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Abstract: Detection and quantitative characterization of the internal cavities in proteins remain an important topic in
studying protein structure and function. Here we propose a new analytical method for detecting the existence of cavities
in proteins. The method is based on constructing the special enveloping triangulation enclosing the cavities. Based on this
method, we develop an algorithm and a fortran package, CAVE, for computing volumes and surface areas of cavities in
proteins. We first test our method and algorithm in some artificial systems of spheres and find that the calculated results
are consistent with exact results. Then we apply the package to compute volumes and surface areas of cavities for some
protein structures in the Protein Data Bank. We compare our calculated results with those obtained by some other methods

and find that our approach is reliable.
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Introduction

Native folds of proteins represent densely packed structures, and this
close packing is a major contributing factor to the stabilization of the
native state.! However, despite the seemingly obvious advantage of
optimal packing, native structures of many proteins have cavities.>™>
Elucidating the role of cavities in function and energetics of the
proteins has been a challenge in experimental and computational
studies of proteins in the last two decades. Experiments on site-
directed mutagenesis®'” have shown that changing the size and
shape of the cavities influences considerably the stabilization energy
of the protein structures. Some investigations'' have showed that
even the function of the protein can be changed with the sizes of the
cavities.

Computational algorithms for detection and quantitative char-
acterization of the cavities are based usually on the space-filling
geometry model of the protein by Lee and Richards,'> which
interprets a protein as the union of overlapping spherical balls
in three-dimensional space. Each ball represents an atom, and
its size is defined by the van der Waals radius. The algorithms
belong to the family of shape description algorithms and are closely

related to those for calculating the surface area and the volume of
molecules.'>2* The first computational investigation of the cavities
has been reported by Lee and Richards'? who have modified for this
purpose their own algorithm for surface and volume calculation.
Rashin, et al.>> have modified the algorithm by Shrake and Rup-
ley?* to develop a program for detection of the internal cavities and
to predict the positions of buried water molecules. They investigated
12 high-resolution protein structures and predicted successfully the
location of 80% of internal water molecules. Hubbard et al.%2’
have analyzed internal cavities in 121 protein chains and observed
that the overall cavity volume increases with protein size, though it
remains only a small fraction of total protein volume. They examined
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the “empty” and water-containing cavities and found that the lat-
ter possesses a more polar surface. The cavities are nearly always
present in proteins more than 100 residues in size. In their calcula-
tions they used algorithms from refs. 17, 18 and 28. They extended
their research to investigate the cavities at protein interfaces. Zhang
and Hermans® used the molecular surface (MS) calculation algo-
rithm!” to calculate energies and free energies of a water molecule in
cavities and discuss the hydrophobicity of protein cavities. The ener-
getics of empty cavities and internal mutations have been evaluated
computationally as in ref. 30.

Based on the alpha shape theory, which provides a quan-
titative method to describe and compute shapes at multilevels
of detail in three-dimensional space, Liang et al.** proposed an
analytically exact method for computing the metric properties of
macromolecules. Later, they extended this method to study quantita-
tively the inaccessible cavities in proteins.>> An analytical algorithm
has been described in ref. 36. Procedures for identifying the buried
water molecules in cavities are described in refs. 37 and 38. The
surface triangulation method3%#° has been applied by some authors
to study the structure and interactions of proteins.*! Currently, the
cavity detection algorithms are included in some simulation pack-
ages mentioned in refs. 42—44. However, the source codes of these
packages are not easily available. Thus, it is of interest to develop
new algorithm and package to study cavities in proteins and other
macromolecules, which could be easily available to researchers.

In the present paper, we propose a new analytical algorithm for
detecting closed cavities in the interior of the single protein or at
the interface of two or many molecules and computing their sur-
face area and volume. The basic idea of the proposed method lies
in the construction of a special enveloping triangulation, such that
the conclusion if any point in the space belongs or does not belong
to the cavity, depends only on the relation between the point and
the triangulation. On the basis of this method, we develop a for-
tran package, CAVE, for computing volumes and surface areas of
cavities in proteins. Our objective for this work is to develop our
own cavity detection software for the protein simulation package
SMMP, %46 which has been used widely to study structures and
thermal properties of proteins.*7-48

31-33

We first test our method and algorithm in some artificial systems
of spheres and find that the calculated results are consistent with
exact results. Then we apply the package to compute volumes and
surface areas of cavities for some protein structures in the Protein
Data Bank (PDB)* using different sets of van der Waals atomic
radii. We compare our calculated results with those obtained by
some other methods. The testings have shown that our algorithm is
efficient, accurate, and reliable.

Methods

Basic Definitions and Concepts

1. Molecule and its atoms. M = | J; S; is the union of N overlap-
ping spherical balls S; (1 < i < N) in three-dimensional (3D)
space E3; S; represents the i-th atom and M can represent a
molecule, e.g. a protein. We denote the surface of the atom S; by
8S;.

2. Cavity. A cavity C of the molecule M is a nonempty, bounded,
and closed domain in E3, whose full boundary consists of the
parts of the molecular boundary, and whose interior, Int C, has
no common points with the molecule M.

