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Abstract. Exact expressions of the Bloch wall free energy are obtained for the Ising model on
a rectangular lattice and infinitely long cylinder. The interfacial tension amplitudes are obtained
for different coupling and aspect ratios. Finite-size scaling theory is used to analyse the effects of
coupling anisotropy and finite size in the interfacial tension.

The interfacial free energies are defined as the difference between the free energies of two
finite-size systems with different boundary conditions. For the case of an Ising model, the
difference in free energy between a system with periodic and antiperiodic boundary conditions
is sometimes referred to as the Bloch wall free energy [1], which is the case we analyse in
this work. Consider an Ising model defined oL a x L, rectangular lattice with periodic
boundary condition alond@,. The boundary condition alonfy, is periodic or antiperiodic.

Then the interfacial tension, which is the interfacial free energy per unit length artg per

IS
Jo Jo J2
o ta_;LXaLy =Ly fpa ta_;LXaLy _fpp ta_;Lx,Ly (l)
J1 J1 J1

whereJ; andJ are the couplings alond, andL, respectivelyt is the reduced temperature,
t =(0.—6)/0.withd = kgT/Jyandd, = kgT./J1, fra is the free energy density pegT for
the antiperiodic boundary condition alog, and f,, is for the periodic boundary condition
alongL,. Note that we choose the coupling along thexis, J1, as the scale to measure the
temperature. From the usual scaling ansatz, we can write the scaling fermsdi2, 3]

o(t,r; Ly, Ly) = LTS (LY 1, 1) 2

whereX (z; r1, r2) with z = rL}" is the scaling function; defined asl,/J; is the coupling

ratio, andr, defined ad., /L, is the aspect ratio, and we use the form,

Y(z;r1,12) = ap, (r1,r2) +b(ry, r2)z 3
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to approximate the scaling function. We defi@1, r2) as the value o, (r1, r2) in the limit
of large lattice size,

A(ry,rp) = lim ag (r1, r2) 4)
L>¢

whereg is the fluctuation length of the interfacial energy for given values aihdr,, and the
value ofA(r1, rp) is the amplitude oé at the critical point. For the isotropic coupling, it was
known [4] that

A(1,1) = In(1 + 22/*) ~ 0.9865 (5)
and the various values df(1, r,) for differentr,. In this work, the finite-size dependence of
ar, (r1, r) is proposed to be of the form

ap, (r1, r2) = AGrs, r)[1 + as(r1, r2)x +az(ry, ra)x? + -] (6)

with x = 1/L2. This proposed form comes from our data analysis, and it reflects the fact that
the finite-size correction is very small. For the case of an infinitely long Ising cylinder, i.e.
L, — oo, the scaling form ob can be written as

o(t,r1; Ly — 00, Ly) = LT'S(LY r, 1, =0) = LTS LY r). (7)

y

Similar to equation (3), we use the form of
S(z; 1) = a, (r) +b(r)z (8)

with z =1L}, to approximate the scaling function. Also similar to the case of fibjtewe
defineA(ry) as the value odi;, (r1) in the limit of large lattice size,

A(ry) = lim_ag (r1) (9)
L,>E
and the finite-size dependenceaf (1) is proposed to be

ar,(r) = AGr)[L +ay(r)y +az(r)y* +- -] (10)

with y = 1/Lf,. The value ofA (1) is known to ber /4 [1, 4]. Note that the scale of finite size
used in the scaling function of equations (2) and (7) is different, and we have

lim ry- E(tL)lf/", ri 1) = f)(tLi/”; r1). (1D
erﬁgd
In this paper we report our study on the effects caused by the coupling anisotropy of the
couplings and the finite size in the scaling functions of equations (3) and (8), based on the
analytic solutions of the two-dimensional Ising model on rectangular lattices and an infinitely
long cylinder.
The Hamiltonian of the model defined on a rectangular lattice is written as

