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Abstract

In calculating the solvation energy of proteins, the hydration effects, drug binding, molecular docking, etc., it is im
to have an efficient and exact algorithms for computing the solvent accessible surface area and the excluded volume of m
molecules. Here we present a Fortran package based on the new exact analytical methods for computing volume a
area of overlapping spheres. In the considered procedure the surface area and volume are expressed as surface int
second kind over the closed region. Using the stereographic projection the surface integrals are transformed to a sum
integrals which are reduced to the curve integrals.MPI Fortran version is described as well. The package is also usefu
computing the percolation probability of continuum percolation models.
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Number of bytes in distributed program, including test data, etc.:322 633
Number of lines in distributed program, including test data, etc.:5051
Distribution format: tar.gz
Card punching code:ASCII
Nature of physical problem:Molecular mechanics computations, continuum percolations.
Method of solution:Numerical algorithm based on the analytical formulas, after using the stereographic transformation
Restriction on the complexity of the problem:The program does not account explicitly for cavities inside the molecule.
Typical running time:Depends on the size of the molecule under consideration.
Unusual features of the program:No
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

To perform its biological function the protein molecule has to fold into a certain spatial (tertiary) stru
called “native structure”. This structure is a result of many types of competing intramolecular and intermo
physical interactions and is believed to be the structure of global minimum of the free energy. The most i
ing feature of the folding phenomenon is that the proteins with the given primary structure (aminoacid se
almost always fold to the same native structure from anydisordered conformation when the environmental pa
meters (temperature, solvent composition, etc.) are restored to their physiological level. In other words, the
structure is encoded in the primary structure by genetic information. There are two basic problems which a
interesting from point of view of physics: (i) determination of the tertiary structure with a given aminoac
quence (structure prediction problem); and (ii) understanding the kinetic pathways leading to the native stru
(protein folding problem). The usual way to solve the first problem is to try to minimize the free energy fun
against the atomic coordinates of the molecule while the second one needs exploration of the very com
energy profile. In both cases the crucial point is to define the energy function of the protein–solvent sy
fully and as exactly as possible. Since the protein molecule is designed by nature to function in the water
the interactions between protein atoms and the surrounding solvent particles play a special role. Unfor
the exact definition of the potential of protein–solvent interactions still remains a difficult problem. Solut
the corresponding explicit equations is impossible because of the tremendous number of degrees of freedo
the protein–water system. For this reason different kinds of approximations are used to model the energy
which help to simplify the simulations.

In so-called “explicit solvent” models thousands of water molecules are involved and molecular dynam
Monte Carlo simulation is performed. This approach is more exact but computationally very expensive. I
tinuum solvent” approximation the water is modeled by some averaged medium with continuous elect
properties. One of this kind of models is the atomic solvation parameters approach proposed by Eisen
McLachlan[1], in which it has been assumed that the solvation energy of atoms or atomic groups is proport
the area of the part of atomic surface exposed to the solvent. The total solvation energy of the whole protein
system is then the sum of individual contributions from all atoms:

(1)�G =
∑

i

σiAi,

whereAi andσi are, respectively, the conformation-dependent solvent accessible surface area and atomic solva
parameter of the atomic groupi; andσi can be determined from experiments with model compounds which
low molecular weight.
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The notion of the solvent accessible area was introduced in[2] in an effort to calculate quantitatively the h
drophobic burial[3] of the protein side chains into the solvent. The accessible surface is a locus of the ce
of probe sphere when it rolls over the Van der Vaals surface of the molecule. It may be considered as a
Waals surface of a system in which all atomic radii are increased by the probe radius. The union of these e
overlapping atomic spheres was called excluded volume[4]. It represents an envelope enclosed by the acces
surface. The study of the accessible surface area and theexcluded volume is very important in computing t
protein–water interaction energy[1], theory of gases and liquids[5], in drug binding problem, etc.

The problem of computing volume and the surface area of the union of overlapping spheres was app
both numerically[6–14]and analytically[4,15–21]. The molecular surface was first computed by Greer and B
[22]. The list of the related literature is so vast that it isbeyond our ability to cite even the most important of them
We strongly recommend the interested reader to read a review paper with comprehensive bibliography pre
Conolly [23], the author of[24,25]. The package GEPOL by Silla et al.[26,27] for computing the molecular are
and volume is referred there. At the website of Ref.[28], one can find Conolly’s molecular surface package pre
sentation. The basic tool for analytic surface calculations traditionally has been the global Gauss–Bonnet
[4,29].

In our recent work[30] we have proposed a new approach for analytic surface calculations using a
stereographic projection method[29] which leads to more simple formulas and allows to reduce the computa
In this work we extend the developed method to calculate the excluded volume as well[31]. We also present th
corresponding Fortran code. Note, that the idea of stereographic projection was used also in[24] albeit in a different
aspect.

This paper is organized as follows. In Section2, we present equations for computing the volume of overlap
spheres. In Section3, we briefly review equations for computing the surface area of overlapping spheres[30]. In
Section4, we introduce the content of the FORTRAN package:ARVO. In Section5, we present a packageACCAR
for computing the surface area of overlapping spheres andits derivatives with respect to coordinates of sphe
In Section6, we present some examples about usingARVO. In Section7, we discuss potential applications
ARVO, including simulation of proteins and continuum percolation models. InAppendix A, we present typica
outputs fromACCAR and that ofGETAREA [32,33] for the peptide with PDB code1j4m, which show that two
outputs are consistent.

2. Analytical method for computing the volume

We describe the moleculeM as a union ofn spheres (atoms)S1, . . . , Sn, i.e.,M = ⋃n
j=1 Sj . Let (xi, yi, zi ) be

Cartesian coordinates of the center of theith sphere andri be its radius, where 1� i � n. Forj �= i we say thatSj

is a neighbor ofSi if In (Si) ∩ In(Sj ) �= ∅, where In(S) denotes the interior of the setS.
We will compute the volume according the following scheme

Volume integral�⇒ Surface integral�⇒ Double integral�⇒ Line integral

or

(2)V (M) =
∫∫∫
V (M)

dx dy dz =
∫ ∫

B(M)

zdx dy =
n∑

i=1

∫ ∫
Bi(M)

zdx dy,

whereB(M) is the boundary (surface) ofM and Bi(M) is a part of the surface ofSi which is outside of all
its neighbors(“free” surface of the sphereSi ). Here the Gauss–Ostrogradsky theorem was used to reduc
evaluation of volumeV (M) to the surface integrals of the second kind. All integrals at the right-hand si
Eq. (2) can be calculated separately. At this point the problem of computingV (M) is reduced to computingn
surface integrals.



62 J. Buša et al. / Computer Physics Communications 165 (2005) 59–96

.
ane

int
Fig. 1. Stereographic projection of the spherical surface points onto the tangential plane.

Next step is the transformation of the surface integral over the particular surfaceBi(M) into the double integral
This can be done by projecting the surfaceBi(M) from some top point of the sphere (North Pole) into the pl
tangent to the sphere at the diametrically opposite point (the South Pole ofSi ) [30].

2.1. Stereographic projection

The points(x, y, z) on the surface ofith sphere satisfy the equation

(3)(x − xi)
2 + (y − yi)

2 + (z − zi)
2 = r2

i .

One can easily calculate fromFig. 1 that the point(xi, yi, zi) on theith sphere is projected from the top po
(NP—North Pole) of the sphere onto the point(t, s) ∈ R

2 through the following equations

(4)t = −2ri(x − xi)

z − zi − ri
, s = −2ri(y − yi)

z − zi − ri
.

This an one-to-one transformation except the top point(xi, yi, zi + ri ) itself. It follows from Eqs.(3) and (4)that
the inverse transformation can be written as

(5)x = xi + 4r2
i t

t2 + s2 + 4r2
i

, y = yi + 4r2
i s

t2 + s2 + 4r2
i

, z = zi + ri − 8r3
i

t2 + s2 + 4r2
i

.

The points which are not inside thej th sphere satisfy the following inequality

(6)(x − xj )
2 + (y − yj )

2 + (z − zj )
2 � r2

j .

The points of theith sphere’s surface which are outside of thej th sphere or on its surface, satisfy Eqs.(3) and (6).
Transformation of those points onto(t, s)-plane using Eq.(5) leads to

(7)ai
j (t

2 + s2) + bi
j t + ci

j s + di
j � 0,

where

ai
j = (xi − xj )

2 + (yi − yj )
2 + (zi + ri − zj )

2 − r2
j ,

(8)
bi
j = 8r2

i (xi − xj ),

ci
j = 8r2

i (yi − yj ),

di
j = 4r2

i

[
(xi − xj )

2 + (yi − yj )
2 + (zi − ri − zj )

2 − r2
j

]
.
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Let us denote byΩi the set of the points on(t, s)-plane which correspond toBi(M) by the stereographic projectio
and byCi the complementary to the indexi in the set of indices, i.e.Ci = {1,2, . . . , n}\{i}. Then

(9)Ωi = {
(t, s); ai

j (t
2 + s2) + bi

j t + ci
j s + di

j � 0 for all j ∈ Ci

}
.

It is obvious that in practical calculations we may use in Eq.(9) only the set of indicesNi = {j ∈ N; Sj is a neigh-
bor ofSi} ⊂ Ci instead ofCi . So,Ni is a set of indices of neighbors ofSi .

Let us denote the(t, s)-image of the points of theith sphere which do not fall inside thej th sphere as	i
j .

Several different types of	i
j are possible[30]. (a) If theith sphere is the subset of thej th sphere then the imag

	i
j is an empty set∅. (b) If theith sphere touches thej th sphere at a single point from inner side then the image	i

j

consists of only one point. In both (a) and (b) the corresponding volume and area will be zero. When theith sphere
touches thej th sphere from outside then	i

j is the whole(t, s)-plane excluding one point. (c) If the NP of theith

sphere lies inside thej th sphere then	i
j is the interior of the circle, which is the image of the intersection ci

of the ith and thej th spheres in 3D space. (d) When the NP lies on the intersection circle of theith and thej th
spheres, the image of the intersection circle is a straight line and	i

j is a half plane (seeRemark 1below). (e) If the

NP of theith sphere lies outside thej th sphere then	i
j is the interior of a circle. And, finally, (f) if theith sphere

lies outside thej th one then	i
j is the whole plane. Corresponding volume and area are the volume and area

wholeith sphere, respectively.
So it is easy to see that ifSi has no neighbors thenΩi = R

2 andBi(M) is the whole surface ofSi and the
corresponding surface integral is equal to(4/3)πr3

i (the volume of sphere). On the other hand, if the wholesurface
of the sphereSi is the subset of the union of its neighbors,Si ⊂ ⋃

j∈Ni
Sj , thenBi(M) = ∅, Ωi = ∅ and the

integral equals to zero. We need to calculate the integrals only if theith sphere has a (nontrivial) neighbor and
not a subset of some other sphere. So we need deal only with cases (c), (d), and (e).

Remark 1. Using the rotations of the whole molecule one can avoid the case when NP of some sphere lie
surface of some other sphere. This approach gives us the possibility to work only with cases (c) and (e)
cases the boundaries of	i

j will be circles. In the following let us consider only such situation. The general ca
discussed in[31].

