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We developed a software package (CAVE) in Fortran language to detect internal cavities in proteins which
can be applied also to an arbitrary system of balls. The volume, the surface area and other quantitative
characteristics of the cavities can be calculated. The code is based on the recently suggested enveloping
triangulation algorithm [J. Buša et al., J. Comp. Chem. 30 (2009) 346] for computing volume and surface
area of the cavity by analytical equations. Different standard sets of atomic radii can be used. The PDB
compatible file containing the atomic coordinates must be stored on the disk in advance. Testing of the
code on different proteins and artificial ball systems showed efficiency and accuracy of the algorithm.
The program is fast. It can handle a system of several thousands of balls in the order of seconds on
contemporary PC’s. The code is open source and free.

Program summary
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Distribution format: tar.gz
Programming language: Fortran
Computer: PC Pentium and Core
Operating system: Linux system and Windows XP system
Classification: 16.1
Nature of problem: Molecular structure analysis.
Solution method: Analytical method for cavities detection, and numerical algorithm for volume and surface
area calculation based on the analytical formulas, after using the stereographic transformation.
Running time: Depends on the size of the molecule under consideration. The test example included in the
distribution takes about 1 minute to run.
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Fig. 1. The same molecule without (left) and with (right) a cavity depending on the radius of the probe atom.

1. Introduction

Native structures of many proteins have cavities [1–4]. Elucidating the role of the cavities in function and energetics of the proteins
has been a challenge in experimental and computational studies of proteins in last two decades. Many experiments [5–9] have shown that
changes in the size and the shape of the cavities influence considerably the stabilization energy of the protein structures. As described in
[10], even the function of the protein can change when the size of the cavities changes.

Computational algorithms for detection and quantitative characterization of the cavities are usually based on the space filling geometry
model of the protein by Lee and Richards [11] which interprets a protein as a union of mutually interpenetrating balls. Each ball represents
an atom and its size is defined by the van der Waals radius. The algorithms belong to the family of shape description algorithms and are
closely related to those for calculating the surface area and the volume of molecules [11–24]. The first computational investigation of the
cavities has been reported by Lee and Richards [11]. Rashin, et al. [25] have developed a program for detection of the internal cavities and
for prediction of the positions of buried water molecules. Hubbard, et al. [26,27] have analyzed internal cavities in 121 protein chains and
found that the overall cavity volume increases with the protein size. In their calculations they used algorithms from [15,18,28]. Zhang and
Hermans [29] used the molecular surface calculation algorithm [15] to calculate energies and free energies of a water molecule in cavities
and discussed the hydrophobicity of protein cavities. The energetics of the empty cavities and internal mutations have been evaluated
computationally in [30]. Liang, et al. [31] described an analytic method for computing the metric properties of macromolecules. Later
this method has been applied to study quantitatively the inaccessible cavities in proteins [32]. Another analytical algorithm has been
suggested in [33]. Procedures for identifying the buried water molecules in cavities were described in [34,35]. The surface triangulation
method [36,37] has been applied by to study the structure and interactions of proteins [38]. Currently the cavity detection algorithms
are included in some simulation packages like [39–41]. Collins and coworkers [42,43] used high-pressure crystallography and computer
simulations to study cooperative water filling of a nonpolar protein cavity and the structural rigidity of large cavity-containing proteins. In
[44], a problem of emptiness of apolar cavities has been reviewed.

Recently we proposed a new efficient analytical algorithm for detection and analysis of internal cavities [45]. The basic idea of the
proposed method lies in the construction of a special enveloping triangulation such that the conclusion that a certain space point belongs
or does not belong to the cavity, depends only on the relation between the point and the triangulation. In the present paper we describe
the Fortran package CAVE which implements the algorithm. The package has been used to compute volumes and areas of cavities in many
protein structures taken from the Protein Data Bank (PDB) [46]. The objective of this work has been to develop our own cavity detection
software for the protein simulation package SMMP [47,48] which has been used widely to study structures and thermal properties of
proteins [49,50]. The tests have shown that our algorithm is efficient, accurate, and reliable [45]. CAVE had been used to study the cavity
of an antifreeze protein RD1 [51].

In order to better understand the program we suggest that users of CAVE also read our previous paper [45] and our papers about a
related package ARVO [23,24], which can be used to calculate volume and surface area of a system of balls.