Here we should make an important remark. When talking
about the atoms we mean that their van der Waals radii are
extended by the probe ball (usually the water molecule) radius.
This means that the number, sizes, and shapes of cavities depend
strongly on the probe radius (see Fig. 1). Different authors use
different probe radius for their particular purposes. Also, however
strange, currently there is not even a unique agreement about the
van der Waals radii of protein atoms, and several sets are being
used. This problem is discussed in ref. 50, which contains an
extensive list of related references.

3. Wall triangle. Let Cy, Ca, C5 be the center points of three atoms
in M. Then the triangle AC;C,Cs3 is called a wall triangle in M
if and only if the intersection §S; N 8S, N §S5 of the surfaces of
the atoms is not empty and at least one of the intersection points
does not belong to the interior of M, Int M (lies on the MS). See
Figure 2 for an example.

()

Figure 1. The same molecule without (left) and with (right) a cavity depending on the probe radius.
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Figure2. A walltriangle AC;C;Cy. Py is the intersection point of three
spheres, and it lies on the surface of the molecule. Collecting wall trian-
gles to enclose all cavities in a protein is an important step in enveloping
triangulation method for detecting internal cavities in that protein.

4. Neighboring wall triangles. Two triangles are called neighbors if
they share a common edge. The planes of the neighbor triangles
form a dihedral angle. Two vertices of the neighbor triangles
coincide, and the third one is called free vertex.

5. Triangulation. Triangulation means a special set of polyhedrons
with triangular faces that enclose all cavities of the protein. The
triangulation of the molecule M is denoted by AM.

Triangulation A M is a set of triangles which can be nonempty
even if no cavity exists in M. However, we can construct a min-
imal covering triangulation such that it is empty if there exists
no cavity.

Note: It is obvious that the empty triangulation will imply the
lack of cavities.

6. Oriented triangle. Suppose the vertexes of all triangles are enu-
merated. If we view perpendicularly to the triangle’s plane and
find that the order numbers of vertexes increase in counterclock-
wise direction, then we say that the triangle is positively oriented;
otherwise, the triangle is negatively oriented. Obviously, a posi-
tively oriented triangle will turn into an negatively oriented one
when viewed from the opposite side of the plane. See Figure 3
for an example.

7. Enveloping triangulation. The enveloping triangulation AM for
cavities (briefly envelope triangulation) of a protein (or a system
of balls) M is either an empty set or it is such a set of wall
triangles in M with coincident inward orientation that

i. AM consists of a family of closed polyhedrons P; whose
facets represent inwardly oriented wall triangles such that
Int P; N Int P; = @, for all i # j,
ii. any cavity point lies inside some of these polyhedrons,
iii. if any point from E3 — M is not in any cavity of M then it
lies outside the triangulation AM.

Note: The term inwardly oriented in “(i)” mentioned earlier
means that the triangle is positively oriented when viewed from
the interior of the polyhedron.

8. Cavity volume and surface area. There are two basic definitions
of the cavity volume and surface area. When the probe is being
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rolled over the van der Waals surface of the atoms, exposed to
the interior of the cavity, its center creates a solvent accessible
(SA) surface. The volume of the corresponding body is called SA
volume. At the same time, the front of the probe sphere which
is in touch with the van der Waals surface of the atoms, creates
a MS, and the volume of the corresponding body is called MS
volume of the cavity. We can use CAVE to calculate the SA
surface area and volume of a cavity based on analytic equations,
and calculate numerically the MS volume of the cavity.

Proposition 1. [f AC,C,Cs is a wall triangle in M with corre-
sponding spheres §S1, S, 853, then the planes of intersections
of all pairs of these spheres intersect with the plane of the cen-
ters C1(x1,¥1,21), Ca(x2,¥2,22), C3(x3,y3,23) in the single point
(x,y,2), which is, consequently, the unique solution to the following
system of linear equations

(2 —xpx + 02—y + (2 —21)z

1
T R R I NS N B

(3 —xpx + 3 =)y + (3 —21)z
T R I

X — X1 Y= Z—12
Xp—x1 y2—y1 22—z |=0, (D
X3 —X1 Y3—)Y1 B3—Z1

where r;,i = 1,2,3 are the radii of the spheres.

The first two equations in the system of equations mentioned
above represent the planes of intersections of spheres, and the third
is the equation of the plane C;C,C3. Moreover, this solution falls
into each ball of the triplet.

The 2D Analogue of the Enveloping Triangulation

Some aspects of triangulation can be visualized by introducing the
two-dimensional (2D) analogue of the molecule. Here the balls are
replaced by disks, spheres by circles, and the triangles are reduced
to the segments of straight line, and the edges of the triangles are
reduced to points (Fig. 4).

The centers of two intersecting disks are connected by a straight
line segment if one of the intersection points lies on the outside

Qz <+ }3

Figure 3. Positively (arrow up) and negatively (arrow down) oriented
triangles when viewed in the direction, perpendicular to the triangle’s
plane from above.
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boundary of two disks. In this way we obtain some special 2D net.
There is always a closed route (envelope) in this net that encom-
passes the internal cavity (the bold polygon on Fig. 4) if the cavity
exists. The circles which intersect with only one other circle can
be safely removed without destroying the envelope. We shall call
such circle (a sphere in 3D case) a “lug.” Removing one lug may
give rise to a new lug which must be removed again. Our goal is to
construct a minimal closed cycle (envelope) of connections which
will enclose all arcs which are parts of the boundary of some cavity.
By minimal it means that removing any connection would destroy
the cycle.

