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Abstract – A stock market index is an average of a group of stock prices with weights. Different
stock market indices derived from various combinations of stocks may share similar trends in
certain periods, while it is not expected that there are fixed relations among them. Here we report
our investigations on the daily index data of Dow Jones Industry Average (DJIA), NASDAQ,
and S&P500 from 1971/02/05 to 2011/06/30. By analyzing the index ratios using the empirical
mode decomposition, we find that the ratios NASDAQ/DJIA and S&500/DJIA, normalized to
1971/02/05, approached and then retained the values of 2 and 1, respectively. The temporal
variations of the ratios consist of global trends and oscillatory components including a damped
oscillation in 8-year cycle and damping factors of 7183 days (NASDAQ/DJIA) and 138471 days
(S&P500/DJIA). Anomalies in the ratios, corresponding to significant increases and decreases of
indices, only appear in the time scale less than an 8-year cycle. Detrended fluctuation analysis
and multiscale entropy analysis of the components with cycles less than a half-year manifest a
behavior of self-adjustment in the ratios, and the behavior in S&500/DJIA is more significant
than in NASDAQ/DJIA.

Copyright c© EPLA, 2012

Financial markets are a complex system, in which
traders interact with one another and react to external
information to determine the best prices for items. The
emergence of econophysics as a new branch of statisti-
cal physics has advanced our understanding to financial
activities in markets using the concepts and theories devel-
oped in physics [1–20]. Properties revealed from empir-
ical data analysis of financial systems usually provide
primary clues to understanding the underlying mecha-
nisms and are essential for subsequent modelling [6–21].
These include financial stylized facts [2–6,22,23], such as
fat tails in asset return distributions, absence of autocorre-
lations of asset returns, aggregational normality, asymme-
try between rises and falls, volatility clustering [10], and
phase clustering [18–20]. Successful empirical analysis and
modelling of financial criticality have suggested possible
physical pictures for financial crashes and stock market
instabilities [11–17].
In this paper, we study the relations among the daily

stock market indices of Dow Jones Industry Average

(a)E-mail: mcwu@ncu.edu.tw

(DJIA), NASDAQ, and S&P500, from 1971/02/05 to
2011/06/30. The data were downloaded from Yahoo
Finance (http://finance.yahoo.com/). The original
lengths of the data of the three indices are different.
In the preprocessing of the data, the three indices are
aligned by removing three data points in DJIA and
S&P500 (1973/9/26, 1974/10/7, and 1975/10/16) which
do not exist in NASDAQ. Finally there are 10197 data
points involved in the study. Figure 1(a) shows the
daily index data of the three stock markets. Though the
indices of DJIA, NASDAQ, and S&P500 are distinct,
there is a remarkable feature that by keeping DJIA
as a reference and multiplying the NASDAQ index by
a factor of 5.2 and S&P500 by 8.5, the curves of the
rescaled indices coincide very well in several epoches,
except large deviations in NASDAQ for the periods
1999–2001 and 2009–2011, as shown in fig. 1(b). In the
year 2011, DJIA is the average price of 30 companies
(http://www.djaverages.com/), NASDAQ consists of
1197 companies (http://www.nasdaq.com/), and the
S&P500 index is an average result of 500 companies
(http://www.standardandpoors.com). Some companies,
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Fig. 1: (Colour on-line) (a) Daily indices of Dow Jones Industry
Average (DJIA), NASDAQ, and S&P500. (b) Rescaled indices
ax(t). (c) The gains of the three indices. (d) Ratios of paired
indices, normalized to the values on 1971/02/05.

such as Intel and Microsoft, are included in all the three
markets, but most of their compositions are different. The
relations among the indices are not crucially determined
by the common companies. The coincidence of the three
indices via scaling is thus nontrivial. It is interesting to
investigate the properties of the relation among them
revealed in some extent from the daily data.
Consider two indices xi and xj . The ratio between two

indices at time tn

Rij(tn) =
xi(tn)

xj(tn)
, (1)

can be alternatively formulated as

Rij(tn) =Rij(tn−1)
1+ gi(tn−1)

1+ gj(tn−1)
, (2)

where

gi(tn) =
xi(tn+1)−xi(tn)

xi(tn)
, (3)

is the gain of the index xi. The gain time series of the
three indices are shown in fig. 1(c). Since the initial time

tn−1 in eq. (2) can be chosen arbitrarily, we “normalize”
the ratio to the initial value of Rij at t0, i.e.,

NRij(tn)≡
Rij(tn)

Rij(t0)
=

n∏
m=1

1+ gi(tm−1)