L. Ly
H=— Z Z(Jldm,ndmﬂ_,n + J20 nOm n+1) (12)

m=1n=1

and, up to a factor, the partition function takes the form of

L, Ly
Q(Lx’ L}) = Z { l_[ 1_[(1 +t10m,nam+l.n)(1 +t20m,n0m,n+l)} (13)
{o})
wherer; = tanh(J1/kpT) andr, = tanh(J>/kgT). The analytic solution of equation (13)
for the case of no external field was first solved by Onsager in the limit of an infinitely
large lattice [4]. Since then the method of obtaining the analytic solution has been perfected

m=1n=1
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and reformulated, and the solution for the case of a finite lattice has also been obtained [5—
8]. Among these developments, Plechko used a nonstandard and simple approach [9-11],
which is based on the Grassmann path-integral factorization of the Boltzmann weights and the
principle of mirror ordering of the arising Grassmann factors, to obtain an analytic expression
of the partition function of the model on a torus [9]. Based on Plechko’s approach, we are
able to extend the solution to different cases, including the model on a torus but with an
antiperiodic boundary condition and on an infinite cylinder with a periodic or antiperiodic
boundary condition. In the following we give a brief review of this method. First, one
associates two pairs of conjugate Grassmann variglgs, a,, ,; bm.., by, .}, to alattice site

(m, n), and we rewrite the Boltzmann weights as

1 + [10',nqn0‘m+1’n = / da;;,n / dam,n ellm.na,f,,,, (1 +am,nam,i1)(1 + tla;kn,nal1l+l,n) (14)
and
1+ t26m,nam,n+1 = / db;n / dbm,n ebm’nb’*"'" (1 +bin,n0m,n)(1 + Iben,nUm.n'Fl)- (15)

The periodic boundary condition along, and L, is equivalent to the conditiofa;, =

—aj . b, o= —b,, , }forthe Grassmann variables. Then one applies the principle of mirror
ordering to the Grassmann factors to group together the factors containing the same Ising spin
om.» SO that the sum over spin variables can be carried out. After performing the sum over spin
variables, one obtains a purely Grassmann representation for the partition function which is

0pp(Lx, Ly) = 3[G|r, + Glr, + Glr, — Glr,] (16)

where the subscript af ,, denotes the periodic boundary conditions in bothandL,, G
takes the form of

L, Ly L,
G= / [111db;.) dag,, dby,p day. exp{ >

L,
§ : * * *
[tltzamfl,nbm,nfl + amﬂlam,n

m=1n=1 m=1n=1
+bm,nb:1,n + am,nbm,n + (tla;:l_l’n + IZb:;l,n_j_)(am.n + bm,n)]} (17)
and the boundary conditiony, I',, I's, 'y are defined as
I = (Cla” = _azx,n’ bj;r,O = _b;L‘) (18)
= (aE)k,n = _azt,n’ bjn,O = +b71<1,L_V) (19)
F3 = (aan = +az(,n’ b;,o = _b;;,Ly (20)
F4 = (aan = +az_(,n’ b;,o = -i-b;:z,L_v . (21)

Finally one performs the integration over Grassmann variables by Fourier transform to obtain
the result as

1 6 —0,
Qpp(vaLy) = E |:011+012+013—Sgn< P L)Ol4:| (22)
C
where
Lt—lL)—l 1/2
2rp+m 2nqg + 1
oy = [Ao — A1 cosT 2T _ A2 cosq—} (23)
p=0 ¢=0 Lx y
L,—1L,~1 1/2
2np+m T
oy = |:)Lo — A COSP— — A2 COS—q:| (24)
L, L,
p=0 ¢=0 y
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Ldl, 1 2rp 2rq +m M2
o3 = l_[ 1_[ [Ao — A1 COS — A2C0S } (25)
[ L, L,
L,—1Ly—1 1/2
2rp 2rq
= Ag — A1 COS—— — A COS—— 26
w1111 [ o—icos L — ipcos T ] (26)

Mo = (1+12)(1+12), k1 = 211(1 —t3), andA, = 21,(1 — 7). Note that the sign factor in front
of the last term of equation (22) is equal to +1 for 6. and—1 for 6 < 6. with the critical
temperature®, determined by the equation,

Ao — AL —Ap = 0. (27)

We then extend the above method to the cases of different boundary conditions. For the
boundary conditions which are periodic alohgand antiperiodic along, ,, this is equivalent
to the conditionag , = —aj . b, o = b}, ; } for the Grassmann variables which amounts to
changing the boundary conditions of equation (16) to