In above we have mentioned several packages for cavity calculations. However, to the best of our knowledge, CAVE should be the first
open source code. Therefore, it has special value for students and teachers in the field of protein structure research.

This paper is organized as follows. In Section 2, we introduce basic definitions and terminology. A brief description of the algorithm
is presented in Section 3 with the aid of two-dimensional (2D) systems, and the package structure of CAVE is introduced in Section 4.
We comment on possible parallelization versions in Section 5. Steps of running CAVE are introduced in Section 6, with an exemplary run
presented in Section 7 and its screen output in Appendix A.

2. Some definitions and terminology

The basic definitions and the related terminology are introduced in [45] but we review them briefly here in order to make easy the
further reading of this paper.

(1) Molecule, surface and center of the atom. We consider a system of spherical balls Si (1 � i � N) that, in general, can overlap. M = ⋃
i Si

denotes the union of these balls. In case of proteins or other molecules the balls represent atoms, and correspondingly, M is the
molecule. The spherical surface and the center of the atom Si are denoted by δSi and Ci , respectively.

(2) Cavity. A cavity C in the molecule M is a bounded, and closed domain in the three-dimensional (3D) space R3, whose full boundary
consists of the parts of the molecular boundary, and whose interior, Int C , has no common points with M. In case of nonzero size of
probe radius we also consider a cavity as an internal domain, where the probe atom’s center may be put, but which is unreachable
for the probe atom from outside the molecule (see Fig. 1).
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Fig. 2. A wall triangle �Ci C j Ck . Pi jk is the intersection point of three spheres, and it lies on the surface of the molecule.

Fig. 3. Positively (arrow up) and negatively (arrow down) oriented triangles when viewed in the direction, perpendicular to the triangle’s plane from above.

Important remark. When talking about the atoms we mean that their van der Waals radii are extended by the probe ball (usually the
water molecule) radius [23,24]. This means that the number, sizes, and shapes of cavities depend strongly on the probe radius (see
Fig. 1). Currently there is no common agreement about the van der Waals radii of protein atoms, and several sets are being used. This
problem is discussed in [52] which contains an extensive list of related references.

(3) Wall triangle. Let C1, C2, C3 be the center points of three atoms in M. Then the triangle �C1C2C3 is called a wall triangle in M if and
only if the intersection δS1 ∩ δS2 ∩ δS3 of the surfaces of the atoms is not empty and at least one of the intersection points does not
belong to the interior of (lies on the molecular surface). For an example of a wall triangle, see Fig. 2.

(4) Neighboring wall triangles, free vertex. Two wall triangles are called neighbors to each other if they share a common edge. The planes
of the neighbor triangles form a dihedral angle. Two vertices of the neighbor triangles coincide and the third one of each triangle is
a free vertex.

(5) Triangulation. Triangulation is a special set of polyhedrons with wall triangular faces enclosing all cavities of the protein. The triangu-
lation of the molecule M is denoted as �M.

(6) Minimal covering triangulation. Since a triangulation �M is a set of wall triangles, it can be nonempty even if no cavity exists in
M. The term minimal covering regards to the polyhedron with smallest possible number of wall triangles which envelopes the given
cavity. We can construct a minimal covering triangulation such that it is empty if there exists no cavity.
Note: It is obvious that the empty triangulation implies the lack of cavities.

(7) Oriented triangle, orientation of the triangle. Suppose the vertices of all triangles are enumerated. If we look perpendicularly to the
triangle’s plane and find that the order numbers of vertices increase in counter-clockwise direction, then we say that the triangle
is positively oriented. Otherwise, the triangle is negatively oriented. Obviously, a positively oriented triangle will turn into a negatively
oriented one when viewed from the opposite side of the triangle’s plane. For an example of triangle’s orientation, see Fig. 3.

(8) The enveloping triangulation �M for cavities (briefly envelope triangulation) of a protein (or a system of balls) M is either an empty
set or it is such a set of wall triangles in M with coincident inward orientation that

(i) �M consists of a family of closed polyhedrons Pi whose facets represent inwardly oriented wall triangles such that Int Pi ∩
Int P j = ∅, for all i �= j,

(ii) any cavity point lies inside one of these polyhedrons,
(iii) if any point from R3 − M is not in any cavity of M then it lies outside the triangulation �M.