Since inequality(7) represents either interior of a circle (ai
j < 0) or exterior of a circle (ai

j > 0) thenΩi is an
intersection of such parts of(t, s)-plane (seeFigs. 2 and 4).

2.2. Computation of the integral
∫∫

Bi(M)
zdx dy

For computing the surface integrals in Eq.(2) we will use the known formula which transforms the surfa
integral into double integral. In view of Eq.(5) we have the Jacobian

Ji (t, s) =
∣∣∣∣

∂x
∂t

∂x
∂s

∂y
∂t

∂y
∂s

∣∣∣∣ = 16r4
i

4r2
i − t2 − s2

(t2 + s2 + 4r2
i )3

.

Consequently,

∫ ∫
Bi(M)

zdx dy = −
∫ ∫
Ωi

[
zi + ri − 8r3

i

t2 + s2 + 4r2
i

]
Ji (t, s)dt ds

(10)= 128r7
i

∫ ∫
Ωi

[
∂Q(t, s)

∂t
− ∂P (t, s)

∂s

]
dt ds = Ii ,
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Fig. 2. The bounded plane imageΩi of the surface partBi(M).

where

Q(t, s) = t

3(t2 + s2 + 4r2
i )3

+ t

192r4
i (t2 + s2 + 4r2

i )
+ t

(t2 + s2 + 4r2
i )2

[
1

48r2
i

− zi + ri

16r3
i

]
,

P (t, s) = −s

3(t2 + s2 + 4r2
i )3

+ −s

192r4
i (t2 + s2 + 4r2

i )
+ −s

(t2 + s2 + 4r2
i )2

[
1

48r2
i

− zi + ri

16r3
i

]
.

The Green’s theorem says that

(11)
∫ ∫
(S)

[
∂Q

∂t
− ∂P

∂s

]
dt ds =

∫
(K)

P dt + Qds,

where functionsP(t, s) and Q(t, s) and their partial derivatives are continuous function,(K) is the positive
(counter clockwise) oriented piecewise smooth boundary of the region(S).

We first assume thatΩi is bounded(cf. Fig. 2). Applying Green’s theorem to Eq.(10)we transform the doubl
integral into the curve integrals in the following way

Ii = 128r7
i

3

∮
B(Ωi)

t ds − s dt

(t2 + s2 + 4r2
i )3

+ 2r3
i

3

∮
B(Ωi)

t ds − s dt

(t2 + s2 + 4r2
i )

(12)− 8r4
i (3zi + 2ri)

3

∮
B(Ωi)

t ds − s dt

(t2 + s2 + 4r2
i )2

,

whereB(Ωi) is the boundary ofΩi . Fig. 2 corresponds to the case, when some sphereSi has three neighbors
So the number of indices inNi is |Ni | = 3. Each sphereSjk , jk ∈ Ni , k = 1, 2, 3 (k is the label of circles in
Fig. 2) surface has the nontrivial intersection with the sphereSi . This intersection is the circle in 3D space. T
stereographic image of this circle is again a circle in the(t, s)-plane (seeFig. 2) described by the equation

(13)ai
j (t

2 + s2) + bi
j t + ci

j s + di
j = 0, for somej ∈Ni ,

where (ai
j �= 0). Eq. (9) implies thatΩi is the intersection of the domains with circular boundaries (disk

complements to disks), hence,B(Ωi)—the boundary ofΩi—consists of circular arcs.
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Fig. 3. Parameterization of a circular arc in the(t, s)-plane.

2.3. Computation of
∮
B(Ωi)

t ds−s dt

(t2+s2+4r2
i )k

along the circular arcs

The boundaryB(Ωi) consists of circular arcs with the ends at the intersection points of circles in the(t, s)-plane
(Fig. 2). If some circle has no intersection with other circles then we consider the whole circle as one arc, wh
may be a part of the boundaryB(Ωi). In Figs. 2 and 4each circle has only one arc from the boundaryB(Ωi).
But more than one arcs are possible on the same circle which come from one boundaryB(Ωi) (see both picture
in Fig. 5). Let Λi

j be the number of arcs which generate partially the boundary ofΩi and descend from thej th

sphere. Then all arcsCi
j,λ together form the boundary ofΩi . Circular arcsCi

j,λ are oriented positively (counte

clockwise) with respect toΩi if ai
j < 0 and negatively (clockwise), otherwise. Then we have

(14)
∮

B(Ωi)

t ds − s dt

(t2 + s2 + 4r2
i )k

=
∑
j∈Ni

Λi
j∑

λ=1

∫

Ci
j,λ

t ds − s dt

(t2 + s2 + 4r2
i )k

, k = 1,2,3.

In order to simplify the formulas in the following we will omit the upper indexi, except the cases when it ma
cause misunderstanding. To compute the volumeV (M), it is sufficient to give formulas for the following curv
integrals:

Jk =
∫

Cj,λ

t ds − s dt

(t2 + s2 + 4r2
i )k

, k = 1,2,3

(here we omit the indicesj,λ in Jk , too). SinceCj,λ is a circular arc given by Eq.(13) (whereaj �= 0) thenCj,λ is
parameterized as follows (seeFig. 3, the indices are omitted):

(15)
t = t0 + r0 cosϕ,

s = s0 + r0 sinϕ,
for ϕ ∈ 〈αj,λ;βj,λ〉,

where(t0, s0) andr0 are the center and radius of the corresponding circle.
After some computations we arrive at the following relations.

(16)
J1 = βj,λ − αj,λ + (r2

0 − A)I1

2
,

J2 = I1 + (r2
0 − A)I2

4
, J3 = I2 + (r2

0 − A)I3

8
,
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Ik =
βj,λ∫

αj,λ

dϕ

(A + B cosϕ + C sinϕ)k
, k = 1,2,3

with

A = 4r2
i + t2

0 + s2
0 + r2

0

2
, B = t0r0, C = s0r0,

and

(17)t0 = − bj

2aj

, s0 = − cj

2aj

, r0 =
√√√√b2

j + c2
j − 4ajdj

4a2
j

.

If we denote

D = A2 − B2 − C2

then one can verify that for the case whenβj,λ − αj,λ < 2π the following formulas hold

I1 = 2√
D

[
π

2
− arctan

Acos− +B cos+ +C sin+
√

D sin−

]
,

where

cos− = cos
βj,λ − αj,λ

2
, cos+ = cos

αj,λ + βj,λ

2
,

sin+ = sin
αj,λ + βj,λ

2
, sin− = sin

βj,λ − αj,λ

2
,

I2 = 1

A2 − B2 − C2

[ −B sinx + C cosx

A + B cosx + C sinx

∣∣∣∣
βj,λ

αj,λ

+ AI1

]
,

I3 = 1

2D

[ −B sinx + C cosx

(A + B cosx + C sinx)2

∣∣∣∣
βj,λ

αj,λ

+
−B
A

sinx + C
A

cosx

A + B cosx + C sinx

∣∣∣∣
βj,λ

αj,λ

]
+ 2A2 + B2 + C2

2AD
I2.

For the caseβj,λ − αj,λ = 2π the integralsI1, I2, I3 are given by:

I1 = 2π

D1/2
, I2 = 2πA

D3/2
, I3 = π(2A2 + B2 + C2)

D5/2
.

For Ik there exist explicit formulas (see, for example,[34]).
In the case whenΩi is unbounded,Ωc

i = R
2 − Ωi is bounded (cf.Fig. 4) and we can use the following equali

16r4
i

∫ ∫
Ωi

[
∂Q(t, s)

∂t
− ∂P (t, s)

∂s

]
dt ds + 16r4

i

∫ ∫
Ωc

i

[
∂Q(t, s)

∂t
− ∂P (t, s)

∂s

]
dt ds = 4

3
πr3

i ,

for computing the surface integral in Eq.(10). Computation of integrals overΩc
i leads to the same curve integra

given by Eq.(12), but with different curve orientations.
So, we come to the formula

(18)V =
n∑

i=1

[
χV (Ωi) + Ii

]
,
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Fig. 4. Unbounded domainΩi .

whereIi is defined above by Eq.(10), and

χV (Ωi) =
{

0, Ωi is bounded,
4
3πr3

i , Ωi is all plane except the union of several disks.

Remark 2. If Ωi is unbounded, the corresponding sum of integralsIi will be negative and we get the correct val
for the integral overB(Ωi) given by Eq.(10).

Remark 3. Similar method can be derived for the calculation of the partial or “free” volume of an atom (see[31]).
In other words, letS1 be an arbitrary sphere. Denote byS2, . . . , Sk , all nontrivial neighbors ofS1. Let F = S

2,...,k
1

denote the part ofS1 which isoutside of all its neighborsS2, . . . , Sk . We consider volumeV (F) as a “free” volume
of the atomS1.

The idea of partial volume may be useful when we add a new atom to the molecule with known volume
case we can compute its “free volume”, which is simply the volume change of the whole molecule.

3. Computation of surface area

The surface areaA(M) is calculated as a surface integral of the first kind

(19)A(M) =
∫ ∫

B(M)

|dσ | =
n∑

i=1

∫ ∫
Bi(M)

|dσ | =
n∑

i=1

Ai,

whereM, B(M) and Bi(M) are described in Section2. All integrals at right-handed side of Eq.(19) can be
calculated separately. The problem of computingA(M) is reduced to computingn surface integrals of the firs
kind.

Remark 4. In this case one can avoid the straight line boundary by rotation only theith sphere and its neighbor
unlike the volume computation, where the rotation of the whole molecule is necessary.
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3.1. Computation of
Bi(M)

|dσ |

Now we show how the area of the part of the spherical surface can be calculated by integration along the
arcs on the plane. First we transform the surface integral of the first kind into the double integral over theΩi in the
(t, s)-plane, next we transform the double integral into the curve integral in a similar way as was done in Se2.

If we use again the stereographic projection of the surface we can considert ands as parameters and obtain t
following equation for the element of the surface

(20)|dσ | = |dtr × dsr|,
where ‘×’ means vector product,r is the radius vector of the element dσ , dtr and dsr are its differentials with
respect tot and s, respectively. We calculate these differentials in the following way, using the transform
formulas(5)

(21)dtr =
(

∂x

∂t
,
∂y

∂t
,
∂z

∂t

)
dt,

(22)
∂x

∂t
= 4r2

i (s2 − t2 + 4r2
i )

(t2 + s2 + 4r2
i )2

,

(23)
∂y

∂t
= − 8r2

i ts

(t2 + s2 + 4r2
i )2

,

(24)
∂z

∂t
= 16r3

i t

(t2 + s2 + 4r2
i )2

.

The term dsr is calculated in the similar way and eventually we obtain

(25)Ai =
∫ ∫

Bi(M)

d|σ | = 16r4
i

∫ ∫
Ωi

dt ds

(t2 + s2 + 4r2
i )2

,

where the regionΩi represents (as above) the image ofBi(M) on the plane(t, s) ∈ R
2.

SupposeΩi is a bounded region of nonzero measure,Ni is the set of order numbers of the spheres wh
intersect theith sphere, andΛi

j is the number of the arcs which form partially the boundary ofΩi and ascend from
thej th sphere. Now we use again Green’s formula to replace the integration over the plane region in Eq.(25) by
the sum of the integrals over the circle arcs along the boundaryB(Ωi) of the regionΩi .