The Cavity Test for the Arcs

The boundary of the molecule consists of two types of surfaces. The
outer boundary is the van der Waals envelope of the molecule, and
the inner boundary includes the surfaces of atoms forming cavities.
Both boundaries consist of circular arcs (or spherical segments in
3D case). The complete list of the circular arcs of the boundary is
assembled by the algorithm for calculating the SA surface area.?>>!
In order to detect the cavity the algorithm has to distinguish between
the arcs (the caps) which constitute the outer boundary and the ones
that belong to the boundary of the cavity. In other words, one has
to make a decision whether the given arc (cap) is external or inter-
nal with respect to the envelope. This is equivalent to the decision
whether the central point of the arc lies inside the envelope or not.
Such decision can be made by computing the sum of the oriented
angles under which each straight line segment of “triangulation”
is seen from a given point. For inner points this sum equals to 27
(point P; on Fig. 4) while for the outer ones it is O (point P,). Similar
criterion is applied for the 3D case by using the notion of spherical
angle. The method to calculate the spherical angles will be given in
Appendix.

Construction of the Outermost Enveloping Cycle

Our goal is to construct an “envelope triangulation,” based on the
net of connections between the centers of the intersecting circles. To
assemble the outermost cycle, we can start with one outer “triangle”
(say the southernmost), and then go on by adding at each step one
new outer “triangle” (see Figs. 4 and 5).

The Algorithm for Constructing the Envelope Triangulation

We assume that all spheres are enumerated by assigning numbers
1,2,...,N to their central points. The algorithm for constructing
the envelope triangulation consists of the following steps.

1. Preparing the preliminary list of the wall triangles. The i-th
sphere and the j-th sphere with radius r; and r;, respectively, are
neighbors if their separation ry; satisfies the relation: r;; < r;+7;.
We first list all possible wall triangles in M by using neighbor-
hood relations for all pairs of spheres. Using the neighborhood
list we check possible triplets, if they satisty the system of equa-
tions (1) just in one point. Triplets with unique solution may be
of two kinds: (a) if this solution lies inside of all three spheres,
and if at least one of the intersection points does not lie inside
of any sphere of M then we get a wall triangle and we add it to
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Figure 4. Definition of triangulation in 2D space.

the preliminary list; (b) otherwise, the triplet is not a wall trian-
gle. See Figure 5 for an example of the preliminary set of “wall
triangles” in two dimensions.

2. Constructing dynamic data matrix WTRMAT for wall triangles.
Each row in the matrix represents one triangle and has the fol-
lowing structure: (a) columns 1-3: vertices of the given triangle
in increasing order; (b) several columns starting from the 4th
contain the order numbers of the neighbors at each edge: the first
neighbor at the 1st side, the second neighbor at the 1st side, so
on, the maxtsn-th neighbor at the 3rd side; (c) next three columns
contain the total number of the neighbors at each side; (d) the last
column contains a special status of the triangle: status = 0 means
that the given triangle has been removed from the list during the
lug-cutting procedure, status = 1 means that the triangle has not
been processed yet. Other values of the given variable will be
discussed later. The initial value is set equal to 1. The variable
maxtsn mentioned earlier denotes the maximum possible number
of neighbors at one side of the triangle.

3. Lugs cutting. Any wall triangle from the list which has a free side
(no neighbors at that side) is removed from the list by setting its
status to 0. The order numbers of the vertices of such triangle
are deleted from all rows of its neighbors, and the corresponding
total numbers of neighbors are corrected. After this operation,
new triangles with free side may appear and the whole process
must be repeated iteratively until each of the remaining triangles
has neighbors on each side.

4. Determination of a unique outer neighbor for each side. Sup-
pose the first triangle in triangulation is picked up. This may be,
for example, the “southernmost” triangle in the preliminary list.
Since this triangle may have more than one neighbors at the given
edge, then one needs a criterion to determine which neighbor to
choose as the next member of the actual triangulation. The proper
choice is the neighbor that forms a maximal dihedral angle with
the given one from the point of view of inward orientation. Here
the problem is that in the beginning of the procedure it is not
known which orientation of the triangles must be considered as
inward orientation. So, we need to define the neighboring trian-
gles for each side for both orientations. This information is stored
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Figure 5. Preliminary set of “wall triangles” in two dimensions.

in the matrix NTOUT, whose rows describe triangles; the possi-
ble neighbors for one orientation are written to the columns 1-3
(orientation of the triangle given by the increasing order numbers
of its vertices) and the columns 4—6 contain possible neighbors
for another orientation.