(9) The surface area and the volume of the cavity. There are two basic definitions of the cavity volume and surface area. When the probe is
being rolled over the van der Waals surface of the atoms, exposed to the interior of the cavity, its center creates a solvent accessible
(SA) surface. The volume of the corresponding body is called SA volume. At the same time, the front of the probe sphere which is in
touch with the van der Waals surface of the atoms, creates a molecular surface (MS), and the volume of the corresponding body is
called MS volume of the cavity. We can use CAVE to calculate the SA surface area and volume of a cavity based on analytic equations,
and calculate numerically the MS volume of the cavity.

Proposition 1. If �C1C2C3 is a wall triangle in M then the planes of intersections of all pairs of these spheres intersect with the plane of the centers
C1(x1, y1, z1), C2(x2, y2, z2), C3(x3, y3, z3) in the single point (x, y, z) which is, consequently, the unique solution to the following linear set of
equations

(x2 − x1)x + (y2 − y1)y + (z2 − z1)z = 1

2

(
r2
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Fig. 4. Preliminary set of “wall” segments in a two-dimensional system.
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where ri, i = 1,2,3 are the radii of the spheres.

In above, the first two equations represent the planes of intersections of spheres, and the third equation is the equation of the plane
C1C2C3.

3. Description of the 2D analogue of the enveloping triangulation algorithm

To show how the algorithm works, we will try to visualize some steps. It is extremely difficult to visualize on the plain paper the 3D
pictures of the system of balls. In this section we introduce the 2D analogue of the algorithm. The overlapping spheres in 3D are mapped
into 2D intersecting circles shown in Fig. 4. For more details we recommend the reader to consult our previous paper [45].

Detecting the cavity means to find out whether or not the given system contains any cavity. Recall that the existence of a cavity depends
on the given radius of the probe sphere. The algorithm will not detect a cavity whose size is smaller than the probe sphere. Localization
of the cavity means to determine all circles which surround the cavity (all spheres, in 3D case). Quantitative analysis in this case means to
calculate the total length of the cavity border (the surface area in 3D system) and the area enclosed by the border (the volume in 3D).

Now we will try to construct some polygon in our system (Fig. 4) which must enclose the cavity if it does exist. It is obvious that the
closed cavity can be formed only by intersecting circles. In the first step the algorithm finds all pairs of intersecting circles and connects
their centers by segments of straight lines. In 3D case triplets of intersecting spheres are found and a triangle is constructed with the
vertices at the centers of the three spheres, hence the term “triangulation” (see [45]).

Two types of segments are possible: (i) If at least one of the intersection points of any two circles does not belong to the interior of
any other circle (e.g. the outer intersection point of circles D and E in Fig. 4) then we call the segment (e.g. the one connecting centers of
D and E) a wall segment. (ii) Both intersecting points belong to the interior of some other circle (e.g. intersection points of circles G and
E in Fig. 4 belong to circles D and H). Segments of this type are removed or are not drawn at all. Thus we obtain the preliminary list of
wall segments (see Fig. 4). Intersection points which do not belong to the interior of any circle (e.g. point Q in Fig. 4) are being stored
for later needs.

The second step is to optimize the preliminary list. It is evident that any segment which has only one neighbor cannot be a part of the
cavity border (e.g. the segment connecting centers of circles A and C). These type of segments are called lugs and must be removed from
the preliminary list. Removing one lug may create a new one. For example, after removing the segment connecting centers of A and C,
another segment becomes a lug.

After the lugs are removed we start the third step — constructing the true envelope. We can choose an arbitrary wall segment from
the optimized list (for example the southernmost) and assign an inward orientation (to the north) to it. Then we look for a neighbor of
this segment at both sides (at all three edges of the triangle, in 3D). If there is only one neighbor then we add it to the new envelope. If
there are more than one neighbors (circle H — segments HG and HE) then we choose the one which is maximally declined from the point
of view of the inward orientation (segment HE). Eventually, we obtain an envelope shown in Fig. 5 (solid closed line).

In the fourth step we check whether the obtained envelope contains cavity. For this, the algorithm checks stored outer intersection
points of all pairs of circles. If any of these points (for example point Q in Fig. 4 or 5) lies inside the envelope then a cavity does exist.
We call these points Z -type points. This test is done by a special program module which can identify the position of any point in space
with respect to the closed line (closed surface, in 3D).

