Computer Physics Communications 183 (2012) 2494-2497

Contents lists available at SciVerse ScienceDirect COMPUTER PHYSICS

COMMUNICATIONS

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

ARVO-CL: The OpenCL version of the ARVO package — An efficient tool for
computing the accessible surface area and the excluded volume of proteins via
analytical equations”

Jan Busa Jr.P<, Shura Hayryan?, Ming-Chya Wu®%€, Jan Busa®, Chin-Kun Hu**

2 Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

b Faculty of Electrical Engineering and Informatics, Technical University of KoSice, 040 01 KoSice, Slovak Republic
€ FURT Solutions, s.r.0., Strojdrenskd 3, 040 01 Kosice, Slovak Republic

d Research Center for Adaptive Data Analysis, National Central University, Chungli 32001, Taiwan

€ Department of Physics, National Central University, Chungli 32001, Taiwan

ARTICLE INFO ABSTRACT

Arfile—’ history:) Introduction of Graphical Processing Units (GPUs) and computing using GPUs in recent years opened
Received 3 April 2012 possibilities for simple parallelization of programs. In this update, we present the modernized version
Accepted 23 April 2012 of program ARVO [J. Bu3a, J. Dzurina, E. Hayryan, S. Hayryan, C.-K. Hu,]. Plavka, I. Pokorny, J. Skivanek,

Available online 28 April 2012 M.-C. Wu, Comput. Phys. Comm. 165 (2005) 59]. The whole package has been rewritten in the C language

and parallelized using OpenCL. Some new tricks have been added to the algorithm in order to save memory

i;}{/v(\;ords: much needed for efficient usage of graphical cards. A new tool called ‘input_structure’ was added for
Proteins conversion of pdb files into files suitable for work with the C and OpenCL version of ARVO.

Solvent accessible area
Excluded volume

Stereographic projection Program title: ARVO-CL
OpenCL package i i
Catalog identifier: ADUL_v2_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html

New version program summary

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 11834

No. of bytes in distributed program, including test data, etc.: 182528

Distribution format: tar.gz

Programming language: C, OpenCL.

Computer: PC Pentium; SPP’2000.

Operating system: All OpenCL capable systems.

Has the code been vectorized or parallelized?: Parallelized using GPUs. A serial version (non GPU) is also
included in the package.

Classification: 3.

External routines: cLhpp (http://www.khronos.org/registry/cl/api/1.1/cl.hpp)
Catalog identifier of previous version: ADUL_v1_0

Journal reference of previous version: Comput. Phys. Comm. 165(2005)59

Does the new version supercede the previous version?: Yes

* This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect
(http://www.sciencedirect.com/science/journal/00104655).
* Corresponding author. Tel.: +886 2 27896720; fax: +886 2 27834187.
E-mail addresses: jan.busa.2@tuke.sk (J. Busa Jr.), shura@phys.sinica.edu.tw (S. Hayryan), mcwu@ncu.edu.tw (M.-C. Wu), jan.busa@tuke.sk (J. Bu3a),
huck@phys.sinica.edu.tw (C.-K. Hu).

0010-4655/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.04.019

http://dx.doi.org/10.1016/j.cpc.2012.04.019
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/summaries/ADUL_v2_0.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.khronos.org/registry/cl/api/1.1/cl.hpp
http://www.sciencedirect.com/science/journal/00104655
mailto:jan.busa.2@tuke.sk
mailto:shura@phys.sinica.edu.tw
mailto:mcwu@ncu.edu.tw
mailto:jan.busa@tuke.sk
mailto:huck@phys.sinica.edu.tw
http://dx.doi.org/10.1016/j.cpc.2012.04.019

J. Busa Jr. et al. | Computer Physics Communications 183 (2012) 2494-2497 2495

Nature of problem: Molecular mechanics computations, continuum percolation

Solution method: Numerical algorithm based on the analytical formulas, after using the stereographic
transformation.

Reasons for new version: During the past decade we have published a number of protein structure
related algorithms and software packages [1,2,3,4,5,6] which have received considerable attention from
researchers and interesting applications of such packages have been found. For example, ARVO [4] has
been used to find that ratios of volume V to surface area A, for proteins in Protein Data Bank (PDB)
distribute in a narrow range [7]. Such a result is useful for finding native structures of proteins.
Therefore, we consider that there is a demand to revise and modernize these tools and to make them
more efficient. Here we present the new version of the ARVO package. The original ARVO package was
written in the FORTRAN language. One of the reasons for the new version is to rewrite it in C in order
to make it more friendly to the young researchers who are not familiar with FORTRAN. Another, more
important reason is to use the possibilities for speeding-up provided by modern graphical cards. We also
want to eliminate the necessity of re-compiling the program for every molecule. For this purpose, we have
added the possibility of using general pdb [8] files as an input. Once compiled, the program can receive
any number of input files successively. Also, we found it necessary to go through the algorithm and to
make some tricks for avoiding unnecessary memory usage so that the package becomes more efficient.

