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Based on the Caldirola-Kanai Hamiltonian, we first construct its equivalent the-
ories of interest. In an equivalent theory, the Hamiltonian and the relation between the
two Hilbert spaces are obtained by performing a quantum canonical transformation.
Then, we use the path-integral technique directly to calculate the exact propagators of
the theories. The properties of the Caldirola-Kanai model, including the time evolution
of the given initial wave functions and the expectation values of the physical quantities
of interest, are studied by using the obtained propagators.

PACS. 03.65.-w - Quantum Mechanics.
PACS. 04.60.4+D - Canonical quantization.

I. Introduction

The study of dissipative quantum systems, especially a damped harmonic oscillator,
has a rather long history. About half a century ago, Kanai [1,2] adopted the Hamiltonian,

A 1
Hox =e ™2 4 " ~mowjz?, (1)

2??‘10 2
which leads exactly to the classical equation of motion of a damped harmonic oscillator,
£ +nt+wiz =0. (2)

This is usually referred to as the Caldirola-Kanai (CK) model. The quantum aspect of this
model has been studied in a great amount of literature. In those studies some peculiarities
of this model have been widely criticized and some features of it have appeared to be
ambiguous [3-20]. To clarify some issues, it is important to have the exact results implied
by this model. In this paper we intend to give an exact analysis of the quantum dynamics
of the CK model. To achieve this goal, we construct quantum equivalent theories of the CK
model and the analysis is implemented by using the CK model together with its equivalent,
theories.

In classical dynamics, an equivalent theory of a model can be obtained by a canon-
ical transformation which results in a different Hamiltonian but with the same dynamics.
In this context of equivalence, one can obtain quantum equivalent theories by performing
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quantum canonical transformations. Similar to the classical case, the quantum Hamiltonian
of an equivalent theory may differ from that of the original model, but the quantum dynam-
ics remains the same. Quantum canonical transformations as unitary transformations on
were considered early in the development of the theory of quantum mechanics [21]. More
recently, it was emphasized by Anderson [22] that the phrase “unitary equivalence” used
as a synonym for “physical equivalence” might be misleading; two theories are physically
equivalent if they are related by an isometric transformation, which may be either an iso-
morphic transformation of a Hilbert space onto itself or a linear norm-preserving isomorphic
transformation from one Hilbert, space onto another. For further discussions, see Ref. [22].
We adopt this criteria for quantum equivalent theories; physical equivalence refers to the
dynamical properties we study.

To obtain equivalent theories of the CK model, first we perform classical canonical
transformations to obtain new Hamiltonians. Then these canonical transformations are
implemented by nonunitary transformations in quantum mechanics to obtain the corre-
sponding quantum Hamiltonians. After obtaining the quantum canonically related Hamil-
tonians, we use the fact that the transformed wavefunctions are square-integrable for a
square-integrable wavefunction of the CK model to show that the transformations we used
are indeed isometric, and hence these theories are equivalent [22]. Then we employ the
path-integral technique directly to obtain the propagators. By the use of these propagators
we investigate the properties of the CK model; from our results we are able to conclude
that the uncertainties of position and physical momentum indeed both decay exponentially
as time evolves and this decay also appears in the mean value of the mechanical energy of
a damped oscillator. There are two points worthy of mention in this work: (1) From the
aspect of methodology, this is the first time in the literature that the propagators of the CK
Hamiltonian of Eq. (1) and its canonically related Hamiltonians were obtained by directly
using the path-integral technique. (2) From the calculations performed in the CK model
and its equivalent theories, we can obtain some features of the CK model in a very precise
way.

This paper is organized as follows. In Section II, starting with the CK Hamiltonian, we
use quantum canonical transformations to construct three other equivalent theories. These
quantum canonical transformations are isometric mappings among the respective Hilbert
spaces, and hence these theories are physically equivalent. In Section III, we use the path-
integral method to derive the exact propagators of the CK Hamiltonian and its canonically
related Hamiltonians. These propagators reduce to the propagators of a free particle, a
damped free particle, and a simple harmonic oscillator, respectively, in the corresponding
limiting cases. In Section IV, these propagators are used to study the time evolutions of
given initial wave functions, including the Gaussian wave packets and the energy eigenstate
wavefunctions of a undamped harmonic oscillator, then the uncertainties of the position and
the canonical momentum, and the mean values of the Hamiltonians. Finally, we summarize
our results in Section V.

II. Equivalent theories

In this section first we use classical canonical transformations to derive three different
Hamiltonians based on the CK Hamiltonian. Then these transformations are implemented
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quantum mechanically to obtain equivalent theories in quantum mechanics with respect
to the CK model. We find that, if we adopt the ordering that momentum operators are
always put on the right hand side of position operators in the transition from a classical
Hamiltonian to the corresponded quantum Hamiltonian, the Hamiltonians obtained from
the quantum canonical transformations take exactly the same forms as those obtained from
the classical canonical transformations.