It is easy to see that if we choose now

P(t, s) = 2r2
i

−s

t2 + s2 + 4r2
i

, Q(t, s) = 2r2
i

t

t2 + s2 + 4r2
i

,

then we obtain from Eq.(25) in the same way as in Section2

(26)Ai = 2r2
i

∮
B(Ωi)

t ds − s dt

t2 + s2 + 4r2
i

,

where as aboveB(Ωi) is the boundary ofΩi .
Like in Eq.(14)we get

(27)
∮

B(Ωi)

t ds − s dt

t2 + s2 + 4r2
i

=
∑
j∈Ni

Λi
j∑

λ=1

∫

Ci
j,λ

t ds − s dt

t2 + s2 + 4r2
i

=
∑
j∈Ni

Λi
j∑

λ=1

J1
i
j,λ.
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So we come again to the same integrals which we deal with in Section2, where we denoted the integrals asJ1
(here we omit the indices, too).

An unbounded areaΩi forms the whole plane except some disks union. In this case integration over the b
ary is taken in the negative direction (the sum of integrals

∫
Ci

j,λ
2r2

i (t ds − s dt)/(t2 + s2 + 4r2
i ) is negative), and

the result is added to the area of the whole sphere 4πr2
i , as in the volume computation over the unbounded dom

So, the general formula for surface area is similar to the formula(18) for the volume

(28)A =
n∑

i=1

[
χA(Ωi) + 2r2

i

∑
j∈Ni

Nj∑
λ=1

∫
Cj,λ

t ds − s dt

t2 + s2 + 4r2
i

]
,

where

χA(Ωi) =
{

0, Ωi is bounded,

4πr2
i , Ωi is all plane except the union of several disks.

Remark 5. The integrals in formula(28)have been calculated in the volume computation. So we can use abo
same computing time to get both the volume and the area values.

4. Program components and description of the algorithm

The main program ARVO is a simple module, which uses 17 functions and subroutines. Below we g
description of these modules.

4.1. The program structure

The logical structure of the main module ARVO is simple. After reading input data, we first study the nei
hood relations of the spheres/atoms. Here we construct some useful lists, which allow us to work further o
the local subsets of atoms. Before starting the basic calculations the algorithm looks for “bad” NP points.
is some then the whole molecule is rotated by a random angle and checked again until there are no pro
poles. If there is no North Pole problem then a loop is started over all spheres in which the corresponding
are calculated (see the main module in Section6). The following scheme inTable 1shows how the subroutines an
the functions are nested.

4.2. Input and output data

Program reads the data from the ASCII fileinput.dat, in which theith line contains at its beginning fou
real numbers—three Cartesian coordinates of the center and the radius of theith sphere:xi , yi , zi , and its radius
ri , where 1� i � n.

The output is written to the ASCII fileoutput.dat; each record of which contains the values of the surf
area, the volume and the number of the atom.

4.3. Important parameters

ks=300— maximum number of spheres (atoms).
kl=300— maximum number of local circles in the(t, s)-plane for one atom.
ka=2000— maximum total number of arcs and angles which arise from the local circles intersections.
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Table 1
Subroutines and functions embedment

read input data

subroutine make_neighbors
integer function neighbors

integer function North_Pole_test
subroutine spheres_rotation

for all spheres call:
subroutine areavolume

subroutine local_spheres
subroutine make_ts_circles
integer function circles_to_arcs

integer function new_arcs
subroutine circles_intersection
integer function circle_in_circle
integer function point_in_circle
subroutine mysort
subroutine mydsort
integer function delete_equal

subroutine avintegral
real*8 function fract

ki=10000— maximum number of indices in theneighbors_indices array for all atoms; this number mu
be at least equal to the total number of neighborhood relations multiplied by 2.

rwater/0d0/— radius of solvent particles.
eps_nord_pole=1d-8— the critical value for North Pole test; if the smallest distance from the North Pol

the surface of other atoms is smaller thaneps_nord_pole, the molecule is rotated by a random angle.
eps_deltat=1d-12— the critical value for comparison oft1 and t2 coordinates of two circles in the(t, s)-

plane, when the intersection points are calculated in thecircles_intersection subroutine.
eps_angle=1d-12— the critical value for comparison of two angles indelete_equal function; if two

points on the circle are close to each other, they are declared to be equal and only one point is left.

4.4. Important variables and data structures

spheres(ks,4)— contains the data of all atoms:spheres(i,1)= xi , spheres(i,2)= yi ,
spheres(i,3)= zi , andspheres(i,4)= ri for 1 � i � ks .

neighbors_number(ks)— neighbors_number(i) is equal to the number of neighbors of theith sphere
for 1� i � ks .

index_start(ks)— index_start(i) is the order number of the index for the first neighbor of theithe
sphere in theneighbor_indices array (see also Section4.6).

neighbors_indices(ki)— contains the indices of neighbors for all atoms (see also Section4.6).
sphere_local(kl,4)— contains coordinates and radius of theith sphere and its neighboring spher

sphere_local(j,1)= xj , sphere_local(j,2)=yj , sphere_local(j,3)=zj , and
sphere_local(j,4)= rj .

circles(kl,4)— the data structure of the circles in(t, s)-plane defined by Eq.(13), seeFigs. 2 and 4. The
corresponding center points andradii of the circles are calculated according to Eqs.(8) and (17). Thencir-
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cles(j,1)= tj andcircles(j,2)= sj are thej th circle’s center coordinates,circles(j,3)= rj
is its radius, andcircles(i,4)= ±1 shows the orientation of the circle.

arcs(ka,3)— holds the circular arcsCi
j,λ composing the boundaryB(Ωi) of the(t, s) domainΩi . Along these

arcs the integrals in Eqs.(14) and (27)are calculated:arcs(k,1)= ick is the index of thekth arc circle,
arcs(k,2)= αk is the startingkth arc’s angle, andarcs(k,3)= δk is the oriented arc’s angle, so the ar
end point corresponds to the angleβk = αk + δk.

arcsnew(ka,3)— is the auxiliary array with the same structure as the arrayarcs.
angles(ka)— is the auxiliary array to remember all angles corresponding to all intersection points of some

circle with all other circles in(t, s)-plane.
av(2)— av(1) is the value of surface integral which corresponds to theIi in Eq.(10)of the volume calculation

method;av(2) is the value of surface integral corresponding toAi in Eq.(25)of the surface area calculatio
method.

4.5. Description of subroutines and functions

In this subsection we give only a brief description of all subroutines and functions (seeTable 1). More detailed
description of some of them will be given later in the text.

subroutine make_neighbors— determination of neighborhood relationship data for all atoms (see
tion 4.6).

integer function neighbors(i,spheres,ind,ks,kl,ns)— returns the neighbors number f
theith sphere—neighbors: ns, and also the indices of the corresponding spheres in array:ind.

integer function North_Pole_test— returns 1 if all North Poles are far enough from other sphe
surfaces, otherwise returns 0 (see also Section4.7).

subroutine spheres_rotation— if the North_Pole_test function returns 0, the rotation of th
whole molecule is necessary, to avoid straight lines in the boundary ofB(Ωi).

subroutine areavolume— this is the main subroutine for computation of the surface area and the vo
of the molecule (see Section4.8below).

subroutine local_spheres(spheres,ind, sphere_local,nls,ks,kl)— transfers tosphe-
re_local array the data in a correspondence to the indices listind.

subroutine make_ts_circles(sphere_local, circle,kl,nls)— prepares the circles structu
for the 1st sphere of arraysphere_local in arraycircles according to Eqs.(8) and (17).

integer function circles_to_arcs— returns the number of arcs which compose the boundaryB(Ωi).
This function prepares the arrayarcs too (see below Section4.8.1).

integer function new_arcs(k,circles,arcsnew,kl,ka,nls)— prepares arcs, which are th
parts of thekth circle in arraycircles which are parts of the boundaryB(Ωi) (see Section4.8.1).

subroutine circles_intersection(ic1,ic2,circles,kl,a1,a2,b1,b2)— returns angles
of two intersection points of circles with indicesic1 andic2 in arraycircles. We use itonly in the
case, when 2 different intersection points exist! Thena1 anda2 are corresponding angles with respect to
center of 1st circle,b1 andb2 are corresponding angles with respect to the center of 2nd circle.

integer function circle_in_circle(i,k,circles,kl)— returns 1 if theith circle is inside of
thekth positive oriented circle or outside of thekth negative oriented circle, and returns 0 otherwise.

integer function point_in_circle(t,s,k,circles,kl)— returns 1 if the point(t, s) is inside
of thekth positive oriented circle or outside of thekth negative oriented circle and returns 0 otherwise.

subroutine mysort(angles,ka,num_angle)— sorts the arrayangles in ascending order
(num_angle is the angles number).

subroutine mydsort(angles,ka,num_angle)— sorts arrayangles in descending order
(num_angle is the angles number).
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integer function delete_equal(angles,ka,num_angle)— if some angles in arrayangles are
equal (to the precisioneps_angle) only one such angle is left; the function returns the number of an
after possible deletions.

subroutine avintegral(circles,arcs,kl,ka,narcs,r1,z1,avi)— calculates the sum of in
tegrals along all arcs corresponding to the boundaryB(Ωi) according to Eq.(16); avi(1) is the value of the
surface integral which corresponds toIi in Eq.(10)of the volume calculation method;avi(2) is the value of
the surface integral which corresponds toAi in Eq.(25)of the surface area calculation method.

real*8 function fract— auxiliary function for some fraction calculation.

4.6. Neighborhood relations

It is useful to have information about neighborhood relations for each atom. This may make the program m
clear, and the work with smaller arrays may speed up. Therefore, at the beginning of the ARVO progr
construct these relations.

For the determination of neighbors for all atoms we construct three arrays:

(1) neighbors_number(i) is the number of neighbors for the followingith atom.
(2) index_start(i) is the first neighbor index for theith atom in the arrayneighbors_indices.
(3) neighbors_indices is the array of neighbors indices for all atoms. The neighbors indices of theith sphere

begin at the positionindex_start(i)and finish at the positionindex_start(i)+neighbors_num-

ber(i)-1 of the arrayneighbors_indices.

For example let us consider the following configuration of spheres:

the 1st sphere has neighbors with indices 2, 4, 7
the 2nd sphere has neighbors with indices 1, 3
the 3rd sphere has neighbors with indices 2, 4
the 4th sphere has neighbors with indices 1, 3
the 5th sphere is subset of some other sphere
the 6th sphere has no neighbors
the 7th sphere has neighbors with index 1

After the call of subroutinemake_neighbors, we will have the following arrays:

neighbors_number=(3,2,2,2,-1,0,1),
index_start=(1,4,6,8,10,10,10,11) and
neighbors_indices(2,4,7,1,3,2,4,1,3,1).

Remark 6. If a sphere is a subset of some other sphere thenneighbors_number is set to−1. In the array
index_start, we add at the end one extra index which represents the starting position for the “nex
existing at the present) sphere if it is added to the system. One can easily see, that the arrayneighbors_number
is in some sense redundant, because except the subset case represented by−1 it holds:

neighbors_number(i)=index_start(i+1)-index_start(i).



