ks, kI, ka, ki, av)

V=V+av( 1)
A=A+av(2)

enddo

print *,’ Processor’,nyP,’ results: V: ',V,” A ' A

Resul ts passi ng

i f(nmyP. Eq.0) then
do i=1,nbPr-1 ! Oth processor obtains results of other ones

Receiving result fromith processor - put it in v_work variable

call MPI _Recv(v_work, 1,typDP,i,tag, comm status,ierr)
V=V+v_wor k
call MPI_Recv(a_work, 1,typDP,i,tag, comm status,ierr)
A=A+a_wor k

enddo
print *,’Volume: *,V,’” Area: ',A’ Spheres num ’,6ns
Witing final result in file res.dat
wite(10,*)" Volume: ',V,’ Area: ',A’' Spheres num ’',ns
cl ose(10)
el se
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Table 4
Numerical values for the second case with two spheres
n \olume ey Area eA
10 591547643341108 61-102 75.39822368615503 0
20 562887389303264 60-10°3 75.39822368615503 0
50 5655012044715155 B7-1075 75.55907323001884 23.1073

100 5654507624244089 85.107° 75.37811749317206 87.107%
200 5655075097274038 88-10°° 75.39068386378642 .00-10~%

c Sendig result V fromnyPth processor to ZERO processor

call Ml _i Send(V, 1, typDP, 0,tag, commiqe,ierr)

I iSend = i medi ate Send
call MPI _i Send(A, 1,typDP, 0,tag, commiqe,ierr)
I iSend = i nmedi ate Send
endi f
el se
print * nyP,’ pass’
endi f
call MPI_Finalize(ierr) ! Error nessages handling
stop ' End’
end

Next we consider the same pair of spheres rotated by the ati§laround thec-axis (cf.Fig. 6right). The file
i nput . dat contains two lines

0002
0 1.73205080756888 1 2

Here is the screen output for tMP1 run with two processors, involved by commapadr vo - np 2 after the
compilation made by the commangi f 77 -0 parvo parvo.f:

1.46410161513776

2.220446049250313E- 15

Rotation after bad Nord Pole test!

5.323444279475265E- 02

1.43281638351388

Processor 1 results: V: 30.38318449969805 A: 37.69911184307753
Processor O results: V: 26.16548326491951 A. 37.69911184307804
Vol une: 56.54866776461756 Area: 75.39822368615557 Spheres num 2

Each processor has checked one North Pole. Becausdrieahdistance value waso small, North Pole test
failed and the molecule was rotated. The new test was successful. The values of the area and volume are changed
on the last two or three positions. The corresponding numerical values are giteléd

Remark 7. Shown results are not representative due to the special choice of the spheres. The analytical algorithms
led in both cases to the single circle in thes)-plane after the stereographic projection, so no intersections and no
arc integrals were calculated. On the other hand very good results of numerical algorithm for the area computation
were obtained by a lucky accident. In the second case we see that the resuks56r 100, and 200, which were
expected to be better than thosefor 10 and 20, are in fact worse.
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Fig. 8. Example with eight spheres.

Table 5
Numerical values for eight spheres
n Volume ey Area EA
10 2398896 2961072 9922406237098004 94.1072
20 234252 540-1073 1008199914390036 83.10°3
50 2334479616 195.10°3 1012588091008571 07-1074
100 2330198928 113-10°4 1012779099841909 86-107%
200 232999335 251-1075 1011722268073241 29.1074

6.3.1. An example with eight spheres
Consider the nput . dat file with 8 spheres:

0002

Both pictures irFig. 8 were taken from the graphical output of the program test on this molecule in Matlab. In
this case the program computes the arc integralalsle 5the relative errors are taken with respect to the results
obtained by the program ARVO. The screen output after the comnpamd.o - np 5 was

3. 3851648071345

10000. 0

.2679491924311228

1.81024967590665

. 7082039324993694

Processor 3 results: V:.0 A:.0

Processor 4 results: V: 718.7702192025645 A: 320. 4424506661588
Processor 1 results: V. 722.0196615613015 A: 288.5591425214843
Processor 0 results: Vi 852.5202331905718 A: 389. 7566522240995
Processor 2 results: V. 36.62471588135763 A: 13.1142859640694