At this point, it is checked whether there are more than one

triangles forming a maximum angle with the actual triangle. Such
multiple triangles are removed and only one is left. This special
situation with multiple neighbors arises when the centers of more
than three balls produce a set of triangles for which the edges form
a complete graph. The triangle to be deleted is chosen arbitrarily.
Deletion of some triangle activates the deletion of some of its
neighbors.
. Starting a new envelope. We start with some wall triangle from
the preliminary list of wall triangles. A convenient choice is the
southernmost triangle (the one for which the south poles of its
vertex spheres include the southernmost point in M).

For this purpose, we first find all triangles with the correspond-
ing southernmost South pole vertex. If there are more than one
such triangles, then we choose the one whose normal vector with
nonnegative third component forms the minimum angle with the
vector (0,0, 1) (note that the triangle whose plane is vertical to
the (x,y)-plane, forms a maximum angle 77 /2 with the vector
(0,0,1)). If there are again more than one such triangles, then
the choice is arbitrary. When the choice of the first triangle is
done, the inward positive orientation of this triangle is defined.
If the increasing order numbers of its vertex spheres is corre-
sponding to the positive inward orientation (see Fig. 3 left), then
the orientation is set to O; otherwise it is equal to 1.

. Looking for a new neighbor. The list of triangles of the next enve-
lope triangulation component is made in successive steps. The
first triangle of this list is the southernmost triangle, described
earlier. It will be the first actual triangle. In the next step, one new
neighbor triangle from the preliminary wall triangles list with
corresponding orientation is drawn by using the matrix NTOUT,
and it is added to the list. When a new neighbor is added to the
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actual list of the component, it is deleted from the preliminary list
of the wall triangles (its status is set to 2). For this newly added
triangle, all side bindings with other triangles from the actual
component’s list are checked. This information is stored to the
triangles list. When all sides of the actual triangle are occupied
by neighbor triangles a new actual triangle in the component’s
list, with at least one free side is chosen.

7. Completion of the envelope triangulation component. At some
step all triangles in the list of the actual component will have all
sides occupied. Now the new envelope triangulation component
is completed. All triangles of the component are written to the
output list and acquire status 3 in the preliminary list of wall tri-
angles. All other triangles from the preliminary list are checked
if some vertex lies inside the actual envelope triangulation com-
ponent. If yes, then such a triangle is removed from the list (its
status is set to 0).

When the component is collected, we can check, if it contains
a cavity, or not. According to the definition, at least one of the
intersection points of three spheres of each wall triangle must be
external to M. If any of these points lies inside the triangulation
polyhedral component, then a cavity belonging to this triangula-
tion component exist (let us call these Z-type points). Otherwise,
there is no cavity inside.

So, after each cycle of assembling the envelope triangulation
component the number of triangles from the preliminary list with
status equal to 1 becomes smaller and smaller. When less than
four such triangles are left, the outer envelope triangulation is
completed.

Determination of the Minimal Covering Triangulation

The set of all Z-type points defines the list of all wall triangles and
the corresponding spheres which are partially exposed into some
cavity. These spheres form a set of closed domains each of which
contains exactly one cavity inside, and hence, defines a minimal
covering polyhedron of wall triangle. A 2D example of the minimal
covering triangulation with marked internal vertices is shown in
Figure 6. It can be compared with the outer triangulation in Figure
4 or in Figure 5 (the internal cycle).

Figure 6. Minimal cavity triangulation.
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The minimal covering triangulation may contain internal lugs.
In this situation, the 2D and 3D cases are essentially different. In the
2D case, all boundary atoms are vertices for some “wall triangle,”
while in the 3D case, there may exist internal lugs or even internal
links composed of atoms that are not vertices of any wall triangle.
Detection of such atoms is important when the volume and surface
area of the cavities are to be calculated. So, at the end of the con-
struction process, it is necessary to check whether the centers of
some atoms fall into the cavity bulk.

For this purpose, following steps are implemented:

1. Once more we fill the NTOUT list. For each triangle

e Orientation of the triangles is defined using the internal trian-
gle’s point—the first three columns of each row are the triangle
vertices and their order defines the inward orientation of the
triangle;

e Positions from 4 to 6 are the neighbor triangles (forming the
minimum inner angle with the actual oriented triangle in the
case when the side has more than one neighbor) for each side
of the actual triangle.

2. The boundary triangles of the cavity are written to ITTT. The
neighborhood relations are being checked. When the boundary
is closed, the triangles are written to the list IIT. Information
about the number of triangles for the given cavity and the starting
index of the triangles in the list IIT are stored to the lists NC
and ISC, respectively.

3. All atoms inside the cavity triangulation segment are determined.

Testing the Method in Artificial Systems of Spheres

In this section, we describe some tests for the accuracy of the algo-
rithm. For this we construct an artificial systems of spheres that
certainly contain/do not contain cavities. Unfortunately, there are
no known analytical formulas for detection and quantitative calcu-
lation of the cavities. This means that one is not able to check the
accuracy of the program by calculations “by hand.” So, we have to
devise some other kind of tests.