1+ gj(tm−1)
. (4)

Using 1971/02/05 as the initial time for the three indices,
NRij(tn) (hereafter abbreviated as NR(t) for simplic-
ity) of NASDAQ/DJIA and S&P500/DJIA are shown
in fig. 1(d). The normalized ratio of NASDAQ/DJIA
increased before 1982 from 1 to 2, and then saturated
with fluctuations. While there was a sharp change in the
period from 1998 to 2002 (more precisely a peak in 2000),
it returned to 1.5 in 2003 and then grew up to 2 gradually.
On the other hand, the normalized ratio S&P500/DJIA
varied around 1 with variation magnitudes within ±0.3.
Consequently, a general feature of the normalized ratio is
that it approached and then retained the values of 2 and 1
for NASDAQ/DJIA and S&P500/DJIA, respectively. For
the cases in which different dates are used to normalize
the ratios, there is an overall factor Rij(t0)/Rij(t

′
0) to

NR(t) in eq. (4) and the behaviors remain unchanged. The
scenario is similar to a mechanical system with a “restor-
ing force” acting on it: when the ratio becomes too large
or small, it inclines to retain an equilibrium state.
To explore the evolution of the ratios, we analyze the

variations of NR(t) in different time scales using the
empirical mode decomposition (EMD) [24], developed for
nonlinear and nonstationary time series analysis. The
EMD method has been developed on the assumption that
any time series consists of simple intrinsic modes of oscil-
lations [24]. The adaptive decomposition scheme explic-
itly utilizes the actual time series for the construction
of the decomposition base rather than decomposing it
into a prescribed set of base functions. The decomposi-
tion is achieved by iterative “sifting” processes for extract-
ing modes by identification of local extremes and subtrac-
tion of local means [24]. The iterations are terminated by
a criterion of convergence. For details of the algorithms,
reference is made to refs. [24,25]. Under the procedures
of EMD [24,25], the ratio time series NR(t) is decom-
posed into n intrinsic mode functions (IMFs) ck’s and a
residue rn,

NR(t) =

n∑
k=1

ck(t)+ rn(t). (5)

The IMFs are symmetric with respect to the local zero
mean and have the same numbers of zero crossings and
extremes, or a difference of 1. All the IMFs are orthogonal
to each other [24]. Thus, the decomposition via the
EMD scheme satisfies the requirement of completeness
and orthogonality. According to the algorithm of EMD,
the first component c1 has the highest frequency, the
secondary component c2 has a frequency about half of
c1, and so on. Ideally, the frequency content of each
component is not overlapped with others such that the
characteristic frequencies of all components are distinct.
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Fig. 2: (Colour on-line) Empirical mode decomposition (EMD)
of the ratio NR for NASDAQ/DJIA. (a) Comparisons of NR,
IMFs and IMF combinations. (b) IMFs c8, c9, and residue r9.
(c) The data of NR− c6− c7− c8− c9− r9.

In time domain, one component can then be characterized
by its own range of periods. Here, both the NR of
NASDAQ/DJIA and S&P500/DJIA are decomposed into
10 components. Using the property that each component
has a distinct period, we sum over different components to
assess the behaviors of the ratios in different time scales.
Figures 2(a) and 3(a) show the comparisons ofNR, residue
r9 and combinations of the residue and IMFs, c9+ r9
and c(6–9)+ r9 (here c6+ c7+ c8+ c9 has been abbreviated
as c(6–9) for simplicity). For the decomposition, we are
more interested in the residue r9 and IMFs c8 and c9,
shown in fig. 2(b) and fig. 3(b). The residue r9 is the
trend of the ratio NASDAQ/DJIA which approaches 2
gradually from 1.2 (fig. 2(b)), while r9 of S&P500/DJIA
grows up from 1 to 1.2 and then decreases back to 1
(fig. 3(b)). The IMF c9 reveals that the variations of the
ratios in the scale of an 8-year cycle behave as a damped
oscillation in the form of exp[−(tn− t0)/γ] with damping
factors γ ≈ 7183 days (NASDAQ/DJIA) and 138471 days
(S&P500/DJIA) determined from the local minima of IMF
c9. Thus, the combination of c9 and r9 shows the converge
of oscillations to values 2 and 1 for NASDAQ/DJIA
and S&P500/DJIA, respectively. Meanwhile, the IMF c8
corresponding to a (2–4)-year cycle is accompanied with
frequency modulation in late of 1990s, implying the trigger
of the anomaly in amplitude change and its recovery to
regular situation lasts 1.5 oscillatory cycles, about 4–6
years. Remarkably, this anomaly does not appear in IMF
c9. It is a local event in time with time scale less than an
8-year cycle.
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Fig. 3: (Colour on-line) Empirical mode decomposition (EMD)
of the ratio NR for S&P500/DJIA. (a) Comparisons of NR,
IMFs and IMF combinations. (b) IMFs c8, c9, and residue r9.
(c) The data of NR− c6− c7− c8− c9− r9.