Summary of revisions: 1. New tool. ARVO is designed to calculate the volume and accessible surface area of
an arbitrary system of overlapping spheres (representing atoms), the biomolecules being just one albeit
important, application. The user provides the coordinates and radii of the spheres as well as the radius
of the probe sphere (water molecule for biomolecules). In the old version of ARVO the input of data was
organized immediately in the code, which made it necessary to re-compile the program after every change
in the input data. In the current version a module called ‘input_structure’ has been created to input the data
from an independent external file. The coordinates and radii are stored in the file with extension *.ats (see
the directory ‘input’ in the package). Each line in the file corresponds to one sphere (atom) and has the
format

24733 —4.992 —13.256 2.800.

The first three numbers are the (x, y, z) coordinates of the atom and the last one is the radius. It is
important to remember that the radius of the probe sphere must be already added to this number. In
the above example, the value 2.800 is obtained by the formula “sphere radius+probe sphere radius”. In
the case of the arbitrary system of spheres the file *.ats is created by the user. In the case of proteins
the ‘input_structure’ takes as an input a file in the format compatible with Protein Data Bank (pdb)
format [8] and creates a corresponding *.ats file. It also assigns automatically, radii to individual spheres
and (optionally) adds to all radii the probe sphere (water molecule) radius. As output, it produces a
file containing coordinates of spheres together with radii. This file works automatically as an input for
ARVO. Using an external tool allows users to create their own mappings of atoms and radii without
the need to re-compile the tool ‘input_structure’ or program ARVO. It is again the user’s responsibility
to assign proper radii to each type of atom. One can use any of the published standard sets of radii (see for
example, [9,10,11,12,13]). Alternatively, the user can assign his own values for radii immediately in the
module input_structure. The radii are assigned in a special file with extension *pds (see the documentation)
which consists of lines like this: ATOM CA ALA 2.0 which is read as “the Cgypn, atom of Alanine has radius
2.0 Angstroms”. Here we provide for testing of the file rashin.pds where the radii are assigned according
to [12].

The output file contains only recognized atoms. Atoms that were not recognized (are not part of
mapping) are written to a separate log file allowing the user to review and correct the mapping files
later.

2. The Language. Implementing the program in C is a natural first step when translating a program into
OpenCL. This implementation is rewritten line-by-line from the original FORTRAN version of ARVO.

3. OpenCL implementation. OpenCL [14] is an open standard for parallel programming of heterogeneous
systems. Unlike other parallelization technologies like CUDA [15] or ATI Stream [16] which are
interconnected with specific hardware (produced by NVIDIA or ATI, respectively), OpenCL is vendor-
independent, and programs written in OpenCL can be run on any hardware of companies supporting
this standard, including AMD, INTEL, and NVIDIA. Programs written in OpenCL can be run without much
change both on CPUs and GPUs.

Improvements as compared with the original version: Support for files in the format as created by
‘input_structure’; input of parameters (name of input file) via command line; dynamic size of arrays—
removal of the necessity to re-compile the program after any change in size of structures; memory
allocation according to the real demands of the application; replacing north pole test by slight reduction
of the radius (see below).

To compile an OpenCL program, one needs to download and install the appropriate driver and software
development kit (SDK). The program itself consists of two parts: a part running on the CPU and a part
running on the GPU. The CPU initializes communication between the computer and the GPU, load data,
processes and exports results. The GPU does the parallel part of calculation, consisting of the search for
neighboring atoms and calculating the contribution of the area and volume of the individual atom to the
total area and volume of the molecule. For details of the algorithm, please read Refs. [3,4].

In programming using OpenCL, more attention must be given to memory used than in a classical
approach. Memory of the device is usually limited and therefore, some changes to the original algorithm
are necessary. First, unlike in the FORTRAN version of the program, no structures containing the list of

2496

J. Busa Jr. et al. | Computer Physics Communications 183 (2012) 2494-2497

Table 1

Comparison of volumes and surface areas of different proteins obtained by original ARVO and by the new version.
Different strategies for dealing with the “north pole” are applied. The first column contains the PDB ID of the protein
and the number of atoms. Second column contains the volume of the protein obtained with original ARVO (upper
number) and the difference with the new approach (lower number). Third column contains the same as in the second
column for the surface area. Fourth column contains the number of rotations of the molecule in original ARVO (upper
number) and the number of atoms whose radii have been reduced in the new version (lower number). Fifth column
contains the relative errors for the volume (upper number) and the area (lower number).