Checking the Position of the Space Points with Respect to the System

One of the robust tests is to check whether the program is able to
detect the existence of the cavity and to tell the position of a given
space point with respect to the cavity. We did this test with different
numbers of the spheres and with different sets of space points. Here
we bring the result of such a test for the system of six spheres. In
our tests, we shall distinguish four possible positions of an arbitrary
point with respect to the system:

1. The point is outside of the molecular envelope formed by the
outer boundary.

2. The point belongs to the interior space of some atom.

3. The point is outside the molecule but within a distance less or
equal to the solvent radius.

4. The point belongs to the interior of some cavity.

Our system consists of six spheres, labeled by i = 1, 2, 3,4, 5,
and 6; every sphere has radius 10, i.e. r;, = 10,i =1, 2,..., 6. The
centers of the spheres are positioned on the six half-axes x,y, z at
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distances d = 11 from the origin (0,0,0). It is obvious that there is
a cavity around the point (0, 0, 0). Now we input the coordinates of
five points and run the program. Here is the result.

For the solvent radius r,, = 0

1 .000000 .000000 .000000 4
2 .000000 .000000 .800000 4
3 .000000 .000000 5.000000 2
4 21.200000 .000000 .000000 1
5 22.000000 .000000 .000000 1
And forr, = 0.4
1 .000000 .000000 .000000 4
2 .000000 .000000 .800000 3
3 .000000 .000000 5.000000 2
4 21.200000 .000000 .000000 3
5 22.000000 .000000 .000000 1

Here the first column is the order number of the point, the next
three columns contain the coordinates, and the last one shows the
position of the point with respect to the system according to the
definition given earlier.

One can see that the first point is inside an internal cavity, the
second point is inside the cavity, but in a neighborhood of the system
(not farther than the solvent radius), the third lies inside an atom, the
fourth point is, again, outside the system but in its neighborhood,
and the fifth one is outside the system at all.

Detection and Quantitative Calculation of the Known Cavity

The next test on accuracy is to ask the algorithm to detect the known
cavity or to report on its absence, with further calculation of quantita-
tive parameters. Here we bring an example with 26 spheres and two
different values of their radii. First we take r; = 0.8, and r, = 0.7

Figure 7. Spheres arranged in the form of cubic lattice.
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The centers of the spheres are positioned at points (i, j, k) #~ (0,0, 0),
i,j,k € {—1,0,1} (see Fig. 7).

Case 1. Let us first set all radii of the spheres to r = 0.8. This
systems certainly contains a cavity. The output of the program is

Number of spheres: 26
Solvent radius: 0.000000000000000 E +000
Total/maximal number of neighbors: 216/20000
Triangulation size: 48

There exists a cavity!

Inaccessible volume:
Accessible area:
Cavity volume:
Surface area of cavity:

37.036248686213050

66.748085985837720
1.183073021905514 E -001
3.035763953402949

Case 2. Now, if we put a new sphere at the point (0,0,0) with
radius 0.9445 < ry < 1.5455, the cavity must disappear. The real
output is

Number of spheres: 27
Solvent radius: 0.000000000000000 E +00O0
Total/maximal number of neighbors: 268/20000
Triangulation size: 48
There is no cavity!
Inaccessible volume:
Accessible area:

37.036248686213050
66.748085985837720

Case 3. Now we return to case 1, but set the radii of the spheres
to r = 0.7; the results are

Number of spheres: 26
Solvent radius: 0.000000000000000 E +000
Total/maximal number of neighbors: 96/20000
Triangulation size: 0
There is no cavity!
Inaccessible volume:
Accessible area:

29.715277712754660
75.649551098442220

One can see that when the radii are small, the “cube” becomes
perforated like a cheese and there are no closed cavities anymore.

Results

On the basis of the algorithm presented earlier, we have developed
the fortran code, CAVE, and used it to calculate the number, volumes
and surface areas of the cavities in several protein structures from
PDB.* Calculations of van der Waals surface areas and volumes
have been done for 11 molecules using CAVE and some other pack-
ages. The comparative data for areas and volumes are summarized
in Tables 1 and 2, respectively.

Table 1 lists the van der Waals surface areas computed
with CAVE, ARVO,’! alpha shape-based analytical method
VOLBL/CAST by Liang et al.>* analytical method MSDOT
by Connolly,"> 1”32 and GEPOL method by Pascual-Ahuir and
Coworkers.”>>* Table 2 lists the van der Waals volumes computed
with CAVE, ARVO, GEPOL, VOLUME,* and VOLBL. Please
note that ARVO’! was developed by us; we can use it to calculate
volume and surface area of a protein, but we cannot use it to detect
the existence of cavity.

Table 1 shows that our results coincide with the high accuracy
with the values, obtained by well-known packages. The small dif-
ferences may be due to slightly different values of the van der Walls
radii. Different authors sometimes modify the values of radii for dif-
ferent reasons depending on certain problem under consideration.
Table 2 shows that results obtained by using CAVE, ARVO, GEPOL,
and VOLBL are also quite consistent, but the results obtained by
using VOLUME are much larger than those obtained by using other
methods. It is valuable to check carefully the computing algorithm
or program of VOLUME.*?