The components of the ratios in the cycle less than half-
year (about 125 days) are derived by taking the difference
between NR and c(6–9)+ r9. The data of NR− c(6–9)− r9
are shown in fig. 2(c) and fig. 3(c) for NASDAQ/DJIA and
S&P500, respectively. We analyze their statistical proper-
ties by the detrended fluctuation analysis (DFA) [26–28]
and the multiscale entropy (MSE) [29] analysis, and the
results are presented in fig. 4. The DFA analysis measures
the fluctuation F (n) of δNR (defined as δNR=NR−
c(6–9)− r9) with respect to a linear fit of the data (δNRn)
in a time window n, and use an index α defined from

F (n) =

√
1

T

∑
t

[δNR(t)− δNRn(t)]
2
∼ nα (6)

to describe the correlation property of the data [26–28].
The results of α= 1.4851 for NASDAQ/DJIA and
α= 1.3859 for S&P500/DJIA in fig. 4(a) suggest that
the property of NR− c(6–9)− r9 is similar to a Brownian
motion with more negative correlation (<1.5) in the
time scale less than half-year (125 days) in fig. 4(a),
indicating the anti-persistent behaviors in the ratios.
The relatively stronger anti-persistent behavior in
S&P500/DJIA than in NASDAQ/DJIA is considered as a
signature of more significant self-adjustment in the ratio
of S&P500/DJIA. The change of slope at 125 days is due
to the removal of high-order IMFs (c(6–9) and r9). The
slopes in this regime indicate that effective changes of
the ratios in S&P500/DJIA (α= 0.4084) is smaller than
in NASDAQ/DJIA (α= 0.5643). Note that the above
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analysis is independent of the dates used to normalize the
ratios, since the difference between the decompositions
of NR and NR ·Rij(t0)/Rij(t

′
0) is an overall factor to

IMFs, which has no effect on their statistical properties.
Furthermore, the MSE analysis measures the scale

dependence of the complexity in the data [29]. The analy-
sis is implemented by calculating the entropies of a set of
resampled data in different window sizes, and the rela-
tive complexity of the data is evaluated with respect
to a reference defined from the corresponding shuffled
data or some standard noises. The results in fig. 4(b)
show that the information content of NR− c(6–9)− r9
of NASDAQ/DJIA is richer than that of S&P500/DJIA
in all time scales. The existence of the detailed struc-
tures in the ratio of S&P500/DJIA (fig. 3(c)) is again a
signature of more abundant self-adjustments in it than
in NASDAQ/DJIA. Remarkably, their entropies reach
maxima at about 14 days, implying that the reassessments
on ratios are relatively more active in this time scale. The
entropy of NR− c(6–9)− r9 for NASDAQ/DJIA is lower
than the shuffled data, generated by randomizing the time
series of NR− c(6–9)− r9 using normal distribution, in the

scale less than 60 days, and that for S&P500/DJIA is less
than the shuffled data in the scale less than 7 days. Inter-
estingly, the information content in NR− c(6–9)− r9 for
NASDAQ/DJIA is relatively lower than the correspond-
ing shuffled data resembling to a white noise. There is
a weaker correlation between NASDAQ and DJIA than
between S&P500 and DJIA. As a result, larger deviations
of the rescaled indices in fig. 1(b) for DJIA and NASDAQ
than DJIA and S&P500 can be observed in the period
from 1999 to 2002.
To gain knowledge for the dynamical properties the

ratios, we calculate the dynamical cross-correlations for
pairs of the stock market indices using logarithmic return
defined by

lri(tn) = log
xi(tn+1)

xi(tn)
. (7)

The dynamical cross-correlation between returns of two
indices is defined as

ρij(tn) =
(lri−〈lri〉) (lrj −〈lrj〉)