The last step is to construct the minimum envelope consisting of circles which make the border of the cavity. If any Z -type point
exists, we start a new triangulation construction with the line segment (the wall triangle in 3D) which corresponds to this point. This
time, if there is more than one neighbor, we add the neighbor with minimal declination (e.g. segment HG for circle H — so, instead of the
segments HE, ED, and DG, used before, we will use the dashed segment HG). Now we have obtained the minimal envelope.

Let us mention again that the algorithm for the 3D system is much more complicated and the interested reader will need to con-
sult [45].
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Fig. 5. The system after lugs cutting.

Fig. 6. The general scheme of the package.

4. The package structure

CAVE was developed as a simple MAIN module which calls 37 subroutines and functions performing certain logical parts. In this
section we describe the general structure of the package. The part of the program which calculates solvent accessible surface area and
excluded volume has been described in [24]. The simplified scheme of the package is shown in Fig. 6.

The logical structure of the main module CAVE is simple. After reading the necessary input data, the algorithm first studies the
neighborhood relations of the spheres/atoms. Here some useful lists are constructed which allow to work further only with the local
subsets of atoms instead of checking neighborhood relations between distant atoms. This saves a considerable amount of time. Next, the
relations of the triplets of atoms are studied, and the list of the wall triangles defined by the centers of the intersecting triplets of spheres
as vertices is constructed. Then the triangles which do not have a neighbor at some side are recursively removed from this list. After this
procedure, the enveloping triangulation is constructed. If any cavity is found then the spheres whose parts of the surface are exposed into
the cavity are defined as boundary spheres, and are stored in the output file. Corresponding list of the wall triangles is stored too.

Afterwards the volume and surface area of the molecule with and without parts exposed to the cavities are calculated, as has been
described in [24].

4.1. Input and output data

The user must fill the arrays of coordinates and radii as well as the radius of the probe sphere (see Subsections 4.2 and 4.3). Another
parameter to be provided (variable ivdwr_set) is the integer number showing which set of atomic radii must be used. In total 4
different sets are included in the package. CAVE is an open code package, and the user is free to organize the input in his own way.
However, since the proteins are our basic concern, here we provide a special subroutine pdbread which reads the amino acid sequence,
the atom names and the coordinates from standard PDB file. Later the subroutine assigns the atomic radii according to the atom types.
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Important note 1. Different authors often use different radii for the same atom even within the same set of radii. In order to make
simple for the user to change the radius of any chosen atom we assign the radii in explicit manner through statements like this:

if(line(18:20).eq.‘ALA’.and.line(14:15).eq.‘N’) r(ksf) = 1.7
!! NH, trigonal NH

Here we put the radius of the atom N in alanine equal to 1.7 because it is a trigonal NH group. Recall that this statement corresponds to
the format of the standard PDB file. The name of the PDB file, the value of the probe sphere, and the parameter for the set of radii are
given in the main module explicitly. This makes an inconvenience that the program must be recompiled every time when these parameters
are changed. However, (i) the compilation of CAVE takes only a couple of seconds; (ii) as mentioned above, the user can always organize
the input in his own way. Let us mention that the extension .pdb in file name is not necessary. The program adds it automatically.

Important note 2. When reading from the PDB file the program automatically counts the number of the atoms (variable ksf). If the user
wants to add some additional atoms to the system then he must increase the number of atoms accordingly, and to assign the coordinates
and radii in the corresponding arrays. Alternatively, the data for these atoms can be added to the PDB file in an appropriate format.

The basic output is written in 5 ASCII files with extensions .log, .ats, .cav, .sph, and .tri. If the probe radius is equal to zero
then 0 is added to the file name extension. For example, filename.cav0 instead of filename.cav.

name.log — contains the information about program run.
name.ats — contains the list of all spheres/atoms. The first three columns of each row are the x, y, and z coordinates of the atom’s

center, the 4-th column is the atomic radius enlarged by the radius of the probe sphere.
name.cav — contains the main information about cavities and their boundaries, and may be used by auxiliary programs which are

working with the triangulation. Each row consists of 6 elements. The first column of the i-th row contains the order number of the first
boundary triangle of the i-th cavity in the list of triangles name.tri. The second column is the number of boundary triangles for this
cavity. The third column is the order number of the first boundary sphere in the list of spheres name.sph. The fourth column contains
the number of cavity’s boundary spheres (triangles’ vertices). The fifth column contains the number of cavity’s boundary spheres not
belonging to the triangulation. The sixth column of the i-th row contains the number of cavities in the i-th segment. The last row of
the file contains in the first and the third columns the auxiliary order numbers which allow to determine the number of triangles and
spheres of the last cavity.