After this test, we calculate the location, surface area, and vol-
umes for cavities in proteins. In Table 3 we show the results of these
calculations and compare them with those obtained by using two
other methods.?>33 The columns of the table contain the following
information: (1) the identification code of the protein in PDB; (2)
the number of cavities detected by our program CAVE using the
Richard’s set of the atomic radii and the SA model; (3) the same
obtained by using the radii set from ref. 25; (4) the same, obtained
by the VOLBL package;*? (5) the same, obtained by Rashin et al.;>>
(6-9) the surface areas of the cavities; (10-12) the volumes. The
probe radius in this calculations is 1.2 A.

We think that the results obtained by CAVE can be considered
as comparable with two others. The differences between our and
Rashin’s results may be due to the different natures of algorithms.

Table 1. Computed van der Waals Surface (VW) Area (in Az) of Selected Proteins.

Protein Atom VOLBL MSDOT GEPOL ARVO CAVE Number of cavities
leca 1049 13852.0 13842.9 13909.4 13761.8 13761.8 0
1nxb 472 5673.7 5672.1 5683.3 5676.4 5676.4 0
2act 1657 21252.3 21260.6 21162.0 21111.9 21111.9 4
2cha 1736 22551.2 22521.6 22505.6 22429.7 22429.7 3
2lyz 1001 12720.4 12700.7 12704.8 12676.6 12676.6 3
2ptn 1629 21433.1 21439.9 21480.5 21304.8 21304.8 0
2sn3 495 6453.6 6449.8 6432.4 6454.2 6454.2 2
3cyt 1606 21158.1 21170.3 21125.1 21015.1 21015.1 4
3rn3 957 12332.2 12328.1 12287.9 12333.9 12333.9 0
4pti 454 5939.1 5939.4 5919.6 5921.0 5921.0 0
5mbn 1217 16201.3 16192.0 16247.8 16133.6 16133.6 0
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Table 2. van der Waals (VW) Volume (in A3) of Selected Proteins.

Protein VOLBL VOLUME GEPOL ARVO CAVE

leca 13402.0 18740.1 13383.1 13722.7 13722.7
1nxb 5841.0 7522.3 5471.0 5943.2 5943.2
2act 20930.5 28303.9 21055.6 21552.0 21552.0
2cha 22431.3 31631.7 22460.5 22820.3 22820.3
2lyz 12663.4 17228.2 12594.1 12933.9 12933.9
2ptn 21031.0 29298.8 21305.9 21380.7 21380.7
2sn3 6256.3 8410.9 6529.1 6426.0 6426.0
3cyt 20667.6 29345.1 20606.5 21150.8 21150.8
3rn3 12110.8 16279.2 12196.0 12418.4 12418.4
4pti 5836.5 7640.8 5830.2 5978.2 5978.2
5mbn 15816.5 22147.4 15944.2 16159.1 16159.1

Our algorithm is analytical while Rashin’s approach is based on
numerical integration. At the same time, one might expect that since
our program and VOLBL use analytical methods, the results must
coincide with higher accuracy than is shown in the table. One reason
for this may be the aforementioned uncertainty in atomic radii. We
used for the both sets of radii the values which we found in the
literature. Yet another source of discrepancy may be in differences
inthe PDB file. There are always uncertainties in atomic coordinates,
which different researchers handle in different ways. Our experience
tells us that cavities are extremely sensible to both factors.

Let us demonstrate this graphically. While the molecular graph-
ics programs might show a more vivid picture on the computer
screen, we use just a simple 2D scheme. Figure 8 shows a system of
atoms that clearly contains a cavity when the atoms are of the shown
sizes. Now suppose that in order to fit some experimental data one
uses a little smaller radius for the atom A. Then, obviously, the gap
will appear between A and its right neighbor, and the cavity will dis-
appear (open up). Unfortunately, one should mention that currently
there is no well standardized set of atomic radii. Very often, even if
the authors cite a known set, they use some modified (even a little)
values or introduce radii for atomic groups instead of single atoms.
For example in CH group one author may just neglect the H atom

and use the published value for carbon radius while the another may
again neglect the H atom but use a modified value for the carbon atom
even if the carbon is of the same type (aromatic, aliphatic, etc.), only
to show the difference between “stripped” carbon and CH group. Of
course, this is not just a fancy of researchers but is an objective sit-
uation arising from the fact that only a few types for every kind of
atoms are defined so far. Hopefully, the situation will be improved
in the near future when more types of atoms are introduced. One
such attempt has been done recently in an earlier cited article.>
Similarly, the cavity can be destroyed if some structure definition
program gives a little different position (coordinates) for the atom A.

Membrane Protein Bacteriorhodopsin

We have carried out a detailed calculations for the membrane protein
bacteriorhodopsin (BR) (2brd.pdb) and compared the results with
the data from Table X in ref. 35. The data are represented in Table 4.
The structure of BR has been obtained by Henderson and coworkers
from electron microscopy studies.>>>® The coordinates of atoms are
given in the file 2brd. pdb.

We use 1.4 A as the probe size for a water molecule, all het-
eroatoms are included, like in ref. 35. In ref. 35 no information is
given about the van der Waals radii.