Vol une: 2329.934829835795 Area: 1011.872531375812 Spheres num 8
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Table 6
Numerical values for a peptide
n \olume ey Area eA
10 337563526 118.102 153035288 416-10°3
20 334221313 183.1073 151836578 370-10°3
50 333356793 762-1074 152395009 380.107°
100 333536159 224.10~4 152409977 602 107>
200 333627234 486-10°° 152441268 265104

Remark 8. The above 5 values are from the functidor t h_Pol e_t est, each one from some processor (we

did not transfer the processor number into this function, so we do not know, which result is from which processor).
Because the 3rd processor returned zero values, it ctdciilae values for some sphdprobably the 6th), which

is the subset of some other sphere (4th sphere&)aBse 10000 is the initial value for the minimal vadimé n in

the functionNor t h_Pol e_t est, we can conclude, that the result in the second line is the output made by the
3rd processor.

6.3.2. The example of the 14-residue peptide rgkwtyngityegr
In this subsection we apply the program ARVO to the calculation of the volume and surface area of the 14-
residue long peptide with PDB cod¢tm The screen output after using the command o is as follows:

0. 00130930672
Vol une: 3336.11018 Area: 1524. 00799 Spheres num 125

The corresponding numerical values are showTeible 6

6.3.3. Efficiency of parallelization
We further test the efficiency of parallelization of theogram, parvo.f. We use the concepts of time speed-up
and efficiency to measure the degree of parallelizationaaimaputational process. Thiene speed-up is defined as

)

s(n) = )’ (32)
and the percent of parallelization (efficiency) is

e(n) = @, (33)

wheret (1) andt (n) are computational times on 1 andcomputers, respectively. Thauallelization is considered
acceptable when(n) > 0.5. Fig. 9 show the dependence of the speedup and the efficiency of parallelization for
the calculation of accessible surfamea and volume of three real proteins with PDB codes 1e7i, 1h76 and 1cd3
which consist of 4496, 5254 and 9755 atoms, respectively. These calculations are performed in a PC-Cluster with
24 Pentium 4 Xeon 2.4 GHz Processors at the Laboyraib6tatistical and Computational Physics of academia
Sinica in Taipei[37]. The quality of the parallelization depends on how evenly the workloads are distributed
among different computers and how much time is wastedada tlansfer between them. We find that the larger is

the number of atoms the better the time speed-up and efficiency.

7. Conclusion and discussion

The testings and comparison to other analytical algorithms show that the suggested method is robust and effi-
cient.
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L speed-up - s(n)
8L e 1e7ipdb
--#- 1h76.pdb
—e— 1cd3.pdb

efficiency - e(n) ___.,_-.—f-‘
8- o 1eTipdb . : ..... N
r --o- 1h76.pdb - R

5F —o—1cd3.pdb

Speed-up, efficiency

Number of Computers (n)

Fig. 9. The dependence of the speed-up and the efficiency of parditeiiZar the calculation of accessible surface area and volume of three
proteins, 1e7i.pdb (4496 atoms), 1h76.pdb (5254 atoms), and 1cd3.pdb (9755 atoms).

The tables show the quality of the numerical methods.d6me purposes these relative errors are maybe not
large, in other cases, such as size measurement oblp&on clusters one needs a better approximation of the
volume. In this case it is better to use proposed analytical method. This method can be used for the comparison of
the quality of different numerical algorithms, too.

The computation time of simultaneous calculation of surface area and volume is practically the same as the time
for volume computation only. The code can be efficiently parallelized.

It is easy to include the program presented in tldpgr into various algoriths or computers packaggss,38,

39] for simulations of proteins.