In the CK Hamiltonian,

2
di
L €™ —mowiz?, (3)

Hox = e~
CK =% o 2

the canonical momentum p is related to the physical momentum p; = ma as
p=eTp;. (4)

One can perform a canonical transformation to obtain another Hamiltonian in which the
canonical momentum P equals py and the coordinate X exponentially expands with the
evolution of time. This canonical transformation is defined by

Py =eMp, and Xj=ez, (5)

and the generating function of this transformation is given by

Fi(z,Pr,t) = ez Py. (6)
The new Hamiltonian, which is referred to as Hy, reads
Hp = ent"'—PIz +e"mlmgw2X2+nX1P; (7)
2mq g L ‘

There is another interesting case which corresponds to the integral of motion of the CK
Hamiltonian. This can be obtained from Hox by the canonical transformation defined by

Prr= e_%ntp, and Xy = e%”tx, (8)
with the generating function given by
Fil(z, Pr1,t) = ex™z Py, (9)

Then the corresponding Hamiltonian, which is referred to as Hj is

P? 1 1
Hip=L 4 —mow? X% + —nX11 Py,
I1 9ma + Qmoﬁ—’u 7+ 2?}' Irryr (10)

Notice that in the context of Hgg it is obvious from the above construction that it is
impossible to make a canonical transformation so that z and pj are canonically conjugate
to each other. There is one more case in which the Hamiltonian takes exactly the form of

a harmonic oscillator [20]. Starting with Hc g, we perform the canonical transformation
defined by
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Prif= e_%’“p -+ e%”tgmux, and Xjr= e%”t;t:, (11)
with the generating function given by
F;H(x,PHI,t) — c%ntiBPII[ - emgmgxz. (12)

Then the new Hamiltonian Hyjy is

Py 1
Hir = me T 2™ Xt (13)
where w? —(n/2)2.

The above transformations are deﬁned in the classical phase space which can be
extended to include the time gy and its conjugate momentum pg so that the Schrédinger
operator in quantum mechanics corresponds to the function

h = po+ H(q,p,q0), (14)

defined in this space. To construct quantum canonical transformations, we follow Anderson
[22] to define the quantum phase space A with variables {gx, px,k,= 0,1}. The variables
are members of a noncommutative algebra A. Then a quantum canonical transformation
is a mapping C € A from A to A given by

C: ({ge,miik = 0,1}) — ({CaC™, CPC 5k = 0,1}) . (15)

By the construction, the transformation C preserves the canonical commutation relations
and it can be either unitary or nonunitary. Note that this definition does not refer to
the Hilbert space. When acting on elements of a Hilbert space, the functions C(g,p) are
represented by operators C‘(ﬁ,(}), and the transformation is from one Hilbert space to itself
for the unitary case and from one Hilbert space to another for the nonunitary case. Hence,
physical equivalence is proven with the existence of an isometric transformation between
different Hilbert spaces [22].

To implement the classical canonical transformations quantum mechanically, we first
consider the transformations generated by F) and FJ!. The corresponding quantum gen-
erating function C(P, X) is written as

C(P,X) = exp (%a(t)f(ﬁ‘) . (16)

To see that the above C is the desired function, one can use the Hausdoff-Baker formula,

i 1

Ap _—A

e Be ™" = E —
m=0 )

A™{B}, (17)

with
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A™{B} = [A,A""H{BY] = [4,[4,---[4,[4,B])--]), (18)
to show that this transformation yields

O =D F, (19)
and

CPC™' =e )P, (20)

Then for the classical canonical transformations defined by Eqs. (6) and (9), the correspond-
ing quantum canonical transformations are given by Eqs. (19) and (20) with a(t) = —7t and
—%nt, respectively. With the ordering convention described before, one can see that this
quantum generating function is identical to the exponential of the corresponding classical
infinitesimal generator [23]. Note that this quantum canonical transformation is equivalent
to a dilatation and it is one of the three generators that generate the group SL(2,C) [22, 24].
This canonical transformation transforms the Schrédinger operator as

n S B o t) o A n a Aoa s oa -~
R'(X,P)=ChC™! = pg — %—)cxpc-l + CH(X,P,t)C™1. (21)

This results in the new Hamiltonian

o, Prt) = CH(E, P00~ 20 p, -

which takes exactly the same form as those given by Eqs. (7) and (10) when a(t) is set
to be the previous values for the transformations and the ordering convention given before

is used. With the above new Hamiltonian one can see that solutions of the Schrédinger
equation

] 5
iﬁ%—t = H(,p,1)7, (23)

are solutions of the Schrédinger equation

iﬁ%—wt = Hpe(X, P, 1)¥, (24)

with ¥/ = CW. With the operator C given by Eq. (16), one can show that
V(X)) = U(e*Wy). (25)

A similar procedure can be applied to the classical canonical transformation generated
by FI. The corresponding quantum generating function C(P,X) can be written as

C(P,X) = C3(P, X)Cr(X), (26)
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where C1(X) and C2(P,X) generate their own canonical transformation. The operator
C1(X) takes the form