Table 3. Cavities Computed for the Listed Proteins Using Triangulation Method: Comparison with Results from

Liang et al.3> and Rashin et al.>>

Number of cavities Area Volume
Protein ca ca VOLBL Rashin ca ca VOLBL Rashin c ca VOLBL
leca 8 12 10 9 59.1 35.7 46.4 69 7.8 4.0 6.4
1nxb 3 4 3 0 0.15 0.29 0.4 0 0.0 0.0 0.0
2act 18 19 20 21 127.3 143.7 140.4 130 31.4 36.7 35.0
2cha 21 26 23 26 119.6 143.0 132.2 120 16.3 20.8 20.4
21lyz 11 12 12 8 50.3 58.0 58.7 53 74 8.6 9.0
3ptn 16 17 19 13 159.3 181.7 175.4 168 27.3 32.5 31.5
2sn3 1 1 2 2 3.74 5.1 6.0 6 0.3 04 0.4
3cyt 5 5 8 5 1.8 2.7 3.1 2 0.1 0.1 0.1
3rn3 1 1 4 5 1.1 0.0 1.3 3 0.1 0.0 0.1
4pti 2 2 2 2 21.8 26.5 23.4 20 32 4.8 3.7
Smbn 12 16 17 23 56.9 69.3 95.8 85 8.4 10.7 14.1
8tln 30 42 42 30 127.0 166.0 163.4 117 16.5 229 22.2
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Figure 8. Sensibility of the cavity against atomic radii and coordinates.

First the Richard’s radii set'3 was used as in ref. 34. Authors of
ref. 35 report 18 cavities. We obtain only 16. But for selected amino
acids groups of three cavities reported in Table X,3 our calculations
show that such cavities do not exist (for Richard’s parameter set).

With radii used by Rashin et al.,> the correspondence was much
better. The number of cavities was the same —18. Table 4 compares
our results to those from Table X of ref. 35. Areas are in A% and
volumes are in A3, respectively.

The differences between residues contributing to the cavities are
also listed in the last column.

The first two columns contain the order numbers of the cavities
detected by VOLBL?® and our program, respectively. The results
given in ref. 35 have subscript “V,” our data are denoted by sub-
script “C.” The last column contains the residues reported in ref.
35 not detected by our program, except the G125*, which has been
detected by our program, but not mentioned in Table X of ref. 35.
The situation is interesting with the cavity No. 13 detected in our

program. Its boundary is formed by four atoms: 640 LEU87, 672
PRO91, 845 GLY 116, and 869 ILE119. Its SA volume is 8.4 x 1077,
and the SA cavity surface area is 6.6 x 10™*. So, such cavity may
appear/disappear as the result of different numerical algorithms,
used in the calculations (even if the algorithms are analytical). This
cavity is not shown in the table. On the other hand, authors of ref. 35
report cavity no. 17, whose boundary should be created by the atoms
L152,F171, L174, and R175. This cavity has not been detected by
our algorithm and is marked by a “x” sign. To clarify the situation,
we have selected all 38 atoms of these residues and run our program
with these selected data. The result is presented as follow:

Protein from file 2brdcl7.pdb
Protein: 2brdcl?7

Solvent atom radius: 1.400
Rashin van der Waals radii set
Atoms number: 38

Segments number:
Total: 1 Deleted: 1 Cavity enveloping: 0
The total number of cavities is 0.

The total number of spheres is 0.

The total number of triangles is 0.

There is no cavity!
Inaccessible volume:
Accessible surface area:

1589.430136533074000
853.614508447047100

The similar result has been obtained by using the atomic radii set
from Richards. The output of the program shows that such a cavity
cannot be created by given atoms. Again, the reason may be in the
difference in radii and/or PDB data.

Interestingly, when we exclude the retinal heteroatoms from the
calculations, in both (Rashin’s resp. Richard’s sets) a large cavity

Table 4. Inaccessible Cavities Computed by VOLBL and CAVE for Membrane Protein Bacteriorhodopsin from

2brd.pdb.
Cavity order no. Surface area Volume
VOLBL CAVE SAy SAc SAy SAc MSy MSc Residue differences
1 15 40.3 37.6 10.5 8.6 134.0 1135
2 2 139 124 242 2.15 71.2 54.2 178
3 14 10.6 10.3 1.31 1.25 71.0 58.7
4 12 9.29 12.2 1.25 1.86 519 53.5
5 5 5.79 5.84 0.80 0.83 39.9 35.8
6 4 3.70 4.64 0.40 0.54 324 31.7
7 3 6.13 7.07 0.56 0.75 48.6 445 A53, V213
8 8 4.14 5.27 0.49 0.65 34.8 349
9 10 3.71 5.41 0.21 0.34 35.8 37.9
10 17 1.81 0.50 0.09 0.02 28.5 13.6 W137, Ret(C3), G125*
11 7 2.38 2.85 0.17 0.21 28.1 26.4
12 16 221 0.75 0.13 0.03 28.9 16.5
13 6 0.31 0.13 0.008 0.002 16.6 11.5 D96
14 9 0.82 0.12 0.03 0.002 224 124 Y57, W86
15 18 0.84 0.07 0.019 0.001 21.9 0.0 L207
16 1 0.62 0.22 0.025 0.005 19.0 12.1
17 X 0.02 0.000 12.7 L152,F171,L174,R175
18 11 0.01 0.14 0.000 0.001 12.7 11.5
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appears, whose boundary is created by parts of surfaces of 67 resp.
63 atoms.