σiσj
, (8)

with σ2i = 〈lr
2
i −〈lri〉

2〉 the variance of the index, and 〈· · ·〉
indicates an average over a time window T . Figures 5(a)
and (b) show the dynamical cross-correlations between
DJIA and NASDAQ with time windows T = 10 days
and T = 100 days. The correlation between two stock
indices are more positive for T = 100 days than T = 10
days. Despite the phase differences in the short time
scale, the variations of the indices in the large time
scale are generally positive correlated (more in phase).
Figure 5(c) shows the window size dependence of the
average correlation of the stock indices. The average
correlation between S&P500 and DJIA is stronger than
NASDAQ and DJIA for all window sizes, consistent with
inference from the MSE analysis in fig. 4(b) that the
information content in &P500/DJIA in the cycle less than
a half-year is richer than NASDAQ/DJIA. Furthermore,
DJIA and NASDAQ have the strongest correlation at
T = 60 days, while the correlation strength between DJIA
and S&P500 grows gradually with time and saturates at
T > 1000 days.
Next, by expanding the product in eq. (4), the normal-

ized ratio NRij(tn) can be rewritten as

NRij(tn) =
1+
∑n
k=1G

(k)
i

1+
∑n
k=1G

(k)
j

, (9)

with

G
(k)
i =

1

k!

∑
tm1 �=tm2 ···

k∏
l=1

gi(tml). (10)

The term G
(1)
i in eq. (10) is a sum of all the gains.

Figure 6(a) shows the probability density function of the
gain g for the three indices. The means of the grains
are 0.00032095, 0.00040822, and 0.00031729 for DJIA,

NASDAQ, and S&P500, respectively. The value of G
(1)
i
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is in the order of 1. The term G
(2)
i is proportional to the

autocorrelation function of the gain, defined as C(τ) =∫ tN−τ
t0

δg(t)δg(t+ τ)dt/η2, with variance η2 = 〈g2−〈g〉2〉,

and its value is also in the order of 1. The G
(k)
i ’s

with k� 3 are combinations of the sum of gains and

autocorrelation functions. Further calculations of G
(k)
i

show that the values of all G
(k)
i ’s of eq. (10) are in the

order of 1. Consequently, all G
(k)
i ’s substantially have

equal contributions to the ratios. We then calculate the
autocorrelation of the absolute gain and the results are
shown in fig. 6(b). Using the exponential decay model
to fit the autocorrelation function, the correlation length
is determined to be 194 days for DJIA, 766 days for
NASDAQ, and 238 days for S&P500, which are less
than 4 years. Therefore, the damped oscillation in an 8-
year cycle is not a consequence of cross-correlation and
autocorrelation of the indices.
In conclusion, we have analyzed the ratios of the

daily index data of DJIA, NASDAQ, and S&P500 from
1971/02/05 to 2011/06/30. The results show that though
three indices are distinct from one another, using suitable
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Fig. 6: (Colour on-line) Statistical properties of the stock
market indices. (a) Probability distribution function of the
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correlation length is 194 days for DJIA, 766 days for NASDAQ,
and 238 days for S&P500.

scaling factor, the indices can be made coincidence very
well in several epoches, except NASDAQ in the peri-
ods 1999–2001 and 2009–2011. This feature indicates the
existence of definite ratios among them. Sophisticated
time series analysis based on EMD method show that
the ratios NASDAQ/DJIA and S&P500/DJIA, normal-
ized to 1971/02/05, approached and then retained 2 and
1, respectively, from 1971 to 2011, through damped oscilla-
tory components in the 8-year cycle and damping factors
of about 29 years (7183 days for NASDAQ/DJIA) and
554 years (138471 days for S&P500/DJIA). The damped
oscillation of the 8-year cycle is not associated with
the characteristic time scales in the autocorrelation and
cross-correlation of the indices. Furthermore, the peak of
NASDAQ/DJIA in the period from 1998 to 2002, which
is considered as an anomaly in the ratio, does not appear
in the 8-year cycle. It is a local event in the time scale
less then 8-year. Thus, the behavior of damped oscillation
of the ratios converging to fixed values is independent of
such anomalies. For the components with cycles less than
half-year, behaviors of self-adjustments are observed in
the ratios, and there is a relatively active re-assessment
on the ratio in the time scale of 14 days revealed from
the MSE analysis. The behavior of self-adjustment in
the ratio for S&P500/DJIA is more significant than in
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NASDAQ/DJIA. As the damped components set reason-
able bounds to the variations of the indices, our findings
may be informative for risk evaluation of the markets.
Finally, we would like to propose a further study of

stock market modelling. In standard finance theory, it is
assumed that arbitrage opportunities disappear quickly
as arbitrage is performed by traders [30]. The strategies
derived from algorithmic trading engines, which quote
inter-product ratios and inter-market ratios and apply
statistical arbitrage approaches to anticipate deviations,
are on shorter time scales [4]. It is interesting to investigate
whether such processes can lead to the damped oscillatory
behaviors in longer time scales observed in this study.
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