Ci(X) = exp [ie”t%mgf(z] 3 (27)
and the transformation it generates brings (P, X) to (P’, X') with the relation,

P’:P—emgmgf, and X' = X. (28)
This transformation brings Hox to the new Hamiltonian H L

) 12
H =™

1 - 1 .,-
S + e”’amgng’Z - EnX'P'. (29)

The operator Cy( P, X) takes the form

Cy(P', X") = exp [i%)ﬁ"ﬁ’] , (30)
and it brings (P’,X") to (}31;1, XIH) with the relations,

P = e%“tﬁ”, and Xj = k>'d (31)

This transformation further brings A’ to the Hamiltonian I;{II;,

- P?
Hvrs = —LIE 2 %2 .
I = e + m W ATr]- (32)

With the relation ¥/ = C'¥, the final transformed wave function is
W’(XHI) = exp [t’e%i%mox?n] ‘I’(E%mXU[). (33]

Therefore starting with the CK model, we have constructed three theories by the use
of quantum canonical transformations. To show that those theories are equivalent to the
CK model, one has to show that any of the transformations we used is an isomovphism
between the two Hilbert spaces. Let us consider two Hamiltonian H and A’ related by a
quantum canonical transformation C'. The inner product between two states in the Hilbert
space of H' takes the form of

(210), = (223,990 = [ 28" (0)ild, $)¥(a) (34)

where the integration is over the spatial configuration space, and (¢, ) is the measure

density. The norm of states is preserved for a given canonical transformation ¢ from H to
H' if



572 THE CALDIROLA-KANAI MODEL AND ITS EQUIVALENT THEORIES ... VOL. 36

(2|w), = (CTU|(§,PICTIE) = (¥'|¥),, (35)

where the transformed measured density is
alfan a Ny— 1‘ AL oA AN Y —
#(3,8) = (C7) i@ p)C. (36)

For isomorphisms of a Hilbert space onto itself, the measure density remains unchanged, and
it corresponds to a unitary transformation. But it is also possible to have isomorphisms of a
Hilbert space onto another and the measure density changes with an additional factor which
is not a function of momentum. For the latter, to which our cases belong, one can redefine
the states by absorbing a factor from the measure density. This amounts to perform an
additional canonical transformation. Therefore, to show that the canonical transformations
we used are isometric is equivalent to showing that ¥’(X) is square-integrable in the new
configuration space. From ¥'(X) given by Eqs. (25) and (33), by changing variable from X’s
to z. in the integration [ ¥"*(X)¥'(X)dX it is easy to see that ¥/(X) is square integrable
for square integrable ¥(z). Hence the quantum canonical transformations given in this
section are isometries between the respective Hilbert spaces and the resultant theories are
equivalent.

II1. Propagators

The propagator of a system is defined as the transition amplitude from one spacetime
point (z;,t;) to another point (zy,1;),

K(zg,t5;2i,t:) = (g, tg|zi ti). (37)

In this section we calculate the propagators of the system governed by the CK Hamiltonian
[25] and its canonically related Hamiltonians, H; and Hjy, obtained in the last section by
the use of the path-integral technique with the help of the matrix method [26]. Since the
Hamiltonian Hyr takes exactly the same form as a harmonic oscillator, the corresponding
propagator is same as that of a harmonic oscillator.

ITI-1. The Hamiltonian Heg
Following Feynman’s path-integral method, we divide the time interval into N equal
segments; each segment has the length € = (t; — #;)/N. After inserting the complete set

of coordinate basis states at each intermediate time point,, we can write the propagator of
Eq. (37) as

N-1
Kzl ®ets) = £1_1.101 /[H dx,'l (:L‘f,tfl.?:N_l,tN_l)
1=1

N—oo

(38)
X(zN-1,tN-1|TN-2,tN=2) - - - (1, t1]Ts, 5).

It is easy to show that with the CK Hamiltonian any inner product in Eq. (38) takes the
form
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mo ) 1/2
2mihe

1 1€ mg [ Tp — Tp-1 - mo T, + Tn-1
= el | = [( SR, SRR TR RSl
Xexp{gntn_1+ne lz ( » ) 2w0( 5 )]}

Substituting Eq. (39) into Eq. (38), we obtain the propagator as

mo Nj2 [ N . /2 N-1
v 42y — 3 Mn-1 ;

N—oo

. N 2
m — Tp_ m n+ Tpn
XH%%ZWMrch?J)_f%GJ%QH}

n=1

(Tnytn|Tn—1 sla-1) = (
(39)

(40)

where 7o = z; and z = z5. From Eq. (40), we can further define the action of a damped
harmonic oscillator as

ﬂﬂz/ﬂ&ﬂ%@f—%mwﬁﬂ. (41)

The classical trajectory is the extremum of the action, and it is determined by the
classical equation of motion

