Application of Empirical Mode Decomposition
to Cardiorespiratory Synchronization

Ming-Chya Wu and Chin-Kun Hu

Abstract A scheme based on the empirical mode decomposition (EMD) and syn-
chrogram introduced by Wu and Hu [Phys. Rev. E 74, 051917 (2006)] to study
cardiorespiratory synchronization is reviewed. In the scheme, an experimental res-
piratory signal is decomposed into a set of intrinsic mode functions (IMFs), and one
of these IMFs is selected as a respiratory rhythm to construct the cardiorespiratory
synchrogram incorporating with heartbeat data. The analysis of 20 data sets from
ten young (21-34 years old) and ten elderly (68-81 years old) rigorously screened
healthy subjects shows that regularity of respiratory signals plays a dominant role
in cardiorespiratory synchronization.
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1 Introduction

Physiological systems are nonlinear, and biomedical signals are apparently random
or aperiodic in time. These systems can serve as a playground for the study of
analysis techniques of nonlinear dynamics. Recently, the study of oscillations and
couplings in these systems has gained increasing attention [1-19]. Among these,
the nature of the couplings between human cardiovascular and respiratory systems
has been widely studied [18-26], and is known to be both neurological [1] and
mechanical [2]. The interactions between the two systems result in the well-known
modulation of heart rates, known as respiratory sinus arrhythmia (RSA). Recent
studies suggest that beside modulations, there is also synchronization between them.

Almasi and Schmitt reported that there are voluntary synchronization between
subjects’ breathing and cardiac cycle [3], in which subjects, signaled by a tone
derived from the electrocardiograms (ECGs), inspired for a fixed number of heart
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beats followed by expiration for a fixed number of heart beats [3]. Recently, Schifer
et al. [5, 6] and Rosenblum et al. [7] applied the concept of phase synchroniza-
tion of chaotic oscillators [15] to analyze irregular non-stationary bivariate data
from cardiovascular and respiratory systems, and introduced the cardiorespiratory
synchrogram (CRS) to detect different synchronous states and transitions between
them. They found sufficient long period of synchronization and concluded that the
cardiorespiratory synchronization and RSA are two competing factors in cardiores-
piratory interactions. Latter, Tolddo et al. [8] found that synchronization was less
abundant in normal subjects than in the transplant patients, which indicated that the
physiological condition of the latter promotes cardiorespiratory synchronization.
More recently, Kotani et al. [14] developed a physiologically model to study the
phenomena, and showed that both the influence of respiration on heartbeat and the
influence of heartbeat on respiration are important for cardiorespiratory synchro-
nization.

Up to now, cardiorespiratory synchronization has been reported in young health
athletes [5, 6], healthy adults [9—11], heart transplant patients [9], infants [12], and
anesthetized rats [13]. Since the studies are based on measured data, the data pro-
cessing method plays a crucial role in the outcome. An essential task for the studies
is to process such signals and pickup essential component(s) from experimental res-
piratory signals dressing with noise. Except for the Fourier spectral analysis which
has been widely used, to date there have been several approaches to preprocess real
data for this purpose [27-33]. Most of these approaches require that the original
time series should be stationary and/or linear, while respiratory signals are noisy,
nonlinear, and non-stationary. As a result, a number of filters may be used to filter
out noises from real data, while the capabilities and effectiveness of the filtration are
usually questionable. There is also no strict criterion to judge what is the inherent
dynamics and what is contribution of the external factors and noise in measured
data. Improper approaches might lead to misleading results.

To overcome above difficulties, Wu and Hu [26] suggest using the empirical
mode decomposition (EMD) method proposed by Huang et al. [34] and the Hilbert
spectral analysis,! as a candidate for such studies. Unlike conventional filters, the
EMD provides an effective way to extract respiratory rhythms from experimental
respiratory signals. The EMD uses the sifting process to eliminate riding waves and
make the wave-profiles more symmetric. The expansion of the turbulence data set in
EMD has only a finite-number of locally non-overlapping time scale components,
known as intrinsic mode functions (IMFs). These IMFs form a complete set and are
orthogonal to each other. The adaptive properties of EMD to empirical data make
it easy to give physical significations to IMFs, and allow us to choose a certain
IMF as a respiratory rhythm [26]. As an IMF is selected for the respiratory rhythm,
one can further use CRS to detect synchronization. In this article, we will review
the scheme proposed by Wu and Hu [26], and focus on the application of EMD

! Besides the Hilbert spectral analysis, one can also use other methods to process the data obtained
from EMD, see e.g. Refs. [17, 18].
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to cardiorespiratory synchronization. Details of the study will be referred to their
original paper [26].