name.sph — the list of the boundary spheres. Each row consists of five columns: in the first column is the cavity’s order number, in the
second column is the sphere’s order number with respect to the cavity, and in the third column is the sphere’s order number in the
main list of the atoms. Information about group is stored in columns four and five.

name.tri — the list of the boundary triangles of the cavities. Each row consists of six columns: in the first column is the order number,
in the second column is the cavity’s order number, in the third column is the triangle’s order number with respect to the cavity, and in
the columns 4–6 are the order numbers from the main list of atoms which correspond to the vertices of the triangle.

4.2. Important parameters

rwater — the radius of the probe sphere.
ks=20000 — maximum number of spheres (atoms).
kl=200 — maximum number of the neighbors of one sphere.
ki=2000000 — maximum number of neighborhood relations.
ka=2000000 — maximum total number of arcs and angles which arise from the intersections of local circles.
kan — maximum number of angles (cannot be more than twice the number of neighbors).
kt=60000 — maximum number of triangles.
maxtsn — maximum number of neighbor triangles at one side of the given triangle.
kn=3*maxtsn+7 — number of columns allocated for neighboring triangles information.
eps_deltas — accuracy level in the subroutine neighbors.
eps_nord_pole=1d-8 — the critical value for North Pole test. If the smallest distance from the North Pole to the surface of other

atoms is smaller than eps_nord_pole, then the molecule is rotated by a random angle.
eps_deltat=1d-12 — the critical value for comparison of t1 and t2 coordinates of two circles in the (t, s) plane, when the intersection

points are calculated in the circles_intersection subroutine.
eps_angle=1d-12 — the critical value for comparison of two angles in the function delete_equal. If two points on the circle are

close to each other, they are declared to be the same, and only one point is left.

4.3. Important variables and data structures

spheres(ks,4) — contains the data on all atoms: spheres(i,1) = xi , spheres(i,2) = yi , spheres(i,3)= zi , and
spheres(i,4) = ri (1 � i � ks).

neighbors_number(ks) — neighbors_number(i) is the number of neighbors of the i-th sphere for.
index_start(ks) — index_start(i) is the order number of the index for the first neighbor of the i-th sphere in the array
neighbors_indices.

neighbors_indices(ki) — contains the indices of neighbors for all atoms.
sphere_local(kl,4) — contains coordinates and radii of the i-th sphere and its neighbor spheres: sphere_local(j,1) = x j ,
sphere_local(j,2) = y j , sphere_local(j,3) = z j , and sphere_local(j,4)= r j for 1 � j � kl .
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circles(kl,4) — the data structure of the circles in (t, s) plane, see [24]. circles(j,1) = t j and circles(j,2) = s j are the
coordinates of the center of j-th circle, circles(j,3) = r j is its radius, and circles(i,4) = ±1 shows the orientation of the
circle, 1 � j � kl .

arcs(ka,3) — holds the circular arcs C i
j,λ composing the boundary B(Ωi) of the (t, s) domain Ωi [24]. Along these arcs the line

integrals are calculated: arcs(k,1) = ick is the index of the k-th arc circle, arcs(k,2) = αk is the starting k-th arc’s angle, and
arcs(k,3) = δk is the oriented arc’s angle, so the arc’s end point corresponds to the angle βk = αk + δk .

arcsnew(ka,3) — is a help array with the same structure as the array arcs.
angles(ka) — is a help array to remember all angles corresponding to all intersection points of some circle with all other circles in

(t, s) plane.
av(2) — av(1) is the value of surface integral of the volume calculation method and av(2) is the value of surface integral of the

surface area calculation method [24].
vertices(kt,3) — the coordinates of the triple intersection points which do not lie inside of any sphere of M.
ivertices(kt,2) — contains corresponding wall triangle for the intersection point from the list vertices.
it(ka,kn) — a help list of triangles in the given structure:

[i,j,k,n11,n12,...,n1maxtsn,...,
n31,n32,...,n3maxtsn,n1,n2,n3,status].