Ea(t) + néa(t) + wiza(t) = 0, (42)

with the boundary conditions z.(t;) = z; and z4(ts) = z;. By expanding a trajectory
around the classical trajectory, z(t) = z(t) + £(t), we can rewrite the action as

ts nt 700 [ 29 : 2.2
Sle) = Sleal + [ dten 22 [€2(0) — me(0)(r) - wier(v)] (43)
where £(t) is the measurement of the quantum fluctuation around the classical trajectory
and is subject to the boundary conditions £(¢; = 0) and £(ty) = 0. Consequently, the
propagator of Eq. (40) can be written as

p mo Nf2 [ N
K(:rf,tf; miati] :E¢S[xcf]f?l lim ( ) [H eﬂtﬂ_lle

= | 2mihe e (44)
Mg trp2 : 202
X /D{ exp [_Qf fdte” (&° — né& — wie )] ;
which is equivalent to
iS(za)/h mo \'2[ L& /2 =
- ", N — 1O T H Mn—1
Ezpteit) = e Al;_r‘r(} (2ih€7rN) L[Ilc ] ./ lI_Il dyn}

N
X exp {— Y an(¥n = Yn-1)® = ba(¥2 = ¥2_1) = fulyn + yn—l)z]} :
n=1
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where we have set y, = /mo/(2the)é(tn), an = €1, b, = nee™™ -1, and f, = 3(wae?emn-1).
Note that we also set t; = to and ¢y = ty, and the boundary conditions of £ imply that
1o = 0 and yn = 0. Let us define the integral I by

N-1 N
I= / lH dyﬂ] €Xp {_ z [an(yn = yn—l)z_ bn(yﬁ_ y:—j)"fn(yn =+ yn“1)2]}‘ (46)

n=1

To complete this integral, we employ the matrix method by identifying y as a column matrix
with (IV — 1) entries,

y=| 7 . | (47)

YN-1

Then the integral can be written as
I= fdye_yTMy = #N=D/2(get M)~ 1/2, (48)

and the propagator becomes

1/2 N
(e temet) = eiSlEal/h (L) ntno1/2|
Klogitpmh)=e 51:1.%0 2nihe det M ge (49)

Here M is a (N — 1)x (N — 1) matrix and it takes the form

(61 dg 0 0 0 \
dg Ca d3 0 0
S I , (50
; dn_2 0
0 0 --- dnv-2 env—2 dn-
\0 0 -« 0 dv-1 en—1 /

with ¢, = an + @py1— bp + bpy1— fo— fay1 and d, = —(an + fn). To make the determinant
of the matrix M more convenient to calculate, we rescale the matrix elements as

¢ =¢dem with ¢ = (1 - iwgez) (14 e7") + ne(1— e ),

(51)
and d, = d'e"* with d =— (1 + iwgez) g e,

then
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N
det M = l]’[ eﬂ‘"—ll det M, (52)

ﬂ=2
in which the new matrix M’ takes the form
c d 0 0
de” ¢ d 0
'

M = 0 de™ ¢ d --- (53)
0 0 d.'ene C" . ’

and the propagator is further simplified to

Sleal/ moe™s \'/*
czit) = 1S[z]/R 1: )
K(zptyiziti) = e i (m'hedeth) B4)

— 00

To obtain the value of det M’, we observe that if I, is defined as the determinant of
the n X n matrix M', among the I, ’s there exists a recursion relation

Iy =1, — d%" 1,4, (55)

with I_; = 0, and Ip = 1. This recursion relation can be used to formulate a differential
equation. To see this, we first expand ¢’ and d"%¢" in terms of ¢ up to second order; the
results are

1 1
d=2-ne- 552(:»3 -n*) and d?%"™ =1-ne+ 552(w02 + 7%). (56)

Then substituting these back into Eq. (55) yields

Inyr —2In + Iny In — I o (In+ In

et o g () o (D), (57)
where we have neglected the term %rf(fn—f —1). Furthermore, if ‘Ii(tn, t;) is so defined that
lim (edet M') = lim eIn_1 = ®(iy,t;), then Eq. (57) can be rewritten as the differential

N—oo N—oco

equation
d*® dd 2
ar = g T o)

with the boundary conditions

. =1
®(t,t) = lim elo = 0 and &(1,2) = lim « (5-6—0) = 1. (59)

N—oo N—co
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Note that @ satisfies the same equation as the classical equation of motion of z,;. By fitting
the boundary conditions, the solution of Eq. (58) is

O(t4,t;) = e~ M(ts—t)/2. w, _ (60)

73}

where w = |/w§ — (1/2)%. Substituting Eq. (60) for edet M’ in Eq. (54) yields the propa-

gator

1/2 n(tp+t)/2 112
cm. 1) — (MO we iSlea)/h
Kz tyimit) = (Q?rih) [sinw(t; - tg)} ¢ ' (61)

To compute the classical action S[z.], which can be written as
m ) _ .
Slea) = 5 {e™za(ty)ialty) - e zalti)ia(t)}, (62)

we first solve the equation of motion, Eq. (42), to obtain the classical trajectory,

_ [zgem P sinw(t - ;) - ze™ 2 sinw(ty - t) —ntf2
xcl(t) = l sin w(tg _ tf) € ’ (63)
Then substituting Eq. (63) into Eq. (62) yields the classical action
n(ts+t:)/2
Slza] = % K
sinw(ty — ;)
P n .
X {eﬂ(t,{ t,)f2x§ [cosw(tf - t,') - *é; smw(t; - ti):l (64)

et =4) 242 {cosw(tf —-t)+ 2—”— sinw(ty — t,-)] - 2:::;::,:}.
w

By substituting Eq. (64) into Eq. (61), we obtain the exact form of the propagator for the
Hamiltonian of Eq. (3).