This article is organized as follows. In Section 2, we introduce the EMD method.
In Section 3, the EMD is used to extract the respiratory rthythm from experimental
data and the Hilbert transform is used to calculate the instantaneous phase of the
respiratory time series. The CRS is then constructed by assessing heartbeat data
on the phase of the respiratory signal, and is used to visually detect the epochs of
synchronization in Section 4. In Section 5, we investigate the correlation between
regularity of respiratory signals and cardiorespiratory synchronization. Finally, we
discuss our results in Section 6.

2 Empirical Mode Decomposition

The EMD is an empirically based data-analysis method. It was developed from the
assumption that any data consists of different simple intrinsic modes of oscillations.
The essence of the EMD is to identify the intrinsic oscillatory modes by characteris-
tic time scales in the data empirically, and then decompose the data accordingly [34].
This is achieved by “sifting” data to generate IMFs. The IMFs obtained by the EMD
are a set of well-behaved intrinsic modes and are symmetric with respect to the local
mean and have the same numbers of zero crossings and extrema. The algorithm to
create IMFs in the EMD has two main steps [26,34]:

Step-1: Tdentify local extrema in the experimental data {x(#)}. All the local maxima
are connected by a cubic spline line U(#), which forms the upper envelope of the
data. Repeat the same procedure for the local minima to produce the lower enve-
lope L(#). Both envelopes will cover all the data between them. The mean of upper
envelope and lower envelope m (¢) is given by:

U@)+ L(2)

mi(t) = >

(D

Subtracting the running mean m(¢) from the original time series x(f), we get the
first component & (¢),

hi(t) = x(1) —m(1). 2

The resulting component %(¢) is an IMF if it is symmetric and have all maxima
positive and all minima negative. An additional condition of intermittence can be
imposed here to sift out waveforms with certain range of intermittence for physical
consideration. If /2,(¢) is not an IMF, the sifting process has to be repeated as many
times as it is required to reduce the extracted signal to an IMF. In the subsequent
sifting process steps, /(?) is treated as the data to repeat steps mentioned above,

hi(t) = hi(t) —my (). 3)
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Again, if the function % (#) does not yet satisty criteria for IMF, the sifting process
continues up to k times until some acceptable tolerance is reached:

hie(t) = hig—1(t) — m(t). €]

Step-2: If the resulting time series is an IMF, it is designated as ¢; = h(?).
The first IMF is then subtracted from the original data, and the difference r)
given by

ri(t) = x(t) — ci(0). ®)

is the residue. The residue r(¢) is taken as if it were the original data, and we apply
to it again the sifting process of Step-1.

Following the procedures of Step-1 and Step-2, we continue the process to find
more intrinsic modes ¢; until the last one. The final residue will be a constant or a
monotonic function which represents the general trend of the time series. Finally,
we obtain

n
x(t) =Y cit) + 1. 6)
i=1
ri—1(t) — ci(t) = ri(0). (M
The instantaneous phase of IMF can be calculated by applying the Hilbert trans-

form to each IMF, say the rth component ¢, (). The procedures of the Hilbert trans-
form consist of calculation of the conjugate pair of ¢,(z), i.e.,

1 ® ot
()= =P f ——dr’, (®)
e t

-

where P indicates the Cauchy principal value. With this definition, two functions
¢y (t) and y,(t) forming a complex conjugate pair, define an analytic signal z,(¢):

2 (1) = ¢, (1) + iy, (t) = A, ()", 9)

with amplitude A, (7) and the instantaneous phase ¢, () defined by

A1) = [20) + y20)] 2, (10)

(1) = tan™! (i—%) . (11)
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3 Data Acquisition and Processing