Protein atoms # Volume diff Area diff Rotat. reduct. Svolume (%) Sarea (%)
3rn3 23,951.180469 6858.322636 3 —1.04- 1077
957 —0.000025 —0.000007 1 —1.02- 1077
3eyt 40,875.867395 11,455.474832 3 —3.85.107°
1600 —0.001575 0.001415 4 1241074
2act 38,608.243038 9054.007350 4 1.28-1074
1657 0.049480 0.001733 2 1.91-107°
2brd 43,882.735479 10,918.203529 21 —7.84-1077
1738 —0.000344 —0.000097 —8.88 - 107
8tln 56,698.988883 12,496.978064 15 —1.70 - 107
2455 —0.000966 0.000459 4 3.67-107°
1rr8 105,841.502192 27,983.159772 18 —6.60 - 1077
4108 —0.000699 —0.000214 4 —7.65-1077
1xi5 1743,445.092001 863,139.882703 1 4.42-1077
15,696 0.007709 0.000070 1 8.11-107°

neighbor atoms are created. The search for the neighbors is done on-line, when the calculation of the
contribution from individual atoms is being performed.

The strategy behind the North Pole check and molecule rotation [4, Sec. 4.7] has been changed. If during
the north pole test, the north pole of the active sphere lies close to the surface of a neighboring sphere,
the radius of such a neighboring sphere is multiplied by 0.9999 instead of rotating the whole molecule.
This allows the algorithm to continue normally. Changing the radius of one atom changes the area and
the volume of this atom by 0.02% and 0.03%, respectively. As the atom’s contribution to the total area
(volume) of the protein is usually only a part of the atom’s total area (volume) and since there are many
atoms in the protein itself, the change of total area (volume) is much smaller than 0.02% (0.03%). Testings
showed relative errors ranging from 10~* down to 10~8. An additional benefit of this approach is, that the
whole molecule is not rotated and therefore no errors are introduced there which would occur during such
rotation. We were even able to find a protein (1511 having 31,938 atoms), where, after several hundreds
of rotations, ARVO was not able to find such a position that the original north pole test could pass. For
such proteins the new approach is the only one possible.

Some data obtained using the north pole test (with rotation) and those without the north pole test
(with radii reduction) are summarized in Table 1. The radius of water molecule was set to 1.4 A, and
Rashin’s set of the van der Waals radii of atoms [12] was used. The first column contains the protein name
and the number of atoms. Each cell of the second and the third columns contains two numbers. The upper
number is the volume (surface area) obtained using the original ARVO algorithm [4] with conventional
north pole test and rotation. The lower number shows the difference coming from using the new approach.
The upper number in the fourth column shows the number of rotations when using the original version
and the second number is the number of atoms for which the radius has been reduced. The relative error
of volume (upper number) and area (lower number) obtained by using radius reduction are shown in the
last column. It can be seen clearly that the error is negligible.

The disadvantage is that calculations using OpenCL are done with single precision only. This comes
from the fact that the OpenCL standard does not support double precision float number operations
as a basic part but as an extension only. This means that availability of double precision calculations
depends on the device (CPU, GPU) vendor. Switching to double precision calculations downgrades speed
performance (calculations in double precision are 8-2 times slower than the same calculations in single
precision). Another problem is that after using the double precision switch, all calculations are done with
double precision which leads to problems with insufficient memory. This problem can be bypassed by
explicitly switching to single precision where possible but this requires careful modification of the whole
program source. Since on our GPU (NVIDIA GTX 480) double precision was available, we have decided
to use the double precision only for the critical parts of algorithm (s.a. integral calculation), leaving non-
critical parts in single precision. This allowed us to speed up the calculation and to obtain acceptable
results.

Results of the test calculations are given in Table 2. All calculations except for 2brd0 have been
performed using water radius 1.4 A. The first column contains the protein name and the number of
atoms. The second column contains computation time in seconds (in FORTRAN/CPU—upper part and
OpenCL/GPU—lower part). The third column is a speed-up (time on the CPU divided by time on the GPU).
The fourth and fifth columns contain the volume and area calculated in FORTRAN (upper number) and the
difference when compared to results obtained by OpenCL (lower number). As one can see, the area and
the volume obtained using FORTRAN (in double precision) and the OpenCL implementation (combination
of single and double precisions) are practically the same. This is even more clear from the relative error of
the OpenCL implementation as shown in the last column (upper number for volume, and lower number

J. Busa Jr. et al. | Computer Physics Communications 183 (2012) 2494-2497 2497

Table 2

The table contains comparative data on precision and computational times obtained by FORTRAN vs. OpenCL
implementations of ARVO. The structure of the columns is similar to Table 1. Note that last protein (1s1i) was not
calculated using FORTRAN implementation and comparison presented is between C and OpenCL version. This is
because we were not able to find such rotation that north pole test would pass.