A few remarks are made about the propagator obtained here :(1) When wy = 0 and
n — 0, the propagator reduces to the free particle propagator,

Mo 1/2 img ($f - -’Bg)z
K(:c_f,tf;:.c,-,tl—) = m exp ﬁ——t‘f—_t—-— . (65)

(2) When wo = 0, the propagator reduces to the propagator of a quasi-free particle with
dissipation,

1/2 1/2
, Mo n
K(:Bf,tf;l'i:ii) = (27{3&) (e_,nt‘. _ e—"qt_f)

t’m(_] n
X exp [ 2h (e"ﬂii — e—nf!) (zf - mf)z] '

(66)
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(3) When n — 0, the propagator reduces to the propagator of a harmonic oscillator,

mo 1/2 wo M tmyg wo
K(zs,tp;24,t) = (zjﬂ'ﬁ) sinwo(ts — t;) = 2h |sinwg(ty —t;) (67)

X [(If, + z?)coswo(ts —t;) — Qxfzi] }

ITI-2. The Hamiltonian Hj
Next we consider the system governed by the Hamiltonian H; of Eq. (7). The
corresponding action is

SilX) = _/dte"”?[)i’? — (W —nH)X? - 29X X)) (68)
The classical trajectory Xy.(t) is determined by the equation

Xra(t) = nX1a(t) + w2 X 14(t) = 0. (69)

Similar to the previous case, by expanding a trajectory around the classical trajectory,
Xi(t) = Xra(t) + £(t), we can rewrite the action as

S10X1) = SilXral + [ dte PRI (0) 4 nE(DE(D) - wAE0) (70)

Comparing Eq. (70) with Eq. (42), we can conclude that the propagator is

) mo \1/2 [ we—n(ts+t:)/211/2
B Xig 15 Xiot) = (575 [T(z;_?) i (11)

Here the factor before the exponential function is obtained from the factor appearing in
Eq. (61) by replacing n with —7. To compute the classical action, which can be written as

S1lXra] = 5 {7 [Xra(t) X1a(ty) = XRulty)]
| (72)
—e "M [ Xa(t:) X1a(t:) - X?cc(tt)]} )

we see that Eq. (70) is different from Eq. (42) only by an opposite Sign in the friction
coefficient, then the classical trajectories can be obtained from Eq. (63) by replacing the
z-coordinate with the Xj-coordinate and 7 with —», and the result reads

Xppem™ 2 sinw(t — t;) — Xpe "/ 2sinw(t; — t)
sinw(t; —ty)

Xra(t) = [ ] em/2, (73)

Substituting Eq. (73) into Eq. (72) yields the classical action in the form
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mo we_n{t.f +:i);2
SI[XICI'] = o Vo i T
2 \sinw(ty —t;)

x {e—n(if—f.')ﬂ)(?f {cos w(ty —t;) — z—n-sin w(ty — t,')] (74)
w
+en(t1—tg)a’2X?£ [COS w(ty —t;) + 2% sinw(ty — tg)] - QXUXI,‘} .

By substituting Eq. (74) into Eq. (71), we obtained the exact form of the propagator for
the Hamiltonian Hy of Eq. (7).

One can also use this propagator to obtain the propagators for other cases: (1) When
wo = 0 and 7 — 0, the X-coordinate is the same as the z-coordinate, and the propagator
reduces to the same free particle propagator as the one given by Eq. (65). (2) When wq = 0,
the propagator reduces to the propagator of a quasi-free particle with dissipation,

1/2 1/2
) mo n
IiI(XIfstf;XIhti): (27”?1) (enfj‘ —emi)

im
X exp [ 2ﬁ,0 (en_tfﬂ—) (X1s—Xn) } .

(3) When n — 0, the X;-coordinate is the same as the z-coordinate, and the propagator
reduces to the propagator of a harmonic oscillator given by Eq. (67).