J. Buša et al. / Computer Physics Communications 165 (2005) 59–96 73

ction
n,
ach
e
t. The

s

ir

only
e

n
ding
4.7. North Pole check and molecule rotation

As explained above, if the North Pole of someith sphere lies on the surface of some other sphere, the interse
image for such two spheres will be a straight line in the(t, s)-plane tangent to theith sphere. To avoid this situatio
the whole molecule should be rotated. We calculate the minimal distance to the surface of other spheres for e
North Pole and compare this minimal value to theeps_north_pole value. If we take this value larger, th
circles in the(t, s)-plane with very large radius will be forbidden, and the computations may be more exac
random rotation about they-axis is made with the random number sa (the user ofARVO should call a function to
generate the random number), if necessary:

subroutine spheres_rotation(spheres,ks,ns,sa)
c Random rotation of molecule about the y-axis
c after bad North Pole test.
c Some North Pole is near other spheres surface

implicit real*8 (a-h,o-z)
dimension spheres(ks,4)

ca=dsqrt(1d0-sa*sa)
do i=1,ns

x=spheres(i,1)
z=spheres(i,3)
spheres(i,1)=ca*x-sa*z
spheres(i,3)=sa*x+ca*z

enddo
return
end

4.8. Implementation of the basic algorithm

After the North Pole test we are ready to act according to the algorithm’s description given above in Section2
and 3. For each sphere/atom with indexi the following steps are implemented:

(1) Calling the subroutinelocal_spheres. The arraysphere_local is prepared, collecting data of theith
sphere and its neighbors.

(2) The proceduremake_ts_circles defines the circles in(t, s)-plane, according to the formulas(8) and (17).
(3) Intersection points for all circles are calculated using the functioncircles_to_arcs. The list of all arcs

which define the boundary of the(t, s) domainΩi is constructed (see in more details below in Section4.8.1).
(4) When all necessary arcs are known call subroutineavintegral at the end of the subroutineareavolume.

All calculations according to Eq.(16)are done (see in more details below in Section4.8.2).

4.8.1. Preparation of the structure of arcs
Fig. 5shows the situation after the proceduremake_ts_circles is finished. At this point all circles and the

orientations are known.
Now it is necessary to prepare the structure of the arcs corresponding to the boundary of domainΩi . Left picture

of Fig. 5shows the case of boundedΩi when there exists at least one positive oriented circle (in this case it is
the largest circle); right picture shows an unboundedΩi . In this case the boundaryB(Ωi) consists only of negativ
oriented arcs, the domainΩi is outside of this boundary.

Using the functioncircles_to_arcs intersection points for all circlesare calculated. The intersectio
points are described by their angles with respect to the center of each circle. The angles are sorted by the ascen



74 J. Buša et al. / Computer Physics Communications 165 (2005) 59–96

is done

If there
his

ary

the

s

s in

inates of
uires
ese

olecular
ents
ic radii,
as

own
ut
Fig. 5. Generation of the structure of arcs.

order for the positive oriented circles and by the descending order for the negative oriented circles which
by calling the subroutinemysort(angles,ka,num_angle) or mydsort(angles,ka,num_angle),
respectively. By this the inheritance of the arcs orientation from orientation of the circles is established.
exists an intersection point of three or more circles, it should be taken into account only once for each circle. T
is done by functiondelete_equal(angles,ka,num_angle).

The sorted angles define all possible arcs (seeFig. 5). But, certainly, not all of these arcs define the bound
B(Ωi). One can easily see, that only in the arcs, which lie outside of all other negative oriented circlesand inside
of all other positive oriented circles are important. So we check the central point of each arc. This is done by
functionnew_arcs. At last we get all arcs of which the boundaryB(Ωi) consists of in the arrayarcs and we
can proceed with evaluation of the curve integral.

4.8.2. Evaluation of the integral
First we check whether the valuesχV (Ωi) in Eq. (18) andχA(Ωi) in Eq. (28) are zero or not. If there exist

a positive oriented circle in the arraycircles thenχV (Ωi) = χA(Ωi) = 0. Otherwise, the valuesχV (Ωi) and
χA(Ωi) will those described above in Sections2 and 3. The check is done in the procedureareavolume before
calling the integral evaluation subroutineavintegral(circles,arcs,kl,ka,narcs,r1,z1,avi),
where the valuesr1 andz1 are the corresponding values of the first sphere in thelocal_spheres array.

In the subroutineavintegral the formula(16) is used to get the values of corresponding integral
Eqs.(10), (12), (14) and (26), (27).

5. Module ACCAR for computing derivatives of surface area

In molecular dynamics simulations one needs the derivatives of the potential energy against the coord
the particles. It follows from Eq.(1) that calculation of the derivatives (gradients) of the solvation energy req
calculation of the gradients of the accessible area. The method, described in this article allows to obtain th
gradients analytically. Evaluation of the corresponding formulas is presented elsewhere[30]. Here we just mention
the Fortran module and bring the testing data. Since most simulations do not require computation of the m
volume we have created a separate module ACCAR which calculates only the accessible area and its gradi
against the atomic coordinates. The input of the program is the array of the atomic coordinates, the atom
and the number of atoms. The output contains the total accessible area, the partial accessible area per atom
well as the gradients against the coordinates of eachatom. The user can easily organize the input data in his
way. In the presented version the program has two possibilities for this: input from user-created file, and inp
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from the file compatible with PDB[35] format. In this case the additional module PDBREAD must be called
the corresponding file name. A special version of the subroutine is developed to be used in the environ
SMMP package[36]. The users of SMMP can run it in the way like any other SMMP subroutine is used th
CALL instruction. In this case ACCAR takes the atomic coordinates from the internal arraysxat, yat, zat of
SMMP. We have tested the accuracy and performanceof our module by comparing it with GETAREA modu
from FANTOM package[21,32,33]. The computations are done for the peptide with PDB code1j4m. The results
are shown inAppendix A. One can see that both programs give identical results. Note that the online vers
GETAREA which we have exploited prints the output numbers with the accuracyof two digits after decimal point
To save space we have omitted all records pertaining to hydrogen atoms becauseboth programs set the radius of t
hydrogen atom equal to zero and hence the area and the gradients are identically zero. For this reason t
numbers in the first column of the output from GETAREA are not continuously consecutive.

6. Using the program

6.1. The main ARVO module

In this section we bring the text of the main ARVO module with short comments. The module can be
modified to be included into other programs so that the later can also be used to calculate volume and sur
of overlapping spheres. Parameters, likeks, kl, ka, ki, are defined in Section4.3, arrays are defined in Sectio
4.4 and 4.6.

program ARVO
c Computing surface area and volume of the overlapping spheres

implicit real*8(a-h,o-z)
parameter (pi=3.14159265358979323846264d0,ks=300,kl=300,ka=2000,
1 ki=10000)

c ks - maximal spheres’ number
c kl - maximal neighbors’ number of one sphere (local spheres’ number)
c ka - maximal angles’ or arcs’ number
c ki - maximal neighbors’ relations’ number = cca.
c spheres’ number * maximal neighbors’ number
c
c eps_north_pole - accuracy level in the function North_Pole_test
c eps_deltat - accuracy level in the subroutine circles_intersection
c eps_angle - accuracy level in the subroutine delete_equal (angles)
c

dimension spheres(ks,4),neighbors_number(ks),index_start(ks),
1 neighbors_indices(ki),av(2)

c
c spheres(i,1)=xi
c spheres(i,2)=yi - ith sphere center coordinates
c spheres(i,3)=zi
c spheres(i,4)=ri - ith sphere radius
c
c neighbors_number, index_start, neighbors_indices description
c is given in the subroutine make_neighbors
c

data rwater/0d0/
c Solvent particle’s radius
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open(10,file=’output.dat’)
open(unit=11,file=’input.dat’)

c
c input spheres data
c

ns=0
1 continue

ns=ns+1
read(11,*,end=2)spheres(ns,1),spheres(ns,2),spheres(ns,3),
1 spheres(ns,4)
spheres(ns,4)=spheres(ns,4)+rwater

goto 1
2 continue

close(11)
ns=ns-1

c
c ns - spheres number
c

c Study the neighborhood relations
call make_neighbors(1,ns,spheres,neighbors_number,
1 index_start,neighbors_indices,ks,kl,ns,ki)

c If some North Pole is close to the other atom’s surface
c molecule’s rotation is necessary

do while (North_Pole_test(1,ns,spheres,neighbors_number,
1 index_start,neighbors_indices,ks,ki).EQ.0)
print *,’Rotation after bad North Pole test!’
write(10,*)’Rotation after bad North Pole test!’
sa=0.324d0 ! "Random" sin value
call spheres_rotation(spheres,ks,ns,sa)! random molecule rotation
enddo

c Computation of area and volume as a sum of surface integrals
V=0d0
A=0d0
do i=1,ns
call areavolume(i,spheres,neighbors_number,index_start,
1 neighbors_indices,ks,kl,ka,ki,av)
V=V+av(1)
A=A+av(2)
enddo

print *,’Volume: ’,V,’ Area: ’,A,’ Spheres num: ’,ns
c Writing final result in file res.dat

write(10,*)’Volume: ’,V,’ Area: ’,A,’ Spheres num: ’,ns
close(10)

stop ’End’
end
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Fig. 6. Different positions of two spheres.

6.2. Running the program—input and output data

6.2.1. An example with two spheres
Here we consider the case of two spheres of equal size with radiusr. Let the distance between centers of t

spheres bed = r, so that the centers of both spheres lie on the surface of another sphere (cf.Fig. 6left). In this case
the exact formulas for the surface areaA and the volumeV can be easily derived. These are

(29)V (r) = 9

4
πr3 and A(r) = 6πr2.

For r = 2 we get

V (2) = 18π =̇56.54866776461628 andA(2) = 24π =̇75.39822368615504.

The fileinput.dat consists only of two lines

0 0 0 2 - 1st sphere: center at (0,0,0) and radius=2
0 0 2 2 - 2nd sphere: center at (0,0,2) and radius=2

we have obtained the following results written in theoutput.dat files for PC and SPP’2000 machine, r
spectively:

Volume: 56.54866776461628 Area: 75.39822368615504 Spheres num: 2

Volume: 56.54866776461628 Area: 75.39822368615503 Spheres num: 2

In the following, we will give only the results received by SPP’2000 machine, exceptFig. 9 whose data were
calculated by a PC parallel computer.

Let us compare these results with numerical calculations. The volume was calculated by embedding the
spheres into the cube, which was divided inton3 cubic elements, each one of these elements (its center point) wa
checked for belonging to the molecule. The common volume of the cubes was taken as a numerical appro
of the molecular volume. The surface area was calculated by division of each sphere surface into 2n2 parts with
equal area. The center of each part was checked for belonging to the molecular surface. The sum the areas of
parts is a numerical approximation to the area value.

Table 2shows the numerical values for somen, together with their relative errorsεV andεA, respectively.
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Table 2
Numerical values for two spheres with equal radii

n Volume εV Area εA

10 57.6 1.86 · 10−2 72.8849495632832 3.33 · 10−2

20 56.448 1.78 · 10−3 75.39822368615503 0
50 56.567808 3.38 · 10−4 75.11673698439338 3.73 · 10−3

100 56.537088 2.05 · 10−4 75.39822368615503 0
200 56.548704 6.41 · 10−7 75.39822368615503 0

Fig. 7. Intersection of three spheres.