The empirical data consisting of 20 data sets were collected by the Harvard medical
school in 1994 [35]. Ten young (21-34 years old) and ten elderly (68-81 years
old) rigorously-screened healthy subjects underwent 120 minutes of continuous
supine resting while continuous ECG and respiration signals were collected. The
continuous ECG and respiration data were digitized at 250 Hz (respiratory sig-
nals were latter preprocessed to be at 5 Hz). Each heartbeat was annotated using
an automated arrhythmia detection algorithm, and each beat annotation was veri-
fied by visual inspection. Among these, records fl1y0l1, fl1y02,.. ., flyl0 were ob-
tained from the young cohort, and records f1o01, f1002,.. ., flo10 were obtained
from the elder cohort. Each group of subjects includes equal numbers of men
and women.

The respiratory signals represent measures of the volume of expansion of ribcage,
so the corresponding data are all positive numbers and there are no zero crossings.
In addition to respiratory rhythms, the data also contain noises originating from
measurements, external disturbances and other factors. In this work we apply the
EMD [34] to preprocess the data. From to the decomposition of EMD, one can
select one component as the respiratory rhythm according to the criteria of intermit-
tencies of IMFs imposed in Step-1 as an additional sifting condition [26]. Note that
among IMFs, the first IMF has the highest oscillatory frequency, and the relation of
intermittence between different modes is 7, = 2"~ !7; with 7, the intermittence of
the nth mode. More explicitly, the procedures of data processing are as follows. (i)
Apply EMD to decompose the data into several IMFs. The decomposition acquires
input of the criterion of intermittence as the parameters in the sifting process, and
we use the time scale of a respiratory cycle as the criteria. Since the respiratory
signal was preprocessed to a sampling rate of 5 Hz, there are (10-30) data points
in one cycle.? Then, for example, we can use ci: (3-6), cz: (6-12), c3: (12-24),
etc. After the sifting processes of EMD, the original respiratory data is decomposed
into n empirical modes ¢y, ¢, ..., ¢,, and a residue r,. (ii) Visually inspect the
resulting IMFs. If the amplitude of certain mode is dominant and the wave-form is
well distributed, the data is said to be well decomposed and the decomposition is
successfully completed. Otherwise, the decomposition may be inappropriate, and
we have to repeat step (i) with different parameters.

Figure 1 shows the decomposition of an empirical signal with a criterion of the
intermittence being (3—6) data points for ¢y, and (3 x 2"~ '-3 x 2") data points for
cyp’s with n > 1. Comparing x(¢) with ¢;’s, it is obvious that c3 preserves the main
structure of the signal and is dominant in the decomposition. We thus pickup the
third component c3, corresponding to (12-24) data points per respiratory cycle, as

2 The number of breathing per minute is about 18 for adults, and about 26 for children. For dif-
ferent healthy states, the number of respiratory cycles may vary case by case. To include most of
these possibilities, we take respiratory cycles ranging from 10 to 30 times per minute, and each
respiratory cycle then roughly takes 2—6 seconds, i.e., (10-30) data points.
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the respiratory rhythm. After one of IMFs is selected as the respiratory rhythm, we
can proceed in the next step to construct CRS.
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Fig. 1 Example of EMD for a typical respiratory time series data (floO1). The criteria for intermit-
tence in the sifting process is (3—6) data points per cycle for c¢;. Signal x(7) is decomposed into 14
components including 13 IMFs and 1 residue. Here only the first 7 components are shown. After
Ref. [26]

4 Cardiorespiratory Synchrogram

Cardiorespiratory synchronization is a process of adjustment of rhythms due to in-
teractions between cardiovascular and respiratory systems. These interactions can
lead to a perfect locking of their phases, whereas their amplitudes remain chaotic
and non-correlated [4]. If the phases of respiratory signal ¢, and heartbeat ¢, are
coupled in a fashion that a cardiovascular system completes n heartbeats in m



Application of Empirical Mode Decomposition 173

respiratory cycles, then a roughly fixed relation can be proposed. In general, there
is a phase and frequency locking condition [4—6]

|m¢, — nep.| < const., (12)

with m, n integer. According to Eq. (12), for the case that ECG completes n cycles
while the respiration completes m cycles, it is said to be synchronization of n cardiac
cycles with m respiratory cycles. Using the heartbeat event time #; as the time frame,
Eq. (12) implies the relation

Gr(tirm) — or(ty) = 27rm. 13)

Furthermore, by defining
1
W (1) = 2—[¢>r(tk)m0d27tm] (14)
b/

and plotting s, (#;) versus f;, synchronization will result in n horizontal lines in
case of n:m synchronization. By choosing n adequately, a CRS can be developed
for detecting the synchronization between heartbeat and respiration [5, 6].