ntout(kt,6) — the list of neighbors with maximal declination for each side. The first 3 columns correspond to the positive, and the
last 3 columns correspond to the negative orientation.

itel(kt,5) — auxiliary list of triangles.
ittt(kt,8) — the dynamic list of triangles in the actual segment with some side unoccupied. The first 3 columns are the triangle’s

vertices spheres indices, columns 4–6 contain corresponding neighboring triangles order numbers for sides 1–3 of the triangle. The 7-th
column contains the triangle’s orientation, and the last column contains its order number in the list it.

iit(kt,3) — the final list of triangles which compose the triangulation. The number of these triangles is ntt.
isph(ks) — the final list of sphere indices for all cavities.
icav(kt,6) — the final information about cavities: icav(i,1) is the starting position in iit and icav(i,2) is triangles number for

i-th cavity; icav(i,3) is the starting position in boundary and internal spheres list for the i-th cavity; icav(i,4) and icav(i,5)
are the boundary and internal spheres numbers for the i-th cavity; icav(i,6) is the cavities number of the i-th segment.

4.4. Brief description of subroutines and functions

The following subroutines and functions have been used in ARVO package. They are described in [24], and we will omit their descrip-
tion in this paper:

make_neighbors, neighbors, North_Pole_test, spheres_rotation, areavolume, local_spheres, make_ts_circles,
circles_to_arcs, new_arcs, mysort, mydsort, circles_intersection, circle_in_circle, point_in_circle,
delete_equal, fract, avintegral.

Only the subroutine make_neighbors and the function neighbors are used in the triangulation method, all other subroutines and
functions are used for the volume and the surface area evaluation.

The function delete_cavities_internal_arcs is used in the modified areavolume procedure of the evaluation of the surface
area and the volume. All calculations are done twice. In the second run only arcs, which correspond to the outer boundary of molecule
are used for calculation of the integrals (see [24]).

The following subroutines and functions correspond to the triangulation construction part of the program:

pdbread(fname,x,y,z,r,ksf,atres,nowrite,ivdwr_set) — reads the PDB file of a given protein, and prepares the informa-
tion about the positions and sizes of all atoms.

istart(str) — returns position of the first non-blank character in str.
istop(str) — returns position of the last non-blank character in str.
make_triangles — the main function which calls all subroutines and functions below.
intersect(ia,ib,ic,ik,in) — checks the intersection of two vectors of indices ia and ib. It returns the number of common

indices, and the lists ic=[ind1,ind2,...] — sorted common indices in vectors ia and ib. Positions of common indices in vector
ia are written to the list ik=[ind1a,...]. in=[ind1b,ind2b,...] is the list of positions of common indices in vector ib. We
suppose that there are no multiple indices in vectors ia and ib.

internal_triangles(it,itel,itelp,is,spheres,nit,nt,ntp,kt,ks,kn) — prepares the list is of triangles from the list
it of the length nit which are inside the triangles’ set itel of the length nt, and will be removed. Returns the number of internal
triangles.

internal_point(p,itel,spheres,kt,ks,ntel) — returns value 1 if the point p=(p1,p2,p3) is inside the triangulation rep-
resented by triangles from itel with the vertices at the centres of spheres(itel(i,j)), j = 1,2,3. Returns 0, otherwise.

myisort(ind,n_ind) — sorts the list ind of the length n_ind in ascending order.
idelete_equal(ind,indnew,kt,n_ind) — deletes multiple indices in the sorted list ind.
delete_triangle(i,it,kt,maxtsn,kn,iflag) — makes all necessary changes in the matrix it for deleting the i-th triangle.
find_other_bindings(ittt,ntout,it,kt,nt,kn,maxtsn) — finds the neighbors from ittt (if such exist) to all unoccupied

sides of the triangle at position nt in ittt. If some triangle from ittt is the neighbor to the given triangle, its ittt information is
changed too — new neighbor nt is added at the corresponding unoccupied side position.