(75)

ITI-2. The Hamiltonian H;

For the system governed by the Hamiltonian Hyy of Eq. (10), the corresponding action
is

SulXm) = /dt‘—[XH - X} - nX11 X1, (76)
The classical trajectory Xyr.(t) is determined by the equation

Xrra(t) + w2 Xpa(t) = 0. (77)

By expanding a trajectory around the classical trajectory, Xs(t) = Xrira(t) + &(t), we can
rewrite the action as

SulXml = SII[XIIcI+/ dt 2€2(t) - w2E(2)). (78)

The integration is the same as that for the undamped harmonic oscillator except for the
replacement wg — w, and hence the propagator is

mo \ /2 w 1/2
I{II(XIIf?tf;XII%)tt) —= (m) lm__t)_} e‘ISJ’J[XU’cI]fﬁ.. (79)

The classical action can be rewritten as
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m, iy . i
StlXra) = —22 /t dt[ X} — w* X110 — nX 110X 1101). (80)

Substituting the classical trajectories, we obtain

Xprgsinw(t —t;) — Xppisinw(ty —t)

= 81
XIIci(t) sinw(tg — tf) ( )
from Eq. (77) substrtuted into Eq. (78), we obtain the result
mo w 2 no .
LY (.. —p § iy — 1) — - — ¢
St X110 2 (sinw(tf — t‘-)) { Iy [Cosw( 7 —ti) o sinw(ty t,)] )

+X75; [Cosw(ff —ti)+ %Sinw(ff - ii)] = QXHfXUe} .

By substituting Eq. (82) into Eq. (79), we obtain the exact form of the propagator for the
Hamiltonian Hj; of Eq. (10).

One can also use this propagator to obtain the propagators for other cases: (1) When
wo = 0 and n — 0, the Xjj-coordinate is the same as the z-coordinate, and the propagator
reduces to the same free particle propagator as the one given by Eq. (65). (2) When wpy = 0,
the propagator reduces to the propagator of a quasi-free particle with dissipation,

1/2 [ peRts+t) \ 12
. mo nez
}LII(XIIfitf;XIIE:Jti) = (2?{_35) (enij _ ent,')

?:mﬂ ) ntl' o4 2
R [ 2h (e”tf —eﬂti) (62 Xirp— e !XH:') ] .

(3) when 7 — 0, the X7-coordinate is the same as the z-coordinate, and the propagator
reduces to the propagator of a harmonic oscillator given by Eq. (67).

(83)

IV. Physical properties

In this section we use the propagators obtained in the last section to study the
physical properties of a damped oscillator governed by the Caldirola-Kanai Hamiltonian.
We calculate the time evolution of wave functions and the mean values of the physical
quantities of interst, and use the results calculated in two different Hilbert spaces to discuss
the uncertainties in position and physical momentum.

IV-1. Time evolution of wave functions

Let us first consider the motion of a wave function in the system of a damped har-
monic oscillator first with the CK Hamiltonian. Then we will discuss the case when other
Hamiltonians are used.

Suppose that at the initial time ¢; = 0, we prepare a particle state described by
the wave function ¥o(z;). Then the dissipation appears at ¢t = 0%, and it is maintained
afterward. The wave function at later time ¢ > 0 becomes



580 THE CALDIROLA-KANAI MODEL AND ITS EQUIVALENT THEORIES - .. VOL. 36

U(z,t) = /dm,—f((z,t;xg)'ﬂg(mi), (84)

where K (z,t;z;) is the propagator of a damped harmonic oscillator given by Eq. (61). If
the initial wave function is the wave packet

Uo(e;) = (r8%) "/ exp (—%) , (85)

where 6 is the width of the wave packet, the wave function at later time ¢ becomes

r\Y2[ 1 imow [coswt n \]"1/?2
W =(7) |5 (et + 20)

(86)
mowe/? 12 [ l(a ib)xz]
s 27mih sin wit exp 2 ’
where
1 1/ h\2 [7n)\2 n -
— nt = _n _ . 2 I
a= e {l + [64 (mgw) - (2&)) 1| sin“ wt + 5 sin 2wt , (87)
and
b= mow _e” { (cos wt a sin wt) (cos wt + S/ sin wt)
" B sinwt 2w 2w
(88)

2 2 -
Xx<1+ l (i) R (i) — 1| sin? wt + isin 2wt .
64 \mow mow 2w
Then the uncertainties of position and momentum can be computed, and the results are
) 6o\ * fwo)? % 1/2
o=y [(8) (2)'+ (2) - s
z(t) \/ie { + ({3 —) + % 1| sin®wt + 5 Sin 2wt , (89)
and
B 5\ (wo\2, [ 1)? e
oo~ g (8 () (2 w2
p(t) ﬂée {1 -+ l A " + 5 1| sin“wt %0 sin 2wt , (90)

where 6o = \/h/(mowo) is the width of the ground state wave function of an undamped
oscillator. If the width of the prepared wave packet in Eq. (85) is equal to 6, then Egs. (89)
and (90) reduce to

1/2
Az(t) = o -2 |y + L (3)2 sin?wt + — sin 2wt (91)
V2 2 \w 2w ’
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and