6.2.2. Three spheres intersection example
Another check for correctness with the(t, s) domainΩi having a boundary with circular arcs, can be do

using the results of[17,18]. In these papers, the formulas for the volume and surface area of theintersection of
three sphereswith unequal radii are given.

Following [17], let A, B, andC be the centers of three spheresSA, SB , andSC , respectively (seeFig. 7). We
consider spheres of radii 1.0, 2.0, and 3.0 Å centered atA, B, andC, respectively, with distancesAB, BC, andCA

equal to 2.0, 4.0, and 3.0 Å, respectively. Then the volume and the surface area of the triple intersection calcula
by formula, given in[17,18]are 0.5736Å3 and 4.214 Å2, respectively.

The fileinput.dat containing three lines (2.90473750965556̇=3
√

15/4)

0 0 0 1
2 0 0 2
-0.75 2.90473750965556 0 3

Due to the equalities

V (SA ∩ SB ∩ SC) = V (SA ∪ SB ∪ SC) − [
V (SA ∪ SB) + V (SB ∪ SC) + V (SA ∪ SC)

]
(30)+ [

V (SA) + V (SB) + V (SC)
]

and

A(SA ∩ SB ∩ SC) = A(SA ∪ SB ∪ SC) − [
A(SA ∪ SB) + A(SB ∪ SC) + A(SA ∪ SC)

]
(31)+ [

A(SA) + A(SB) + A(SC)
]
,
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Table 3
Three spheres intersection volume and surface area results

Set Volume [Å3] Area [Å2]

SA ∩ SB ∩ SC 0.5736544730318 4.2139413434876
SA ∪ SB ∪ SC 144.3669682217146 148.9890027964171

SA ∪ SB 35.9974158223830 54.9778714378214
SB ∪ SC 143.1388152791849 148.4402528821177
SA ∪ SC 115.4535300194249 117.2861257340189

150.7964473723101 175.9291886010284

we can compute the triple intersection’s volumeV (SA ∩ SB ∩ SC) and surface areaA(SA ∩ SB ∩ SC) using the
program ARVO for calculation of the spheres’ unions in the right sides of Eqs.(30) and (31), respectively. The
values for the corresponding volumes and surface area are given inTable 3. In the last row the sums of volumes a
surface areas of three separated spheres (SA, SB , andSC ) are given. The results for the three spheres’ intersec
volume and surface area were calculated using the formulas given in[17,18], respectively. One can easily chec
that Eqs.(30) and (31)hold true. This is a successful test for the correctness of the ARVO program.

6.3. MPI parallel version of the main module

Due to the cycles over the (probably) large number of spheres in the ARVO main module, it is poss
solve the problem effectively on multiprocessor systems usingMessage Passing Interface (MPI) Fortran, creating
a parallel program. Below in this subsection theMPI Fortran code of the main module of the program PARVO
presented. All subroutines and functions are the same as for the serial program.

This code may serve as a good example of processors communication. For instance, we said, that
rotation of the molecule is necessary, if the North Pole test failed. But, because each processor make the rot
of only a part of the molecule, the random value should be generated only once by the 0th processor an
should be transfered to other processors.

program PARVO
c MPI parallel computing the surface area and the volume
c of the overlapping spheres

implicit real*8(a-h,o-z)
parameter (pi=3.14159265358979323846264d0,ks=300,kl=300
1,ka=2000,ki=10000)

c ks - maximal spheres’ number
c kl - maximal neighbors’ number of one sphere (local spheres’ number)
c ka - maximal angles’ or arcs’ number
c ki - maximal neighbors’ relations’ number = cca.
c spheres’ number * maximal neighbors’ number

c
c eps_north_pole - accuracy level in the function North_Pole_test
c eps_deltat - accuracy level in the subroutine circles_intersection
c eps_angle - accuracy level in the subroutine delete_equal (angles)
c

dimension spheres(ks,4),neighbors_number(ks),index_start(ks),
1 neighbors_indices(ki),av(2)

c
c spheres(i,1)=xi
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c spheres(i,2)=yi - ith sphere center coordinates
c spheres(i,3)=zi
c spheres(i,4)=ri - ith sphere radius
c

c neighbors_number, index_start, neighbors_indices description
c is given in the subroutine make_neighbors

c
c Definitions for MPI objects are in file mpif.h
c

include ’mpif.h’ ! definition of MPI-objects
c
c We will use arrays
c

integer status(MPI_STATUS_SIZE) ! matrix
c
c Parameters for MPI:
c comm - communicator
c typ - variables typ (for example MPI_INTEGER)
c tag - integer communications argument
c ierr - error messages
c myP - name of "actual processor number"
c Pr - processors number
c

integer comm,typDP,typI,tag,ierr,myP,Pr
data tag/0/, typDP/MPI_DOUBLE_PRECISION/,comm/MPI_COMM_WORLD/,
1 typI/MPI_INTEGER/

data rwater/0d0/

c
c Initialization of MPI
c

call MPI_Init(ierr)
c
c Defining the "actual" processor
c

call MPI_Comm_rank(comm,myP,ierr) ! which processor
c
c Defining processors number
c

call MPI_Comm_size(comm,Pr,ierr) ! how many processors
c
c All processors will be done next commands !!!!!
c
c
c All processors open device
c

open(unit=11,file=’input.dat’)
c
c All processors read input data
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c
c
c input spheres data
c

ns=0
1 continue

ns=ns+1
read(11,*,end=2)spheres(ns,1),spheres(ns,2),spheres(ns,3),

1 spheres(ns,4)
spheres(ns,4)=spheres(ns,4)+rwater
goto 1

2 continue
close(11)
ns=ns-1

c
c ns - spheres number
c
c
c Tasks’ management
c

c print *,’Processor number: ’,Pr

nc=ns/Pr ! minimal tasks number
ncmyP=nc*myP+1 ! order of 1st task number for myP (if all are lazy)
nres=mod(ns,Pr) ! busy processors number (a task more)
if(myP.Eq.0) then

c 0th processor will write output
open(10,file=’output.dat’)
if (nc.Eq.0) then

nbPr=ns
else

nbPr=Pr ! busy processors number
endif

endif
c
c all processors compute corresponding tasks’ indices
c

if(myP.lt.nres) then ! myP is busy
nc1=ncmyP+myP ! 1st task index for myP processor
nc2=nc1+nc ! last task index for myP processor

else ! myP is lazy
nc1=nres+ncmyP ! 1st task index for myP processor
nc2=nc1+nc-1 ! last task index for myP processor

endif

if (nc1.le.nc2) then
c
c All processors (in unknown order) write out task information
c

c write(*,*) ’ P: ’,myP,’ of’,Pr,
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c 1 ’ started from ’,nc1,’ till ’,nc2,
c 2 ’ (nc,nres: ’,nc,’ ’,nres,’) ENTER’

c
c All processors solve corresponding tasks
c

c Study the neighborhood relations
call make_neighbors(nc1,nc2,spheres,neighbors_number,

1 index_start,neighbors_indices,ks,kl,ns,ki)

3 continue
c print *, myP,’: idem na NPT’,’ ns: ’,ns
c Here we check, that Nord Pole of no sphere lies on other sphere
c neighbor sphere
c npt=0 - BAD NEWS

npt=North_Pole_test(nc1,nc2,spheres,neighbors_number,
1 index_start,neighbors_indices,ks,ki)

c print *, myP,’: ’,npt,ns
c
c All processors send nnp value to ZERO processor
c

if (myP.Eq.0) then
do i=1,nbPr-1 ! 0th processor obtains results of other ones

c
c Receiving result from ith processor - put it in v_work variable
c MPI_Recv(sa,1,typ,0,tag,comm,status,ierr)
c print *, myP, ’: cakam npt od ’,i
c print *, myP,’: pred n_work’,ns

call MPI_Recv(n_work,1,typI,i,tag,comm,status,ierr)
c print *, myP, ’: dostal som ans od ’,i,’ ns: ’,ns

if (n_work.Eq.0) npt=0
enddo
do i=1,nbPr-1 ! 0th processor obtains results of other ones

call MPI_iSend(npt,1,typI,i,tag,comm,status,ierr)
enddo

else
c print *, myP, ’: poslem ans 0’

call MPI_iSend(npt,1,typI,0,tag,comm,status,ierr)
!iSend = immediate Send

c print *, myP, ’: poslal som ans 0’
call MPI_Recv(n_work,1,typI,0,tag,comm,status,ierr)

npt=n_work
endif

c if (myP.Eq.0) continue
c
c print *,’Minimal North Pole distance: ’,dmin
c Change continue by print!!!!!!!!!!
c

if (npt.Eq.0) then ! molecule rotation by random matrix
if (myP.Eq.0) then
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print *,’Rotation after bad Nord Pole test!’
write(10,*)’Rotation after bad Nord Pole test!’

c iseed=3 ! iseed=3 ???
c call srand(iseed)
c sa=rand()/33536.0
c CALL RANDOM_SEED()
c CALL RANDOM_NUMBER(sa)

sa=0.324d0
do i=1,nbPr-1 ! 0th processor obtains results of other ones

call MPI_iSend(sa,1,typDP,i,tag,comm,status,ierr)
c print *, myP, ’: poslal som sa pre ’,i, sa

enddo
else

c print *, myP, ’: som pred citanim sa’
call MPI_Recv(sa,1,typDP,0,tag,comm,status,ierr)

c print *, myP, ’: dostal som sa’,sa
endif
call spheres_rotation(spheres,ks,ns,sa)
goto 3

endif

c
c All processors solve corresponding tasks
c

V=0d0
A=0d0
do i=nc1,nc2

call areavolume(i,spheres,neighbors_number,index_start,
1 neighbors_indices,ks,kl,ka,ki,av)

V=V+av(1)
A=A+av(2)

enddo
print *,’Processor’,myP,’ results: V: ’,V,’ A: ’,A

c
c Results passing
c

if(myP.Eq.0) then
do i=1,nbPr-1 ! 0th processor obtains results of other ones

c
c Receiving result from ith processor - put it in v_work variable
c

call MPI_Recv(v_work,1,typDP,i,tag,comm,status,ierr)
V=V+v_work
call MPI_Recv(a_work,1,typDP,i,tag,comm,status,ierr)
A=A+a_work

enddo
print *,’Volume: ’,V,’ Area: ’,A,’ Spheres num: ’,ns

c Writing final result in file res.dat
write(10,*)’Volume: ’,V,’ Area: ’,A,’ Spheres num: ’,ns
close(10)

else
c



84 J. Buša et al. / Computer Physics Communications 165 (2005) 59–96

t
e changed

gorithms
nd no
putation
e

Table 4
Numerical values for the second case with two spheres

n Volume εV Area εA

10 59.1547643341108 4.61 · 10−2 75.39822368615503 0
20 56.2887389303264 4.60 · 10−3 75.39822368615503 0
50 56.55012044715155 2.57 · 10−5 75.55907323001884 2.13 · 10−3

100 56.54507624244089 6.35 · 10−5 75.37811749317206 2.67 · 10−4

200 56.55075097274038 3.68 · 10−5 75.39068386378642 1.00 · 10−4

c Sendig result V from myPth processor to ZERO processor
c

call MPI_iSend(V,1,typDP,0,tag,comm,iqe,ierr)
! iSend = immediate Send

call MPI_iSend(A,1,typDP,0,tag,comm,iqe,ierr)
! iSend = immediate Send

endif
else

print *,myP,’ pass’
endif

call MPI_Finalize(ierr) ! Error messages handling
stop ’End’
end

Next we consider the same pair of spheres rotated by the angleπ/3 around thex-axis (cf.Fig. 6right). The file
input.dat contains two lines

0 0 0 2
0 1.73205080756888 1 2

Here is the screen output for theMPI run with two processors, involved by command:parvo -np 2 after the
compilation made by the commandmpif77 -o parvo parvo.f:

1.46410161513776
2.220446049250313E-15
Rotation after bad Nord Pole test!
5.323444279475265E-02
1.43281638351388
Processor 1 results: V: 30.38318449969805 A: 37.69911184307753
Processor 0 results: V: 26.16548326491951 A: 37.69911184307804
Volume: 56.54866776461756 Area: 75.39822368615557 Spheres num: 2

Each processor has checked one North Pole. Because the minimal distance value wastoo small, North Pole tes
failed and the molecule was rotated. The new test was successful. The values of the area and volume ar
on the last two or three positions. The corresponding numerical values are given inTable 4.