J. Buša et al. / Computer Physics Communications 181 (2010) 2116–2125 2123
make_orientation(i,is,io,k,it,kt,kn,maxtsn) — calculates the orientation of the k-th triangle, if it is connected to the is-th
side of the i-th triangle which has an orientation io .

angles_calculation(i,is,io,lat,spheres,it,angle,kt,ks,kl,kn,na) — calculates the angles between oriented trian-
gles from the list lat (neighbors to the is-th side) and the i-th triangle whose orientation is io . Angles are written to the list angle.

angles_inner(lat,spheres,angle,ks,kl,na) — this subroutine calculates angles between inward oriented triangles from the
second row up to the row na+1 of the list lat and the first triangle of the list lat, with common side lat(1,4). Angles are written
to the list angle.

cross(va,vb,vc) — vector vc is the vector (cross) product of two vectors va and vb of the length 3.
dot(va,vb) — returns the scalar (dot) product of two vectors va and vb of the length 3.
enorm(va) — returns the Euclidean norm of the vector va of the length 3.
det3(am) — returns the determinant of 3 × 3 matrix am.
gauss3(am,vb,vsol) — vector vsol is the solution to the 3×3 system of linear equations with system matrix am and the right-hand

side vector vb.

5. Notes on possible parallelization

CAVE is a fast program. The molecule of thousands of atoms is processed on modern computers within a few seconds. In this sense
there is no direct need for parallelization when the program is used for single or occasional calculations. This is the usual case, and that
is why CAVE was developed as a sequential program. If there is need to use CAVE for massive calculations of many molecules then the
simplistic parallelization method can be applied when the same code is sent to the different nodes with different input files. However,
there is a special case when one needs to calculate the cavities in numerous conformations during the Monte Carlo or molecular dynamic
simulations. Let us mention that it is easy to incorporate CAVE into various simulation packages. For this case currently we don’t have a
clear algorithm for intrinsic parallelization of the code. One possible way is to send this code to a special node when others are busy with
calculating the energy function. CAVE is an open code and the interested user can find many ways to parallelize certain parts of it. For
example one can parallelize the process of searching for the neighbors of a given triangle.

6. Running the program

The code is written in standard Fortran language and it can run on any platform where the Fortran77 compiler is available. We have
been using the program on Linux platform. To use the program the user must take some simple steps:

Uncompress the file CAVE.tar. A directory CAVE will be created which contains the following items:

• The file CAVE.f which is the program itself.
• The file README which provides some useful information.
• The PDB file which is used for testing the program.
• The directory TEST which contains output files for test run.

After this just compile the code and run. No makefile is necessary.

7. Example

The program has been tested to calculate the cavities in many proteins from PDB. The results are published in [45]. As an example, we
bring here the results of calculation for the protein 2ptn from the PDB. All output files are included in the directory TEST which is the
part of this package. After running the provided version, the output files must coincide with ones in TEST directory.

Appendix A shows the screen output. One can see that there are 17 cavities in this protein.
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Appendix A. Screen output of the exemplary run

The probe radius 1.20000005
The protein name 2ptn
Total number of atoms: 1629 allocated: 20000
Rashin set
Total number of neighbors: 62054
Neighbors total: 62054 allocated: 2000000
Maximum: 66 allocated: 200
Number of the preliminary triangles: 2236
Number of vertices: 2278
2197 active triangles before lugs cutting.

After lugs cutting: 2197

1. south: 1443 1444 1453
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340 internal points
Clusters: 26 Relations: 11

1. segment contains 17 cavities.

11 triangles were deleted from the list IT.
326 internal triangles were deleted from the list IT.

340 internal triangles vertices!
1. segment contains cavity!

Triangles number after 1. segment: 0

Number of segments:
Total: 1 Deleted: 0 Cavity enveloping: 1
1. cavity segment contains 340 triangles.

Total number of cavities is 17.
Total number of triangles is 340.
Total number of spheres is 203.
340
Number of atoms: 1629

There exists cavity!
Inaccessible volume: 37436.2361
Accessible surface area: 9315.41184
Cavities volume: 32.4669432
Surface area of cavities: 181.732348
1. boundary volume: 563.196503
1. boundary surface area: 389.741749
1. cavity volume: 0.0590741273
1. cavity surface area: 1.10512934
2. boundary volume: 515.125257
2. boundary surface area: 375.817426
2. cavity volume: 0.00464992906
2. cavity surface area: 0.194346908

...

16. boundary volume: 1628.63036
16. boundary surface area: 862.982504
16. cavity volume: 6.12086952
16. cavity surface area: 36.522405
17. boundary volume: 614.397572
17. boundary surface area: 423.464562
17. cavity volume: 0.0684193718
17. cavity surface area: 1.43204525

STOP End statement executed
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