I =(ag, = —azx,n, by o= +b,’;,Ly) (28)
Po = (ag, = —aj, . bpo=—by1, (29)
I3 =(ag, =*aj_,.byo= +b:1,L_v (30)
Pa=(ag, =*ar, ,bpo=—by 1) (31)

with the same form ofG given by equation (17). After carrying out the integration over
Grassmann variables, we obtain the result as

1 9 - 90
Qpa(an Ly) = E |:051 tay —azt Sgn( 0 ) 054:| . (32)

c

For the antiperiodic boundary conditions at both sides, this is equivalent to the condition
{ag, = ai_, by = by, } for the Grassmann variables, and the corresponding boundary
conditions in equation (16) are

Ty = (ag, =*ar, . bpo=*+by 1) (33)
P2 = (ag, = +a1, by 0=—by 1) (34)
Fs=(ag, = —a, ,byo="*b, 1) 35)
'y = (aan = —az,n, b:;,o = —b;’Ly) (36)
with the sameG. Carrying out the integration over Grassmann variables yields
1 6 —6,
Qua(Ly, Ly) = > |:—061 +taxtoazt sgn( 0 > 04] : (37)

It is also interesting to consider the case of an Ising cylinder With— oo. In this case,
equation (22) reduces to

0,(Ly) = Qpp(L, — 00, L)) = Llim a3 (38)

x—> 00

and equations (32) and (37) reduce to
Qu(Ly) = QpalLy = 00, Ly) = Qua(Ly — 00, Ly) = lm es. (39)

Substituting equations (22) and (32) into equation (1), we obtain the interfacial tension as

aytoap oz — Sgn(egé") o4

o(t,ri; Ly, Ly) = T In (40)

x a1 toy —az+ Sgn(ege") o4
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Figure 1. The interfacial tensioan, (a) for differentL, and the samé, = 50, and b) for infinitely
long cylinders of widthd., = 30, 50, 100, 300, and 500. The coupling ratiosis= 1.

For the case of an infinitely long Ising-cylinder, we substitute equations (38) and (39) into
equation (1) to obtain the interfacial tension as

27
Ao — A1COSp — Ap COSLL:W
. (41)

L,—1 _on
1% d
o(t,ri; Ly > 00, L,) = = / —In
x V=5 42::0 0 2m Ao — A1COSP — Az coszLLy"

which, after performing the integration, yields

T et A et A L SN

o(t,ri; Ly — 00, Ly) = > Z n
q:O fZ(t7L)" q)+\( f22(t7Lya 4)_)\%

with fi(t, Ly, q) = Ao — A2 0032”21%, andf>(t, Ly, q) = Xo— X2 coszf—vq. In figure 1), we
show the qualitative results of the interfacial tensiengiven by equations (40) and (42) for
different values of_ . For a rectangular lattice, is finite in the ordered phase and it vanishes
very quickly in the disordered phase when temperature is away from the critical point. But
when the aspect ratig decreases, the global behavioubddtarts to deviate from this picture,
and approaches the result of an infinitely long cylinder. For an infinitely long cylinder, as
shown in figure 1§), the peak ofr locates exactly at the critical point, and the valuerof
decreases in a symmetrical way from the critical point. This feature persists to the case of
anisotropic couplings, and it may provide a very effective way of determining the critical
temperature [12—14]. We will illustrate the latter point in a separate paper. In the following,
we analyse the surface tension for the ordered phase.

First we consider the interfacial tension at the critical point for the case of isotropic
couplings on a rectangular lattice. In this case, using equations (40), (2) and (3) with
A1 = A2 = Ao/2 we obtain the scaling function at the critical point as

O{1+0(2+0{3)

(43)

0 1,r) =a;,(1,r)=In (
’ a1 tar — o3
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Table 1. The values of the parameters inthe scaling funcio, r1, r2) = ar, (r1, r2)+b(r1, r2)z,
with ar (r1,r2) = A(r1, r2)[1 + a1(r1, r2)x +---] andx = 1/Lf for a rectangular lattice with
isotropic coupling; = 1, and a different aspect ratic.

r2 r2-A(Lrz)  ai(1,72) r2-b(1,r2)

0.1 078544)  4104%9) 0.0880)
0.2 078930) 100302 0.1794)
04 083573 1.9985) 0.3933)
05 087093 0.9949)  0.507(9)
1.0 098649) —0.2989) 1.008(2)

15 0095463) —05132) 1.346(3)
20 084382 -0.6650) 1.5293)
25 070650) —0.8182) 1574@8)

3.0 057039 —0.9748) 1.5147)
35 044860) —1.1335) 1.385%3)

40 034593) -1.2935) 1.2190)
45 026269  —14542) 1.040(7)
50 019705 -16154) 0.867(2)

Figure 2. The interfacial tension amplitude multiplied by the aspect ratiat the critical point
(a) as a function of for a given coupling ratie, and p) as a function of coupling ratie; for a
given aspect ratio,.