1/2

2
Ap(t) = —ir!’-—.e’“?’2 1+ o sin? wt — — sin 2wt (92)
P V26, 2 \w 2w k

The results of Eqs. (89) and (91) are shown in Fig. 1. These results indicate that, in
general, the spreading of the wave packet is suppressed by the appearance of dissipation.
But for ¢ < 1/n and 7 < wo when the initial width of a wave packet is smaller than
the natural scale, 6y, the wave packet would spread. This is a relic from the case of no
dissipation. For ¢ > 1/, the dissipation always dominates and the width of the wave
packer decreases exponentially with small oscillations as time evolves. The product of
Az(t) and Ap(t) for different values of the parameters are given in Fig. 2 which shows
some characteristic features: For a given 7 with 6§ # &, the magnitude of Az(t)Ap(t)
oscillates with two different amplitudes alternatively without any damping, and the effect
due to different widths is only to change the phase of the two oscillating amplitudes. For
the case of § = §p, the magnitude oscillates with a single amplitude which is much smaller
than that of § # 6. The effect of increasing the magnitude of n is to increase the larger
one and decrease the smaller one of the two oscillating amplitudes for § # 6o, and always
to increase the amplitude for § = §;. One can also see from Fig. 2 that the uncertainty
principle is always satisfied during the time evolution of a wave packet.

Here we make a few remarks about the time evolution of coherent states. Coherent
states of an undamped oscillator are the eigenstates of the non-Hermitian operator a,

mowo L, 1 (93)
oh 2ot (

and they take the form,

|2) = N(2) exp(2a™)|0), (94)

where 2z, a complex number, is the corresponding eigenvalue, N(z) = exp(—3|z|?) is a
normalization constant, a* is the adjoint of the operator a, and |0) is the ground state
vector of the undamped oscillator. This set of states are “minimum uncertainty wave
packets” with Az = §5/v/2 and Ap = h/(V/280), and when time evolves this set of states
remain the “minimum uncertainty wave packets” with the same uncertainties in position
and momentum as initially. To understand the time evolution of coherent states when
dissipation appears, we notice that the coherent state wave function in the coordinate
representation can be written as

1/4 I 1 oh \’
_ Mmolg L2 1.2 Mmoo _
(z]2) = ( = ) exp l 2[2[ + 57 oF (m mwoz) ; (95)

which is equivalent to a wave packet with the width §, = V2h[(mowg) and the center

moving from the origin to the complex position, z\/2h[(mowe). Because of this, we conclude
that coherent states have the same time evolution features as the previously dissussed wave




582 THE CALDIROLA-KANAI MODEL AND ITS EQUIVALENT THEORIES - .- VOL. 36

50
20
5 —
—_—
S e
X XN o=
= = N
= = o
3 3 )
"
S
‘ ook Tt T -
|“
0.0 1 " .‘ " -. =po=== P R | L L 1 1 L 1 1
0 2 4 ] 8 10 0 1 2 3 4 5 ] 7 8 ] 10
ot ot

AX(t)/AX(0)

(c)

FIG. 1. The uncertainty of position as a function of time for a wave packet of initial width, (a)
§ = 0.56p, (b) 6 = 8o, (c) 6 = 26¢, governed by the CK Hamiltonian with dissipation
coefficients, 7 = 0(solid line), 0.5wq(dotted line), and wq(broken line), respectively.
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packet of width &, and the uncertainties of position and momentum are given by Egs. (91)
and (92).

Let us consider the case that the initial state is an energy eigenstate of an undamped
oscillator. The nt* energy eigenstate of a simple harmonic oscillator is well known to be

1/4 1 mow Mo
() _ [ Moo [mowo ) (_ 0wo 2) \
"o (“""]“( nh ) mH( Ro) TP ) )

where H,(() are the Hermite polynomials of order n, and the corresponding eigenvalue is

1
E = hwy (n + §) : (97)
If the ground state is taken as the initial state, this is the case of the wave packet defined
by Eq. (85) with é = 6o and the uncertainties of position and momentum are those given by
Egs. (91) and (92). In general, for the initial state being the n** eigenstate, the nucertainties
of position and momentum in the wave function ¥(")(z,¢) at the later time ¢ are

1 1/n)? n 1/2
A2 (t) = [+ Shoe? {1 +3 (;) sinZwt + (E) sin ml : (98)
and
Th 1 /7\? 1/2
(")(4) = LB 2|y, 1 E) in2 (1) |
Ap'™(t) n+ 25.° ll +3 (w sinwt + (5~ |sin2wt| (99)

All the features we obtained in the time evolution of a wave packet remain the same here.