Example of 3:1 synchronization with n = 6 and m = 2 is shown in Fig. 2a,
where phase locking appear in several epochs, e.g. at 2800-3600s, and there are
also frequency locking, e.g. at 400s, near which there are n parallel lines with the
same positive slope. For comparison, we also show the results of the same subject
in 1800-3600s, but with respiratory signals without filtering, preprocessed by the
standard filters and the EMD in Fig. 2b. The windows of the standard filters are

without filtering
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Fig. 2 Cardiorespiratory synchrogram for a typical subject (f1006). (a) Empirical data are prepro-
cessed by the EMD. There are about 800s synchronization at 2800-3600s, and several spells of
50-300s at other time intervals. (b) Comparison of the results without filtering (top one), prepro-
cessed by the standard filters with windows of (8-30) and (16-24) cycles per minute (the second
and the third ones), and the EMD method (botfom one). After Ref. [26]
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Fig. 3 Histogram of phase 30
for the phase locking period
from 2800s to 3600s for a
typical subject (f1006) shown
in Fig. 2a. After Ref. [26] 20 -
n
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(8-30) and (16-24) cycles per min. In general, some noise dressed signals can still
show synchronization in some epochs but the Hilbert spectral analysis failed at some
time intervals (e.g., around 3400-3600s of the case without filtering), and over-
filtered signals reveal too strong synchronization (filter with window of 16-24). In
other words, global frequency used in standard filters may dissolve local structures
of the empirical data. This does not happen in the EMD filtering.

Figure 3 shows the histogram of phases for the phase locking period from 2800 to
3600s in Fig. 2a. Significant higher distribution can be found at {5, ~ 0.25, 0.6, 0.9,
1.25, 1.6, 1.9 in the unit of 2, indicating heartbeat events occur roughly at these
respiratory phase during this period. Following above procedures, we analyze data
of 20 subjects, and the results are summarized in Table 1. The results are ordered by

Table 1 Summary of our results. 20 subjects are ordered by the strength (total time length) of the
cardiorespiratory synchronization. After Ref. [26]

Code Sex Age Synchronization

flo06 F 74 3:1(800s, 300s, 250s, 150s, 100s, 50s)
f1y05 M 23 3:1(350s, 300s, 200s, 100s)
f1003 M 73 3:1(200s, 50s, 30s)

fly10 F 21 7:2(200s, 50s), 4:1(50s)

f1007 M 68 7:2(120s, 100s, 80s)

flo02 F 73 3:1(100s, several spells of 50s)
flyOl F 23 7:2(several spells of 30s)
fly04 M 31 5:2(80s, 50s, 30s)

f1008 F 73 3:1(50s, 30s)

fly06 M 30 4:1(50s, 30s)

flo01 F 77 7:2(several spells of 50s)
f1y02 F 28 3:1(50s)

f1y08 F 30 3:1(50s)

flo10 F 71 3:1(30s)

f1o05 M 76 No synchronization detectable
f1y07 M 21 No synchronization detectable
fly09 F 32 No synchronization detectable
f1y03 M 34 No synchronization detectable
f1o09 M 71 No synchronization detectable
flo04 M 81 No synchronization detectable
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the strength of the cardiorespiratory synchronization. From our results, we do not
find specific relations between the occurrence of synchronization and sex of the sub-
jects as in Refs. [5,6]. Here we note that if we use other filters to the same empirical
data, we will have different results depending on the strength of synchronization.
Wu and Hu [26] found that from the aspect of data processing that could preserve
the essential features of original empirical data, the EMD approach is better than
Fourier-based filtering.