It has been found that many two-dimensional percolatiodets (including site and bond percolation on regular
lattices[40—42] continuum percolation of soft disks and hard digk3], bond percolation on random lattic!]
and continuum percolation of disks with different radjdS]) have universal finite-size scaling functions for their
existence probabilitie[gl6,4 7] (or call crossing proHallities). It has also been foundahsite and bond percolation
models on three-dimensional lattices have universal finite-size scaling functions for their existence probabilities
[48]. Our computing packagBRVO can be used to compute the volume of overlapping spheres of percolating
clusters for continuum percation, which is proportional to the peredion probability of tke percolation model.

Thus we can usARVO to check whether the percolation probabilitithree-dimensiordattice and continuum
percolation models have universal finite-size scaling functions and critical exponent.
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Appendix A. Computation of the solvent accessible surface area of the peptide 1j4m by GETAREA and
ACCAR

The out put from GETAREA

Surface Area and Sol vati on Energy of Macronol ecul es Cut put of
%interref[locator-type=url, object-type=text/htm]

GETAREA 1.1 http://ww. scsbh. ut nb. edu/ get area/ area_form htnl
Tue Jan 27 03:31:46 CST 2004

Job identifier: get_a_25284

Probe radius : 1.400
ATOM NAME RESI DUE AREA GRADI ENT

1N ARG 1 26. 97 1.71 4,39 -9.18

2 CA ARG 1 5.33 -2.32 -4.39 1.37

3C ARG 1 2.37 -0.15 -0.02 0.31
4 0O ARG 1 21.41 2.14 -1.87 -5.20

5 CB ARG 1 30. 97 -3.43 9.70 1.29

6 CG ARG 1 7.04 -0.43 3.43 -3.16

7 CD ARG 1 40. 83 -10. 15 6. 31 2.31

8 NE ARG 1 0. 00 0. 00 0. 00 0. 00

9 Z ARG 1 16. 76 -0.40 -2.39 -0.18
10 NH1 ARG 1 28. 36 -6.02 -10. 96 1.00
11 NH2 ARG 1 31.92 -6.04 0.29 -12.09
27 N GY 2 0. 00 0. 00 0. 00 0. 00
28 CA QY 2 5.92 2.27 -2.57 -1.98
29 C GaY 2 0.23 -0.14 0. 46 0.81
30 O ay 2 2.98 -0.71 1.31 1.14
34 N LYS 3 1.28 3.04 -1.09 2.09
35 CA LYS 3 0. 00 0. 00 0. 00 0. 00
36 C LYS 3 0. 00 0. 00 0. 00 0. 00
37 O LYS 3 26.13 -4.63 3.16 -4.21
38 CB LYS 3 19. 27 -1.65 -1.14 -1.97
39 CG LYS 3 0. 00 0. 00 0. 00 0. 00
40 CD LYS 3 13.61 -1.11 -2.69 0. 44
41 CE LYS 3 27.70 -1.69 -2.69 -2.96
42 Nz LYS 3 41.51 4. 65 -2.90 -15. 30
56 N TRP 4 0. 00 0. 00 0. 00 0. 00
57 CA TRP 4 5. 60 0. 43 -0.38 1.23
58 C TRP 4 0. 00 0. 00 0. 00 0. 00
59 O TRP 4 0. 00 0.01 -0.05 -0.04
60 CB TRP 4 28. 95 -7.56 0.52 -1.05
61 CG TRP 4 1.34 0. 26 -0.14 -0.13
62 CD1 TRP 4 16. 29 -2.71 1.38 1.60
63 CD2 TRP 4 2.39 0. 04 -0.06 0.01
64 NE1 TRP 4 3.78 0. 37 0.70 0. 06
65 CE2 TRP 4 4.58 -0.45 0.18 0.17
66 CE3 TRP 4 13. 41 -2.51 -3.00 2. 44
67 CZ2 TRP 4 13.70 -4.04 2.07 0.68
68 CZ3 TRP 4 17.91 -2.81 2.89 2.67
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174 CG TYR 11 0. 00 0.00 0.00 0. 00
175 CD1 TYR 11 0.73 2.44 -2.51 -0.27
176 CD2 TYR 11 11. 46 0. 85 -0.38 0.01
177 CE1 TYR 11 7.35 2.19 -5.58 -2.20
178 CE2 TYR 11 27.14 3. 60 -4.89 5.94
179 CZ TYR 11 7.57 -1.18 0.35 1.22
180 OH TYR 11 33. 48 3.03 3.63 11. 62
190 N GLU 12 3.97 -1.65 0.22 -0.71
191 CA GU 12 0. 06 -0.34 0. 03 -0.54
192 C GLU 12 0. 34 -0.45 -0.31 -0.59
193 O GLU 12 16. 44 3.33 -0.65 2. 66
194 CB GU 12 13. 14 0.61 2.55 -0.04
195 G GU 12 2.74 -2.31 0. 40 1.87
196 CO CGLU 12 0. 36 -0.06 0. 27 0.02
197 CE1 GU 12 39.52 13. 46 -6. 46 1.95
198 CE2 CGLU 12 27. 46 -0.56 -8.92 -2.55
205 N ay 13 0.00 0.00 0.00 0.00
206 CA QY 13 25.18 -1.26 -1.31 3.47
207 C ay 13 0.29 0. 36 0.02 -0.39
208 O ay 13 25.10 3.24 -3.21 7.19
212 N ARG 14 1.12 1.86 -1.43 -0.71
213 CA ARG 14 2.16 -1.15 0. 64 -1.19
214 C ARG 14 0. 62 -2.71 0.41 0.02
215 O ARG 14 35.01 8. 83 -9.98 -3.29
216 CB ARG 14 7.82 1.63 -1.27 0.58
217 CG ARG 14 24.04 1.59 -3.54 2.98
218 CO ARG 14 26. 66 0.21 -6.36 0.33
219 NE ARG 14 0.00 0.00 0.00 0.00
220 CZ ARG 14 25. 40 -1.89 0.53 2.57
221 NHL ARG 14 23.71 -6.98 -4.07 1.51
222 NH2 ARG 14 34.73 -5.42 -3.88 13. 69
223 OXT ARG 14 3.98 -2.66 1.97 2.96
POLAR area (~Solv. Energy) 679.74