Next we consider the case that the same initial wave functions are given but the
system is governed by the Hamiltonian, Hy or Hy. Similar to the previous discussions,
with a given initial wave function at ¢; = 0, one can use the propagator Kj(Xy,t;z;,0)
of Eq. (71) or Kr1(Xir1,t;24,0) of Eq. (79) to compute the wave function ¥;;(X,t) or
V71(X1r1,t) at alater time ¢ > 0. Using the wave function ¥;(Xy,t) or ¥;7(Xy,t), one can
find the uncertainties of the coordinate and momentum, and the results satisfy the relations

AX(t) = e™Ax(t), or AXp(t) = e3™ Az(t), (100)
and
APrr(t) = e ™ Ap(t), or APyy(t) = ™2™ Ap(t). (101)

These relations are the direct consequences of the quantum canonical transformations of
Egs. (19) and (20). Az(t) and Ap(t) are the uncertainties of the position and the physical
momentum of the damped oscillator described by the CK Hamiltonian. Here, by the
calculations in two different Hilbert spaces, we show that both quantities indeed decay
exponentially when time evolves as is usually expected.

IV-2. Mean value of energy

For a given initial wave function 'I‘(Dn)(xi) of Eq. (96?, the expectation value of the
Hamiltonian Hcg(t) with respect to the wave function ¥(™)(z,1) at time ¢t > 0 is given by
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EM(f) = f de U™ (z, ) Hox ()8 ™) (z, 1). (102)

For the ground state wave function, n = 0, the above equation gives

1 2
EO(1t) = 5o (1 + —Q-E—zsinwr) : (103)

For the first excited state wave function, n = 1, it yields

3 e
EMW(t) = o (1 + %Esm?wt) . (104)

Continuing with the same procedure, we can conclude that the mean value of H(t) at time
t > 0 for a given initial ‘If(()n)(a:;) of Eq. (96) is

" 1 7 .
E‘( }(t) = (R + 5) hwo (]_ + ﬂ sin wt) , (105)

where w = /w2 — (1/2)2. If the other two Hamiltonians, H; and Hjj, are considered, the
mean values of the Hamiltonians are

= 1 3n? .
BP0 = (n+ ) fwo (1 + 57 sin’ wt) : (106)
and
EM(t) = (n + l) hwo [ 1+ ﬁsinz wt (107)
II 2 w? ?

which have different spectra from Eq. (105) due to the time-dependent nonunitary transfor-
mations. These results indicate that the mean values of the Hamiltonians are the same as
the eigenvalues of the Hamiltonian of an undamped oscillator with the effective frequency

1d8a\ .
Weff = Wo [l + (1 — 55{) sm%ut] ; (108)

with a(t) specified by the quantum canonical transformation, and for the classical critical
damping, 7 = 2wy, the mean values are the same as the eigenvalues of the undamped
oscillator. These results also show that if ¢ is an integer multiple of the period, T = %T, the
work done by the dissipation vanishes.

Since we have the relation

(Pf) = (p}) = e™?"(p?), (109)
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which is a consequence of the quantum canonical transformation, from Eq. (105) we can

obtain the mean value of the mechanical energy of a damped oscillator with respect to
U (z,1) as

lmiz 4 lm:.uza72> = (n + 1) huwo | 1+ —?-f- sinwt | e~ (110)
2 g o/ 2 22 '

Note that the exponential decay here is the origin of the exponential decay appearing in
the uncertainties of the position and the physical momentum of a damped oscillator.

V. Summary

We summarize our results as follows. (1) Starting with the Caldirola-Kanai Hamil-
tonian, we use quantum canonical transformations to obtain other three Hamiltonians.
The quantum canonical transformations used in this paper are isometric mappings among
different Hilbert spaces, and hence all the four theories are physically equivalent in their
dynamics. (2) The exact propagators of a damped harmonic oscillator governed by these
Hamiltonians are calculated explicitly. Then these propagators are used to study the time
evolution of various initial state wave functions. In the CK Hamiltonian, the coordinate is
the physical position of the damped oscillator, and our results show that the spreading of
a wave packet in the course of time is suppressed in a way that the width of a wave packet
decays exponentially with small oscillations. But for t < 1/7 and 1 > wg, when the width
of wave packet is smaller than 6 = \/h/(mowo) the wave packet spreads, and this is a
relic from the case of no dissipation. We also find a common feature in the products of the
uncertainties in position and momentum, Az(t)Ap(t) and AX;(t)AP;(t),i = I, or II. The
dissipation causes these products to oscillate with two different amplitudes alternatively,
except for the coherent states which are wave packets with the initial width 6p. For the co-
herent states, the value of the product oscillates with a single amplitude when time evolves,
which is quite similar to the case of wave packets with § # 6y in the absence of dissipation.
In this respect, coherent states are quite different from an arbitrary wave packet. (3) We use
another canonically related Hamiltonian of the CK Hamiltonian to study the uncertainty
of the physical momentum Apy(t). Our result shows that it is equal to e "*Ap(t). Here
Ap(t) is the uncertainty of the canonical momentum in the Caldirola-Kanai Hamiltonian.
Both the uncertainties of the position and the physical momentum of a damped oscillator
decay exponentially as a function of time, and this is closely related to the exponentially
decay of the mean value of the mechanical energy of a damped oscillator. (4) In the context
of the CK Hamiltonian, it is impossible to make a canonical transformation so that the
physical momentum is canonically conjugate to the position in the canonically transformed
Hamiltonian.
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