5 Correlation and Regularity

As noted above, data processing method plays a crucial role in the analysis of real
data. Over-filtered respiratory signals may lose detailed structures and become too
regular. It follows that final conclusions are methodological dependent. One might
then ask how the results depend on the data processing methods. This problem arises
when one addresses the issue of existence or strength of the cardiorespiratory syn-
chronization, and the answers may be helpful for understanding the mechanisms of
the synchronization.

In general, the existence of cardiorespiratory synchronization is confirmed sim-
ply when it is observed in enough subjects analyzed by various approaches. The
existing studies have positive answers on its existence [5, 6, 9—13]. Nevertheless,
the strength of synchronization for these subjects may depend on the methods used,
and need further investigations. For this purpose, we test the correlations between
cardiac and respiratory signals as well as their regularities. We first consider two data
sets: (fl1o06.res, f1006.hrt) and (f1y0S.res, f1y05.hrt). Here notation “code.signal”
indicates one code and its corresponding signal. Both of these two data sets, 1006
and f1y05, have been analyzed to show 3:1 synchronization in some periods. The
synchronization exhibited by these two data sets in an interval from 2000s to 3600s
is shown respectively in Fig. 4a and b. We interchange the respiratory and cardiac
time series of them to be (f1006.res, f1y05.hrt) and (f1y05.res, f1006.hrt), and then
construct their synchrograms. The results are shown in Fig. 4c and d, respectively.
There are still phase locking appearing in shorter spells for the “mixed” data, such as
at 3000s of Fig. 4c and at 2000s of Fig. 4d. This implies the synchronization should
be detectable provided that there are characteristic features coupled between respi-
ratory and cardiac signals. Therefore, emergence of short shells of synchronization
does not necessarily imply true coupling between cardiovascular and respiratory
systems. If cardiorespiratory synchronization exists in a subject, the cardiovascular
and respiratory systems must correlate with the same variation scheme of intermit-
tence such that synchronization can appear again and again in some time intervals.
Hence, the phase locking in the synchrogram of Fig. 2a, where synchronization dis-
appears and recovers repeatedly at 1800-3600s due to the variation of intermittence
of respiratory time series indicates true cardiorespiratory synchronization.

Next, we test the dependence of the results on the regularity of signals. In our
study, cardiac signals are regular enough [26], which implies the regularity of
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Fig. 4 Cardiorespiratory synchrogram for data sets (a) (f1o06.res, f1006.hrt), (b) (fly05.res,

fly05.hrt), (¢) (flo06.res, fly05.hrt), (d) (flyO5.res, f1006.hrt), at period 2000-3600s. After
Ref. [26]

cardiac signals is not necessarily related to the strength of synchronization. In con-
trast to cardiac signals, real respiratory signals are essentially irregular. Here we will
not measure regularity of respiratory cycles directly, but compare synchronization in
CRS for various sets of cardiac and respiratory time series. We introduce an artificial
respiratory signal generated by a generic cosine wave s(So, 7, t),

2t
§(So. T. 1) = Socos (T) , (15)

where S is the amplitude and T is the period. The frequency of this wave is fixed
and the phase varies regularly. We first construct the synchrogram for [s(So, 7T, 1),
f1006.hrt]. The results are shown in Fig. 5, in which different periods 7 = 15,
16, 17, 17.6, 18 have been used. According to Fig. 5, the cardiac signals for this
subject are rather regular, and a fixed heartbeat frequency can last relatively long
time, even if it changes finally. When T is a multiple of 3, such as 7 = 15 and
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Fig. 5 Cardiorespiratory synchrogram for data sets [s(Sy = 1000, 7', t), flo06.hrt] with (a)
T=15(b)T =16,(¢c) T =17,(d) T = 18, and (e) T = 17.6. After Ref. [26]