APCLAR area (~Solv. Energy) = 844. 27

UNKNOW ar ea (~Sol v. Energy) 0. 00
Total area (~Solv. Energy) = 1524.01
Number of surface atons = 98
Number of buried atomns = 23
Number of atoms with ASP=0 = 115
The out put from ACCAR
No Res Area gr adx gr ady gradz rad At om
1 ARG 26. 97 1.71 4.39 -9.18 1.50 N
2 ARG 5.33 -2.32 -4.39 1.37 2.00 CA
3 ARG 2,37 -0.15 -0.02 0.31 1.50 C
4 ARG 21. 41 2.14 -1.87 -5.20 1.40 O
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213 ARG 2.16 -1.15 0. 64 -1.19 2.00 CA
214 ARG 0.62 -2.71 0.41 0. 02 1.50 C

215 ARG 35.01 8.83 -9.98 -3.29 1.40 O

216 ARG 7.82 1.63 -1.27 0.58 2.00 CB
217 ARG 24.04 1.59 -3.54 2.98 2.00 CG
218 ARG 26.66 0.21 -6. 36 0.33 2.00 CD
219 ARG 0. 00 0. 00 0. 00 0. 00 1.50 NE
220 ARG 25.40 -1.89 0.53 2.57 1.85 &
221 ARG 23.71 -6.98 -4.07 1.51 1.50 NHL
222 ARG 34.73 -5.42 -3.88 13.69 1.50 NH2
223 ARG 3.98 -2.66 1.97 2.96 1.40 OXT
224 ARG 0. 00 0. 00 0. 00 0. 00 0.00 H

225 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HA
226 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HB
227 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HB
228 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HG
229 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HG
230 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HD
231 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HD
232 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HE
233 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HH1
234 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HH1
235 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HH2
236 ARG 0. 00 0. 00 0. 00 0. 00 0.00 HH2

Total Area: 1524. 00799
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