Discussion

The merits of the proposed algorithm are its simplicity and strictly
analytical nature. There are no approximations made. The algorithm
implements a search process among the objects and systematizes
them according to certain rules. Calculations of the quantitative
parameters are done through analytical formulas. The program
CAVE written on the basis of the algorithm has been used for detec-
tion and calculation of cavities for many different systems including
artificial system of spheres and real protein molecules from PDB
databank. The results obtained by CAVE have been compared with
other similar programs available in the literature and in internet. Here
we would not like to declare that our algorithm is more efficient than
the others. But certainly we can say that it is competitive enough. It
should be mentioned that the calculated data do not always coincide
with those found in literature, but the differences are not larger than
the data obtained by any other two known methods. Unfortunately,
we do not have any of the cited programs at hand that creates certain
problems for exact comparison.

Here we want to discuss the probable sources of discrepancies.
In our opinion, the biggest problem is the different treatment of the
atomic radii. As we mentioned earlier, the real values of the atomic
radii used by some groups are often quite different from the basic
sets and are not published anywhere. During the testings of our pro-
gram we have communicated with the authors of one package and
requested to tell us the real values of the atomic radii which they
used. They have been very kind to send us these values and we
discovered that, for example, in Richard’s set of radii they use 25
types of atoms and/or atomic groups while the basic set published
by Richard contains only six types. We tried to use these values
but some other questions have arisen which required more infor-
mation from the authors. Unfortunately, our communications have
been interrupted by other party and we could not use these values
adequately. So, we use in our calculations the atomic radii as pub-
lished in the quoted papers. Some time ago we encountered a similar
problem when testing our algorithm for calculation of the SA area.?
But then we have been fortunate to find in the internet the program
GETAREA®’ from W. Brauns’s group,>® which appeared to be very
convenient for comparison of two algorithms because it suggests a
very simplified set of the atomic radii: the radius of the hydrogen is
set to 0 and all other atoms are assigned the value 1. Although this
may not be the best choice for real molecular calculations, it provides
an easy way for exact comparison of two algorithms. Another source
of differences may be the data in the PDB file. Some researchers
may slightly modify the atomic coordinates for certain reasons. This
happens less frequently, but we are not completely sure that we are
using exactly the same atomic coordinates.

The algorithm presented earlier allows to detect the cavities and
to study their properties such as localization, the boundary “atoms,”
the volume, and the surface area.

The program implementation of the triangulation algorithm,
together with several auxiliary programs could be used for solv-
ing different problems: determination of the position status of a
given point from the point of view of the cavities, localization of
the cavities, and calculation of their volume and surface area. The
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results, presented here, are in good agreement with the results given
by other authors.?>>°

Appendix: Calculation of the Spherical Angles and
the Cavity Index

In the 2D case, the sum of oriented angles can be used to make
a decision if a point belongs to the interior or to the exterior of
some closed curve. Similarly, in the 3D case, the sum of spherical
angles can be used to check if a point lies inside or outside the
closed polyhedron. Here we describe the algorithm for computing
the spherical angle of a point with respect to some spherical triangle;
a spherical triangle is a figure formed on the surface of a sphere by
three great circular arcs intersecting pairwise at three vertices. It is
sometimes called an Euler triangle.

Let a spherical triangle AABC on the unit sphere have angles
A, B, and C measured in radians (Fig Al). Then the area of this
triangle is

0(AABC) =A+B+C—1. (A1)

The angular arc lengths «, B, y and the vertex angles A, B, C are
related by the cosine formula%0-6

cosa = cos Bcosy + sin Bsiny cosA;
cos B = cosy cosa + sin y sina cos B; (A2)

cosy = cosa cos B + sina sin B cos C.

Calculation of the Spherical Angle

An oriented triangle AV;V,V3 in Ej3 is being viewed from a point
P (other than vertices) under the spherical angle that is equal to the
surface area of the projection of the triangle onto the unit sphere
with the center P (Fig. A2). Denote this oriented spherical angle by
op(AV V2 V3). Let op(AVV,V3) be negative if the point P is not
on the inward side of the triangle.

First the angles «, B, y are computed. Then we compute
cosA, cos B, and cos C using Eq. (A2). By substituting the val-
ues for A, B, and C into Eq. (A1) we get the absolute value of
op(AVV,V3).

Figure Al. The surface area of the spherical triangle.
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Va

Vi

Figure A2. Cavity indexing.

The Cavity Index

Now we consider some point P, which does not lie on the triangula-
tion surface. All vertices of cavity triangulation are projected onto
the unit sphere with the center in P (Fig. A2).

Definition 1. Ler P be a point in E3 not belonging to the cav-
ity triangulation AM. The index of P with respect to the cavity
triangulation AM is the number

1
Xp(AM) = — > op(®).
SeAM

Proposition 2. An envelope triangulation AM is setting bounds
to the point P (different from vertices of triangulation) if and only
if xp(AM) = 1.

So, if any intersection point mentioned at the end of the previous
section has the index 1, the corresponding triangulation component
contains a cavity inside.
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