T = 18, there are synchronization spells observed at the period from 100s to 220s,
and phase locking at the other epochs. For T = 17.6, phase locking can be observed
at most epochs of the period. Here we should note that, comparing Figs. 2(a) and 5,
a short spell from 100 s to 220s appears as phase locking corresponds to respiratory
intermittence 7 = 18. However, a short spell from 1220s to 1350s corresponds to
respiratory intermittence roughly about 7 = 17.6. Even the intermittence varies,
the synchronization persists. This indicates the existence of correlations.
Comparing the patterns of the periods where synchronization occurs in Fig. 5
and the corresponding periods in Fig. 4, we find that cardiac signals are regular
enough such that synchronization occurs at the framework of regular time series,
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Fig. 6 Cardiorespiratory synchrogram for data set (a) (flo09.res, f1009.hrt), and data sets
[s(Sop = 1000, T, 1), f1009.hrt], with (b) T = 15, (¢) T = 16, (d) T = 17, and (e) T = 18.
After Ref. [26]

and respiratory cycles are not regular enough such that there is weaker or even no
synchronization in the corresponding periods. To have more results for compari-
son, we examine another subject having data set (f1009.res, f1009.hrt), which has
no synchronization at all in the preceding analysis. The synchrogram for data set
(f1o09.res, f1009.hrt) is shown in Fig. 6a, and data sets [s(Sy, T, t), f1009.hrt] with
T =15, 16, 17, 18 are respectively shown in Fig. 6b—e. We find that there are short
spells phase locking or frequency locking appear, and the length of the spells depend
on the period 7. Therefore, more regular respiratory signals have better manifesta-
tion of synchronization.

From above investigation, we conclude that: (i) In most cases, cardiac oscilla-
tions are more regular than respiratory oscillations and the respiratory signal is the
key factor for the strength of the cardiorespiratory synchronization. (ii) Cardiores-
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piratory phase locking and frequency locking take place when respiratory oscil-
lations become regular enough and have a particular frequency relation coupling
with cardiac oscillations. We observed the intermittence of respiratory oscillation
varies with time but synchronization persists in some subjects, such as codes f1006
and f1y05. This confirms correlations in the cardiorespiratory synchronization. (iii)
Over-filtered respiratory signals may be too regular, and in turn, appear to have
stronger synchronization than they shall have. Therefore, if the Fourier based ap-
proach with narrow band filtration is used, some epochs of phase locking or fre-
quency locking should be considered as being originated from these effects.

6 Discussion

We have reviewed the scheme introduced by Wu and Hu [26] to study cardiorespira-
tory synchronization. The scheme is based on the EMD and CRS. The advantage of
using the EMD is that it catches primary structures of respiratory rhythms based on
its adaptive feature [34,36]. By imposing the intermittency criteria based on phys-
iological condition revealing from empirical time series, this feature allows us to
effectively keep the signal structures and avoid the introduction of artificial signals
easily appear in the Fourier-based filters with priori bases [26]. Furthermore, the in-
troduction of IMFs in EMD provides a reasonable definition of instantaneous phase.
This advantage is helpful for drawing reliable conclusions on the studies of empiri-
cal data. The study supports the existence of the cardiorespiratory synchronization.
However, no difference in synchronization between two different age groups and
two different sex groups were found. At the current stage, even cardiorespiratory
synchronization has been observed in a number of studies, there is still no confident
conclusion on its dependence on sex and age due to few subjects were studied and
most of them were performed in different physiological stages. Furthermore, the
statistics of our results indicates that most synchronization exhibits 3:1 (8 subjects),
4:1 (1 subjects) and 7:2 (4 subjects) synchronization, which is consistent with the re-
port of Ref. [12] that mature physiological subjects (adults) have larger probabilities
of 3:1, 4:1, and 7:2 synchronization than 5:2 synchronization.

From a physiological viewpoint, it is difficult to precisely identify the mecha-
nisms responsible for the observed non-linear interactions. From our studies, we
found that cardiac oscillations are more regular than respiratory oscillations, and
cardiorespiratory synchronization occurs at the period when respiratory signals
become regular enough. In other words, the regularity of respiratory signals con-
tributes dominantly to the synchronization. Cardiorespiratory synchronization and
RSA are two competing factors in the cardiorespiratory interactions. This observa-
tion is consistent with the results reported in Refs. [21,37].

Finally, it should be remarked that the technique used in this work can also be
applied to the analysis of other time series, such as financial time series [38—40]. It is
also interesting to extend the technique to analyze signals from many-body systems
and study their synchronization.
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