Remark 7. Shown results are not representative due to the special choice of the spheres. The analytical al
led in both cases to the single circle in the(t, s)-plane after the stereographic projection, so no intersections a
arc integrals were calculated. On the other hand very good results of numerical algorithm for the area com
were obtained by a lucky accident. In the second case we see that the results forn = 50, 100, and 200, which wer
expected to be better than those forn = 10 and 20, are in fact worse.
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Fig. 8. Example with eight spheres.

Table 5
Numerical values for eight spheres

n Volume εV Area εA

10 2398.896 2.96· 10−2 992.2406237098004 1.94· 10−2

20 2342.52 5.40· 10−3 1008.199914390036 3.63· 10−3

50 2334.479616 1.95· 10−3 1012.588091008571 7.07· 10−4

100 2330.198928 1.13· 10−4 1012.779099841909 8.96· 10−4

200 2329.99335 2.51· 10−5 1011.722268073241 1.49· 10−4

6.3.1. An example with eight spheres
Consider theinput.dat file with 8 spheres:

0 0 0 2
-5 0 0 6
5 0 0 6
0 1 0 4
-1 2 3 2
1 1 1 1
0 0 1 2
10 0 0 6

Both pictures inFig. 8were taken from the graphical output of the program test on this molecule in Matl
this case the program computes the arc integral. InTable 5the relative errors are taken with respect to the res
obtained by the program ARVO. The screen output after the command:parvo -np 5 was

3.3851648071345
10000.0
.2679491924311228
1.81024967590665
.7082039324993694
Processor 3 results: V:.0 A:.0
Processor 4 results: V: 718.7702192025645 A: 320.4424506661588
Processor 1 results: V: 722.0196615613015 A: 288.5591425214843
Processor 0 results: V: 852.5202331905718 A: 389.7566522240995
Processor 2 results: V: 36.62471588135763 A: 13.1142859640694
Volume: 2329.934829835795 Area: 1011.872531375812 Spheres num: 8
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Table 6
Numerical values for a peptide

n Volume εV Area εA

10 3375.63526 1.18 · 10−2 1530.35288 4.16· 10−3

20 3342.21313 1.83 · 10−3 1518.36578 3.70· 10−3

50 3333.56793 7.62 · 10−4 1523.95009 3.80· 10−5

100 3335.36159 2.24 · 10−4 1524.09977 6.02· 10−5

200 3336.27234 4.86 · 10−5 1524.41268 2.65· 10−4

Remark 8. The above 5 values are from the functionNorth_Pole_test, each one from some processor (
did not transfer the processor number into this function, so we do not know, which result is from which proc
Because the 3rd processor returned zero values, it calculated the values for some sphere(probably the 6th), which
is the subset of some other sphere (4th sphere’s). Because 10000 is the initial value for the minimal valuedmin in
the functionNorth_Pole_test, we can conclude, that the result in the second line is the output made b
3rd processor.

6.3.2. The example of the 14-residue peptide rgkwtyngityegr
In this subsection we apply the program ARVO to the calculation of the volume and surface area of

residue long peptide with PDB code1j4m. The screen output after using the commandarvo is as follows:

0.00130930672
Volume: 3336.11018 Area: 1524.00799 Spheres num: 125

The corresponding numerical values are shown inTable 6.

6.3.3. Efficiency of parallelization
We further test the efficiency of parallelization of theprogram, parvo.f. We use the concepts of time spee

and efficiency to measure the degree of parallelization of acomputational process. Thetime speed-up is defined a

(32)s(n) = t (1)

t (n)
,

and the percent of parallelization (efficiency) is

(33)e(n) = s(n)

n
,

wheret (1) andt (n) are computational times on 1 andn computers, respectively. The parallelization is considere
acceptable whene(n) � 0.5. Fig. 9 show the dependence of the speedup and the efficiency of parallelizati
the calculation of accessible surfacearea and volume of three real proteins with PDB codes 1e7i, 1h76 and
which consist of 4496, 5254 and 9755 atoms, respectively. These calculations are performed in a PC-Clu
24 Pentium 4 Xeon 2.4 GHz Processors at the Laboratory of Statistical and Computational Physics of acade
Sinica in Taipei[37]. The quality of the parallelization depends on how evenly the workloads are distri
among different computers and how much time is wasted on data transfer between them. We find that the large
the number of atoms the better the time speed-up and efficiency.

7. Conclusion and discussion

The testings and comparison to other analytical algorithms show that the suggested method is robust
cient.
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Fig. 9. The dependence of the speed-up and the efficiency of parallelization for the calculation of accessible surface area and volume of t
proteins, 1e7i.pdb (4496 atoms), 1h76.pdb (5254 atoms), and 1cd3.pdb (9755 atoms).

The tables show the quality of the numerical methods. For some purposes these relative errors are maybe
large, in other cases, such as size measurement of percolation clusters one needs a better approximation of
volume. In this case it is better to use proposed analytical method. This method can be used for the comp
the quality of different numerical algorithms, too.

The computation time of simultaneous calculation of surface area and volume is practically the same as
for volume computation only. The code can be efficiently parallelized.

It is easy to include the program presented in this paper into various algorithms or computers packages[36,38,
39] for simulations of proteins.

It has been found that many two-dimensional percolation models (including site and bond percolation on regu
lattices[40–42], continuum percolation of soft disks and hard disks[43], bond percolation on random lattices[44]
and continuum percolation of disks with different radius[45]) have universal finite-size scaling functions for th
existence probabilities[46,47](or call crossing probabilities). It has also been found that site and bond percolatio
models on three-dimensional lattices have universal finite-size scaling functions for their existence prob
[48]. Our computing packageARVO can be used to compute the volume of overlapping spheres of perco
clusters for continuum percolation, which is proportional to the percolation probability of the percolation model
Thus we can useARVO to check whether the percolation probabilityof three-dimensional lattice and continuum
percolation models have universal finite-size scaling functions and critical exponent.
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Appendix A. Computation of the solvent accessible surface area of the peptide 1j4m by GETAREA and
ACCAR

The output from GETAREA

Surface Area and Solvation Energy of Macromolecules Output of
%\interref[locator-type=url,object-type=text/html]
GETAREA 1.1 http://www.scsb.utmb.edu/getarea/area_form.html
Tue Jan 27 03:31:46 CST 2004

Job identifier: get_a_25284
Probe radius : 1.400

ATOM NAME RESIDUE AREA GRADIENT
1 N ARG 1 26.97 1.71 4.39 -9.18
2 CA ARG 1 5.33 -2.32 -4.39 1.37
3 C ARG 1 2.37 -0.15 -0.02 0.31
4 O ARG 1 21.41 2.14 -1.87 -5.20
5 CB ARG 1 30.97 -3.43 9.70 1.29
6 CG ARG 1 7.04 -0.43 3.43 -3.16
7 CD ARG 1 40.83 -10.15 6.31 2.31
8 NE ARG 1 0.00 0.00 0.00 0.00
9 CZ ARG 1 16.76 -0.40 -2.39 -0.18

10 NH1 ARG 1 28.36 -6.02 -10.96 1.00
11 NH2 ARG 1 31.92 -6.04 0.29 -12.09
27 N GLY 2 0.00 0.00 0.00 0.00
28 CA GLY 2 5.92 2.27 -2.57 -1.98
29 C GLY 2 0.23 -0.14 0.46 0.81
30 O GLY 2 2.98 -0.71 1.31 1.14
34 N LYS 3 1.28 3.04 -1.09 2.09
35 CA LYS 3 0.00 0.00 0.00 0.00
36 C LYS 3 0.00 0.00 0.00 0.00
37 O LYS 3 26.13 -4.63 3.16 -4.21
38 CB LYS 3 19.27 -1.65 -1.14 -1.97
39 CG LYS 3 0.00 0.00 0.00 0.00
40 CD LYS 3 13.61 -1.11 -2.69 0.44
41 CE LYS 3 27.70 -1.69 -2.69 -2.96
42 NZ LYS 3 41.51 4.65 -2.90 -15.30
56 N TRP 4 0.00 0.00 0.00 0.00
57 CA TRP 4 5.60 0.43 -0.38 1.23
58 C TRP 4 0.00 0.00 0.00 0.00
59 O TRP 4 0.00 0.01 -0.05 -0.04
60 CB TRP 4 28.95 -7.56 0.52 -1.05
61 CG TRP 4 1.34 0.26 -0.14 -0.13
62 CD1 TRP 4 16.29 -2.71 1.38 1.60
63 CD2 TRP 4 2.39 0.04 -0.06 0.01
64 NE1 TRP 4 3.78 0.37 0.70 0.06
65 CE2 TRP 4 4.58 -0.45 0.18 0.17
66 CE3 TRP 4 13.41 -2.51 -3.00 2.44
67 CZ2 TRP 4 13.70 -4.04 2.07 0.68
68 CZ3 TRP 4 17.91 -2.81 2.89 2.67
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69 CH2 TRP 4 33.45 -2.25 -1.40 11.10
80 N THR 5 1.84 2.26 -1.38 0.61
81 CA THR 5 0.00 0.00 0.00 0.00
82 C THR 5 0.00 0.00 0.00 0.00
83 O THR 5 25.60 -5.46 4.17 -5.17
84 CB THR 5 16.12 -0.80 -0.55 -2.81
85 OG1 THR 5 20.35 -1.04 4.22 -4.82
86 CG2 THR 5 18.98 -0.24 0.18 -2.36
94 N TYR 6 0.00 0.00 0.00 0.00
95 CA TYR 6 9.52 -0.70 0.22 1.42
96 C TYR 6 0.00 0.00 0.00 0.00
97 O TYR 6 0.00 0.00 0.00 0.00
98 CB TYR 6 21.57 0.67 7.83 -3.24
99 CG TYR 6 0.94 0.39 0.04 -0.13