Protein Time F95 (s) Speed Volume diff Area diff Svolume (%) Sarea (%)
atoms # OpenCL up

leca 8.23 6.01 26,072.003069 7004.168138 1.65-107°
1031 1.37 : 0.004310 0.000498 7.11-10°°
2ptn 13.72 9.01 39,273.220933 9227.570716 —2.01-107°
1629 1.52 : —0.007906 —0.005795 —6.28-107°
2brd 15.77 091 43,882.735136 10,918.203432 —1.44-107°
1738 1.59 i —0.006326 0.001471 1.35-107°
2brd0 0.29 091 22,412.825807 22,546.123881 —9.13-107°
1738 0.32 i —0.020471 —0.008437 —9.17-1074
8tin 23.32 13.74 56,698.988550 12,496.977990 —5.34-1076
2455 1.70 : —0.003028 —0.008708 —4.64-107
1rr8 30.89 17.67 105,841.501492 27,983.159558 1.93-107°
4108 1.75 : 0.020445 —0.000802 —2.87-107°
1s1i 286.81 33.05 816,980.348702 253,160.674893 —1.40- 1074
31,938 8.45 i —1.140763 0.049478 1.95-107°

for area). As to computational time, FORTRAN (C) implementation is appropriate in the case when the
calculation takes approximately less than 2 s. This is because in the case of OpenCL some time - about
0.3-1.5 s on testing configuration - is needed for the initialization of the device and for starting the
communication. Speed-up is clearly visible for large proteins when the parallel approach can be exploited,
but complexity of protein needs to be taken into account as well. Compare the times for 2brd (water radius
1.4 A) and 2brd0 (water radius 0 A). The difference is in the number of neighbors (overlapping spheres).
While, for water radius 1.4 A the number of neighbors is high and using the GPU is efficient, for water
radius 0 A it is better to use CPU. All results were obtained on a test configuration with CPU Intel Core i7
930 processor running at 2.8 GHz and a GPU NVIDIA GeForce GTX 480.

At the time of writing, OpenCL allowed the allocation of only 1/4 of the total memory of the devices
(CPU, GPU) by one call to malloc. This can be bypassed by four individual calls of memory allocation
requesting 1/4 of the total devices’ memory. It is advisable to use a dedicated GPU for the calculations
since sharing a GPU for calculations and displaying graphics can lead to unexpected results due to common
access to the memory of devices.

Restrictions: The program does not account for possible cavities inside the molecule. The current version
works in a combination of single and double precisions (see Summary of revisions for details).

Running time: Depends on the size of the molecule under consideration. For molecules whose running
time was less than 2 s in the old version the performance is likely to decrease. This changes considerably
when larger molecules are calculated (in test configuration speed-ups up to 34 were obtained).

References:

[1] F.Eisenmenger, U.H.E. Hansmann, S. Hayryan, C.-K. Hu, Comput. Phys. Commun. 138 (2001) 192.

[2] F.Eisenmenger, U.H.E. Hansmann, S. Hayryan, C.-K. Hu, Comput. Phys. Commun. 174 (2006) 422.

[3] S.Hayryan, C.-K. Hu,]. Skrivanek, E. Hayryan, I. Pokorny, J. Comput. Chem. 26 (2005) 334.

[4]]. Busa, J. Dzurina, E. Hayryan, S. Hayryan, C.-K. Hu,]. Plavka, 1. Pokorny,]. Skrivanek, M.-C. Wu,
Comput. Phys. Commun. 165 (2005) 59.

[5] J. Busa, S. Hayryan, C.-K. Hu, J. Skrivanek, M.-C. Wu, J. Comput. Chem. 30 (2009) 346.

[6] J. Busa, S. Hayryan, C.-K. Hu, J. Skrivanek, M.-C. Wu, Comput. Phys. Commun. 181 (2010) 2116.

[7] M.-C. Wu, M.S. Li, W.-]. Ma, M. Kouza, C.-K. Hu, EPL 96 (2011) 68005.

[8] http://www.rcsb.org.

[9] B.Lee, F.M. Richards, J. Mol. Biol. 55 (1971) 379.

[10] E.M. Richards, Annu. Rev. Bipohys. Bioeng. 6 (1977) 151.

[11] A. Shrake, J.A. Rupley, J. Mol. Biol. 79 (1973) 351.

[12] A.A. Rashin, M. lofin, B. Honig, Biochemistry 25 (1986) 3619.

[13] C. Chotia, Nature 248 (1974) 338.

[14] http://www.khronos.org/opencl/.

[15] http://www.nvidia.com/object/cuda_home_new.html.

[16] http://www.amd.com/stream.

© 2012 Elsevier B.V. All rights reserved.

http://www.rcsb.org
http://www.khronos.org/opencl/
http://www.nvidia.com/object/cuda_home_new.html
http://www.amd.com/stream

	ARVO-CL: The OpenCL version of the ARVO package --- An efficient tool for computing the accessible surface area and the excluded volume of proteins via analytical equations