100 CD1 TYR 6 16.17 -3.79 1.54 -0.43
101 CD2 TYR 6 6.63 -0.23 1.78 -0.59
102 CE1 TYR 6 24.29 -5.95 5.28 0.34
103 CE2 TYR 6 19.37 -4.63 1.52 2.29
104 CZ TYR 6 10.84 -3.51 -1.17 1.19
105 OH TYR 6 39.17 -0.36 6.59 13.98
115 N ASN 7 5.74 0.14 0.12 -0.19
116 CA ASN 7 19.23 -1.48 2.43 -3.81
117 C ASN 7 0.57 -0.14 -0.35 0.56
118 O ASN 7 19.74 3.09 2.32 -2.99
119 CB ASN 7 2.37 0.13 -0.91 -2.95
120 CG ASN 7 0.62 -0.07 -0.21 -0.01
121 OD1 ASN 7 33.48 0.31 11.91 -4.42
122 ND2 ASN 7 44.82 8.18 10.75 6.73
129 N GLY 8 2.64 0.84 -0.45 0.95
130 CA GLY 8 45.62 5.74 5.49 -11.14
131 C GLY 8 0.02 -0.28 -0.09 -0.11
132 O GLY 8 24.38 6.86 -0.88 -2.07
136 N ILE 9 0.00 0.00 0.00 0.00
137 CA ILE 9 4.18 -1.42 0.59 0.14
138 C ILE 9 0.00 0.00 0.00 0.00
139 O ILE 9 0.00 0.00 0.00 0.00
140 CB ILE 9 0.04 0.25 -0.21 -0.45
141 CG1 ILE 9 4.37 1.78 -1.85 -2.84
142 CG2 ILE 9 15.95 1.25 -1.41 -1.68
143 CD1 ILE 9 65.61 16.50 -0.24 9.17
155 N THR 10 1.97 -1.64 0.49 -0.16
156 CA THR 10 0.00 0.00 0.00 0.00
157 C THR 10 0.00 0.00 0.00 0.00
158 O THR 10 17.18 2.42 -2.81 0.59
159 CB THR 10 20.42 5.21 -2.26 -0.84
160 OG1 THR 10 13.98 1.55 -1.48 -2.70
161 CG2 THR 10 23.76 3.33 0.71 -2.01
169 N TYR 11 0.00 0.00 0.00 0.00
170 CA TYR 11 6.06 -1.50 1.97 -0.79
171 C TYR 11 0.00 0.00 0.00 0.00
172 O TYR 11 0.00 0.00 0.00 0.00
173 CB TYR 11 0.32 -0.03 0.78 -0.64
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174 CG TYR 11 0.00 0.00 0.00 0.00
175 CD1 TYR 11 0.73 2.44 -2.51 -0.27
176 CD2 TYR 11 11.46 0.85 -0.38 0.01
177 CE1 TYR 11 7.35 2.19 -5.58 -2.20
178 CE2 TYR 11 27.14 3.60 -4.89 5.94
179 CZ TYR 11 7.57 -1.18 0.35 1.22
180 OH TYR 11 33.48 3.03 3.63 11.62
190 N GLU 12 3.97 -1.65 0.22 -0.71
191 CA GLU 12 0.06 -0.34 0.03 -0.54
192 C GLU 12 0.34 -0.45 -0.31 -0.59
193 O GLU 12 16.44 3.33 -0.65 2.66
194 CB GLU 12 13.14 0.61 2.55 -0.04
195 CG GLU 12 2.74 -2.31 0.40 1.87
196 CD GLU 12 0.36 -0.06 0.27 0.02
197 OE1 GLU 12 39.52 13.46 -6.46 1.95
198 OE2 GLU 12 27.46 -0.56 -8.92 -2.55
205 N GLY 13 0.00 0.00 0.00 0.00
206 CA GLY 13 25.18 -1.26 -1.31 3.47
207 C GLY 13 0.29 0.36 0.02 -0.39
208 O GLY 13 25.10 3.24 -3.21 7.19
212 N ARG 14 1.12 1.86 -1.43 -0.71
213 CA ARG 14 2.16 -1.15 0.64 -1.19
214 C ARG 14 0.62 -2.71 0.41 0.02
215 O ARG 14 35.01 8.83 -9.98 -3.29
216 CB ARG 14 7.82 1.63 -1.27 0.58
217 CG ARG 14 24.04 1.59 -3.54 2.98
218 CD ARG 14 26.66 0.21 -6.36 0.33
219 NE ARG 14 0.00 0.00 0.00 0.00
220 CZ ARG 14 25.40 -1.89 0.53 2.57
221 NH1 ARG 14 23.71 -6.98 -4.07 1.51
222 NH2 ARG 14 34.73 -5.42 -3.88 13.69
223 OXT ARG 14 3.98 -2.66 1.97 2.96

-------------------------------------------------------
POLAR area (~Solv. Energy) = 679.74
APOLAR area (~Solv. Energy) = 844.27
UNKNOW area (~Solv. Energy) = 0.00
-------------------------------------------------------
Total area (~Solv. Energy) = 1524.01
-------------------------------------------------------
Number of surface atoms = 98
Number of buried atoms = 23
Number of atoms with ASP=0 = 115

=================================================================

The output from ACCAR

No Res Area gradx grady gradz rad Atom
1 ARG 26.97 1.71 4.39 -9.18 1.50 N
2 ARG 5.33 -2.32 -4.39 1.37 2.00 CA
3 ARG 2.37 -0.15 -0.02 0.31 1.50 C
4 ARG 21.41 2.14 -1.87 -5.20 1.40 O
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5 ARG 30.97 -3.43 9.70 1.29 2.00 CB
6 ARG 7.04 -0.43 3.43 -3.16 2.00 CG
7 ARG 40.83 -10.15 6.31 2.31 2.00 CD
8 ARG 0.00 0.00 0.00 0.00 1.50 NE
9 ARG 16.76 -0.40 -2.39 -0.18 1.85 CZ

10 ARG 28.36 -6.02 -10.96 1.00 1.50 NH1
11 ARG 31.92 -6.04 0.29 -12.09 1.50 NH2
12 ARG 0.00 0.00 0.00 0.00 0.00 H
13 ARG 0.00 0.00 0.00 0.00 0.00 H
14 ARG 0.00 0.00 0.00 0.00 0.00 H
15 ARG 0.00 0.00 0.00 0.00 0.00 HA
16 ARG 0.00 0.00 0.00 0.00 0.00 HB
17 ARG 0.00 0.00 0.00 0.00 0.00 HB
18 ARG 0.00 0.00 0.00 0.00 0.00 HG
19 ARG 0.00 0.00 0.00 0.00 0.00 HG
20 ARG 0.00 0.00 0.00 0.00 0.00 HD
21 ARG 0.00 0.00 0.00 0.00 0.00 HD
22 ARG 0.00 0.00 0.00 0.00 0.00 HE
23 ARG 0.00 0.00 0.00 0.00 0.00 HH1
24 ARG 0.00 0.00 0.00 0.00 0.00 HH1
25 ARG 0.00 0.00 0.00 0.00 0.00 HH2
26 ARG 0.00 0.00 0.00 0.00 0.00 HH2
27 GLY 0.00 0.00 0.00 0.00 1.50 N
28 GLY 5.92 2.27 -2.57 -1.98 2.00 CA
29 GLY 0.23 -0.14 0.46 0.81 1.50 C
30 GLY 2.98 -0.71 1.31 1.14 1.40 O
31 GLY 0.00 0.00 0.00 0.00 0.00 H
32 GLY 0.00 0.00 0.00 0.00 0.00 HA
33 GLY 0.00 0.00 0.00 0.00 0.00 HA
34 LYS 1.28 3.04 -1.09 2.09 1.50 N
35 LYS 0.00 0.00 0.00 0.00 2.00 CA
36 LYS 0.00 0.00 0.00 0.00 1.50 C
37 LYS 26.13 -4.63 3.16 -4.21 1.40 O
38 LYS 19.27 -1.65 -1.14 -1.97 2.00 CB
39 LYS 0.00 0.00 0.00 0.00 2.00 CG
40 LYS 13.61 -1.11 -2.69 0.44 2.00 CD
41 LYS 27.70 -1.69 -2.69 -2.96 2.00 CE
42 LYS 41.51 4.65 -2.90 -15.30 1.50 NZ
43 LYS 0.00 0.00 0.00 0.00 0.00 H
44 LYS 0.00 0.00 0.00 0.00 0.00 HA
45 LYS 0.00 0.00 0.00 0.00 0.00 HB
46 LYS 0.00 0.00 0.00 0.00 0.00 HB
47 LYS 0.00 0.00 0.00 0.00 0.00 HG
48 LYS 0.00 0.00 0.00 0.00 0.00 HG
49 LYS 0.00 0.00 0.00 0.00 0.00 HD
50 LYS 0.00 0.00 0.00 0.00 0.00 HD
51 LYS 0.00 0.00 0.00 0.00 0.00 HE
52 LYS 0.00 0.00 0.00 0.00 0.00 HE
53 LYS 0.00 0.00 0.00 0.00 0.00 HZ
54 LYS 0.00 0.00 0.00 0.00 0.00 HZ
55 LYS 0.00 0.00 0.00 0.00 0.00 HZ
56 TRP 0.00 0.00 0.00 0.00 1.50 N
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57 TRP 5.60 0.43 -0.38 1.23 2.00 CA
58 TRP 0.00 0.00 0.00 0.00 1.50 C
59 TRP 0.00 0.01 -0.05 -0.04 1.40 O
60 TRP 28.95 -7.56 0.52 -1.05 2.00 CB
61 TRP 1.34 0.26 -0.14 -0.13 1.85 CG
62 TRP 16.29 -2.71 1.38 1.60 1.85 CD1
63 TRP 2.39 0.04 -0.06 0.01 1.85 CD2
64 TRP 3.78 0.37 0.70 0.06 1.50 NE1
65 TRP 4.58 -0.45 0.18 0.17 1.85 CE2
66 TRP 13.41 -2.51 -3.00 2.44 1.85 CE3
67 TRP 13.70 -4.04 2.07 0.68 1.85 CZ2
68 TRP 17.91 -2.81 2.89 2.67 1.85 CZ3
69 TRP 33.45 -2.25 -1.40 11.10 1.85 CH2
70 TRP 0.00 0.00 0.00 0.00 0.00 H
71 TRP 0.00 0.00 0.00 0.00 0.00 HA
72 TRP 0.00 0.00 0.00 0.00 0.00 HB
73 TRP 0.00 0.00 0.00 0.00 0.00 HB
74 TRP 0.00 0.00 0.00 0.00 0.00 HD1
75 TRP 0.00 0.00 0.00 0.00 0.00 HE1
76 TRP 0.00 0.00 0.00 0.00 0.00 HE3
77 TRP 0.00 0.00 0.00 0.00 0.00 HZ2
78 TRP 0.00 0.00 0.00 0.00 0.00 HZ3
79 TRP 0.00 0.00 0.00 0.00 0.00 HH2
80 THR 1.84 2.26 -1.38 0.61 1.50 N
81 THR 0.00 0.00 0.00 0.00 2.00 CA
82 THR 0.00 0.00 0.00 0.00 1.50 C
83 THR 25.60 -5.46 4.17 -5.17 1.40 O
84 THR 16.12 -0.80 -0.55 -2.81 2.00 CB
85 THR 20.35 -1.04 4.22 -4.82 1.40 OG1
86 THR 18.98 -0.24 0.18 -2.36 2.00 CG2
87 THR 0.00 0.00 0.00 0.00 0.00 H
88 THR 0.00 0.00 0.00 0.00 0.00 HA
89 THR 0.00 0.00 0.00 0.00 0.00 HB
90 THR 0.00 0.00 0.00 0.00 0.00 HG1
91 THR 0.00 0.00 0.00 0.00 0.00 HG2
92 THR 0.00 0.00 0.00 0.00 0.00 HG2
93 THR 0.00 0.00 0.00 0.00 0.00 HG2
94 TYR 0.00 0.00 0.00 0.00 1.50 N
95 TYR 9.52 -0.70 0.22 1.42 2.00 CA
96 TYR 0.00 0.00 0.00 0.00 1.50 C
97 TYR 0.00 0.00 0.00 0.00 1.40 O
98 TYR 21.57 0.67 7.83 -3.24 2.00 CB
99 TYR 0.94 0.39 0.04 -0.13 1.85 CG

100 TYR 16.17 -3.79 1.54 -0.43 1.85 CD1
101 TYR 6.63 -0.23 1.78 -0.59 1.85 CD2
102 TYR 24.29 -5.95 5.28 0.34 1.85 CE1
103 TYR 19.37 -4.63 1.52 2.29 1.85 CE2
104 TYR 10.84 -3.51 -1.17 1.19 1.85 CZ
105 TYR 39.17 -0.36 6.59 13.98 1.40 OH
106 TYR 0.00 0.00 0.00 0.00 0.00 H
107 TYR 0.00 0.00 0.00 0.00 0.00 HA
108 TYR 0.00 0.00 0.00 0.00 0.00 HB
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109 TYR 0.00 0.00 0.00 0.00 0.00 HB
110 TYR 0.00 0.00 0.00 0.00 0.00 HD1
111 TYR 0.00 0.00 0.00 0.00 0.00 HD2
112 TYR 0.00 0.00 0.00 0.00 0.00 HE1
113 TYR 0.00 0.00 0.00 0.00 0.00 HE2
114 TYR 0.00 0.00 0.00 0.00 0.00 HH
115 ASN 5.74 0.14 0.12 -0.19 1.50 N
116 ASN 19.23 -1.48 2.43 -3.81 2.00 CA
117 ASN 0.57 -0.14 -0.35 0.56 1.50 C
118 ASN 19.74 3.09 2.32 -2.99 1.40 O
119 ASN 2.37 0.13 -0.91 -2.95 2.00 CB
120 ASN 0.62 -0.07 -0.21 -0.01 1.50 CG
121 ASN 33.48 0.31 11.91 -4.42 1.40 OD1
122 ASN 44.82 8.18 10.75 6.73 1.50 ND2
123 ASN 0.00 0.00 0.00 0.00 0.00 H
124 ASN 0.00 0.00 0.00 0.00 0.00 HA
125 ASN 0.00 0.00 0.00 0.00 0.00 HB
126 ASN 0.00 0.00 0.00 0.00 0.00 HB
127 ASN 0.00 0.00 0.00 0.00 0.00 HD2
128 ASN 0.00 0.00 0.00 0.00 0.00 HD2
129 GLY 2.64 0.84 -0.45 0.95 1.50 N
130 GLY 45.62 5.74 5.49 -11.14 2.00 CA
131 GLY 0.02 -0.28 -0.09 -0.11 1.50 C
132 GLY 24.38 6.86 -0.88 -2.07 1.40 O
133 GLY 0.00 0.00 0.00 0.00 0.00 H
134 GLY 0.00 0.00 0.00 0.00 0.00 HA
135 GLY 0.00 0.00 0.00 0.00 0.00 HA
136 ILE 0.00 0.00 0.00 0.00 1.50 N
137 ILE 4.18 -1.42 0.59 0.14 2.00 CA
138 ILE 0.00 0.00 0.00 0.00 1.50 C
139 ILE 0.00 0.00 0.00 0.00 1.40 O
140 ILE 0.04 0.25 -0.21 -0.45 2.00 CB
141 ILE 4.37 1.78 -1.85 -2.84 2.00 CG1
142 ILE 15.95 1.25 -1.41 -1.68 2.00 CG2
143 ILE 65.61 16.50 -0.24 9.17 2.00 CD1
144 ILE 0.00 0.00 0.00 0.00 0.00 H
145 ILE 0.00 0.00 0.00 0.00 0.00 HA
146 ILE 0.00 0.00 0.00 0.00 0.00 HB
147 ILE 0.00 0.00 0.00 0.00 0.00 HG1
148 ILE 0.00 0.00 0.00 0.00 0.00 HG1
149 ILE 0.00 0.00 0.00 0.00 0.00 HG2
150 ILE 0.00 0.00 0.00 0.00 0.00 HG2
151 ILE 0.00 0.00 0.00 0.00 0.00 HG2
152 ILE 0.00 0.00 0.00 0.00 0.00 HD1
153 ILE 0.00 0.00 0.00 0.00 0.00 HD1
154 ILE 0.00 0.00 0.00 0.00 0.00 HD1
155 THR 1.97 -1.64 0.49 -0.16 1.50 N
156 THR 0.00 0.00 0.00 0.00 2.00 CA
157 THR 0.00 0.00 0.00 0.00 1.50 C
158 THR 17.18 2.42 -2.81 0.59 1.40 O
159 THR 20.42 5.21 -2.26 -0.84 2.00 CB
160 THR 13.98 1.55 -1.48 -2.70 1.40 OG1
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161 THR 23.76 3.33 0.71 -2.01 2.00 CG2
162 THR 0.00 0.00 0.00 0.00 0.00 H
163 THR 0.00 0.00 0.00 0.00 0.00 HA
164 THR 0.00 0.00 0.00 0.00 0.00 HB
165 THR 0.00 0.00 0.00 0.00 0.00 HG1
166 THR 0.00 0.00 0.00 0.00 0.00 HG2
167 THR 0.00 0.00 0.00 0.00 0.00 HG2
168 THR 0.00 0.00 0.00 0.00 0.00 HG2
169 TYR 0.00 0.00 0.00 0.00 1.50 N
170 TYR 6.06 -1.50 1.97 -0.79 2.00 CA
171 TYR 0.00 0.00 0.00 0.00 1.50 C
172 TYR 0.00 0.00 0.00 0.00 1.40 O
173 TYR 0.32 -0.03 0.78 -0.64 2.00 CB
174 TYR 0.00 0.00 0.00 0.00 1.85 CG
175 TYR 0.73 2.44 -2.51 -0.27 1.85 CD1
176 TYR 11.46 0.85 -0.38 0.01 1.85 CD2
177 TYR 7.35 2.19 -5.58 -2.20 1.85 CE1
178 TYR 27.14 3.60 -4.89 5.94 1.85 CE2
179 TYR 7.57 -1.18 0.35 1.22 1.85 CZ
180 TYR 33.48 3.03 3.63 11.62 1.40 OH
181 TYR 0.00 0.00 0.00 0.00 0.00 H
182 TYR 0.00 0.00 0.00 0.00 0.00 HA
183 TYR 0.00 0.00 0.00 0.00 0.00 HB
184 TYR 0.00 0.00 0.00 0.00 0.00 HB
185 TYR 0.00 0.00 0.00 0.00 0.00 HD1
186 TYR 0.00 0.00 0.00 0.00 0.00 HD2
187 TYR 0.00 0.00 0.00 0.00 0.00 HE1
188 TYR 0.00 0.00 0.00 0.00 0.00 HE2
189 TYR 0.00 0.00 0.00 0.00 0.00 HH
190 GLU 3.97 -1.65 0.22 -0.71 1.50 N
191 GLU 0.06 -0.34 0.03 -0.54 2.00 CA
192 GLU 0.34 -0.45 -0.31 -0.59 1.50 C
193 GLU 16.44 3.33 -0.65 2.66 1.40 O
194 GLU 13.14 0.61 2.55 -0.04 2.00 CB
195 GLU 2.74 -2.31 0.40 1.87 2.00 CG
196 GLU 0.36 -0.06 0.27 0.02 1.50 CD
197 GLU 39.52 13.46 -6.46 1.95 1.40 OE1
198 GLU 27.46 -0.56 -8.92 -2.55 1.40 OE2
199 GLU 0.00 0.00 0.00 0.00 0.00 H
200 GLU 0.00 0.00 0.00 0.00 0.00 HA
201 GLU 0.00 0.00 0.00 0.00 0.00 HB
202 GLU 0.00 0.00 0.00 0.00 0.00 HB
203 GLU 0.00 0.00 0.00 0.00 0.00 HG
204 GLU 0.00 0.00 0.00 0.00 0.00 HG
205 GLY 0.00 0.00 0.00 0.00 1.50 N
206 GLY 25.18 -1.26 -1.31 3.47 2.00 CA
207 GLY 0.29 0.36 0.02 -0.39 1.50 C
208 GLY 25.10 3.24 -3.21 7.19 1.40 O
209 GLY 0.00 0.00 0.00 0.00 0.00 H
210 GLY 0.00 0.00 0.00 0.00 0.00 HA
211 GLY 0.00 0.00 0.00 0.00 0.00 HA
212 ARG 1.12 1.86 -1.43 -0.71 1.50 N
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213 ARG 2.16 -1.15 0.64 -1.19 2.00 CA
214 ARG 0.62 -2.71 0.41 0.02 1.50 C
215 ARG 35.01 8.83 -9.98 -3.29 1.40 O
216 ARG 7.82 1.63 -1.27 0.58 2.00 CB
217 ARG 24.04 1.59 -3.54 2.98 2.00 CG
218 ARG 26.66 0.21 -6.36 0.33 2.00 CD
219 ARG 0.00 0.00 0.00 0.00 1.50 NE
220 ARG 25.40 -1.89 0.53 2.57 1.85 CZ
221 ARG 23.71 -6.98 -4.07 1.51 1.50 NH1
222 ARG 34.73 -5.42 -3.88 13.69 1.50 NH2
223 ARG 3.98 -2.66 1.97 2.96 1.40 OXT
224 ARG 0.00 0.00 0.00 0.00 0.00 H
225 ARG 0.00 0.00 0.00 0.00 0.00 HA
226 ARG 0.00 0.00 0.00 0.00 0.00 HB
227 ARG 0.00 0.00 0.00 0.00 0.00 HB
228 ARG 0.00 0.00 0.00 0.00 0.00 HG
229 ARG 0.00 0.00 0.00 0.00 0.00 HG
230 ARG 0.00 0.00 0.00 0.00 0.00 HD
231 ARG 0.00 0.00 0.00 0.00 0.00 HD
232 ARG 0.00 0.00 0.00 0.00 0.00 HE
233 ARG 0.00 0.00 0.00 0.00 0.00 HH1
234 ARG 0.00 0.00 0.00 0.00 0.00 HH1
235 ARG 0.00 0.00 0.00 0.00 0.00 HH2
236 ARG 0.00 0.00 0.00 0.00 0.00 HH2

Total Area: 1524.00799
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