For the aspect ratio, = 1 and in the limit of large lattice site, equation (43) yields the result
of equation (5)A(1, 1) = 0.9864855 ... For other aspect ratios, the results-of A(1, rp)

are shown in table 1, and the behaviourof A(1, ry) versus-; is shown in figure ). We

then consider the finite-size dependence of the valug, afl, 1) by using the data obtained
from equation (43), and we find the best fitting curve is given by the form of equation (6) as
ar,(1,1) = A(L, D[1 —0.2989% — 0.3493¢2 +- - -], with x = 1/L? as shown in figure 3. The
leading order correction due to the finite-size effect is giveriyil, r»), and the values of
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Figure 3. The finite-size dependence to the interfaciaFigure 4. The parametes(r1, r2) in the scaling function,

tension amplitude at the critical pOimZ,LX(rl,'rz) = X(zir1.r2) = ag, (r1,r2) + b(r1, r2)z With z = tLi/V,
A@ry, r)[1 + a1(r1, r2)x +az(r1, r2)x% +- -, with x = as a function of coupling ratiey for aspect ratio,.
1/L? for coupling ratior; = 1 and aspect ratio

r2 = 1. The solid curve is given by, (1,1) =
0.986 48551 — 0.2989% — 0.34932), and the crossed
points are calculated from equation (43).

a1(1, rp) are listed in table 1 for differemt. Once the values ef,, (1, r,) for different sizeL ,
are determined, using equation (40) we can determine the paranigtes) of equation (3).
The results ob (1, rp) for different aspect ratios are also shown in table 1, and among them
we haveb(l, 1) ~ 1. For the case of anisotropic couplings on a rectangular lattice where the
critical point is determined by equation (27), and the scaling function at the critical point is
given by equation (43) withg = A1 + 1,. The results ofd (1, 1) for different coupling ratios
rq are listed in table 2, and the behaviouref A(r1, r2) with respect to-, for differentr; is
shown in figure 24). The behaviour of, - A(r1, r2) with respect to-; for differentr; is shown
in figure 2p). To see the finite-size correction #(ry, r,) for differentr;, we determine
ai(r1, rp), ax(ry, r2) andb(ry, rp) of equations (6) and (3), and the resultsagfr;, 1) and
b(r1, 1) are listed in table 2. We also show the behavioub@f, ») with respect ta- for
differentr; in figure 4.

Then we use equation (42) to consider the interfacial tension for an infinitely long Ising
cylinder. For the system with isotropic coupling,= 1, and at the critical point, equation (42)
becomes

1 2nq+m 1 _ 2nqtm 2n g+
1—3c0s=[=+5 \/ 83— 4cos=/= +cog ( 7 )

-1
1
00,1, Ly, > o0, L) =~ Z In
2 q=0 1 1 2nq + 1 34 2nq + § 2nq
-3 COSL_y 5 — COSL_y (o]0 (L_»)
(44)
which givesA(l) = /4. To find the finite-size dependence of the valueipf(1), we
use the data obtained from equation (44) to find the best fitting curve, whigh (&) =
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Table 2. The critical temperaturé, and the values of the parameters in the scaling function,
2(z;r1,12) = ag, (r1,r2) + b(r1, r2)z, With ar (r1,r2) = A(r1, r2)[1 + a1(r1, r2)x + - -] and
x= 1/L§ for a rectangular lattice with a different coupling ratig and aspect ratiop = 1.

O A(r1, 1) ai(r1,1)  b(r1, 1)

~
X

7.778756011) 3.06867) 3.1368) 1.586(6)
7112386213) 2.81762) 24908) 1.5779)
6.423824397) 256141) 1.9848) 1.5432)
5707791570) 2.29894) 15067 1.507(6)
4956311004) 2.02783) 1.0484) 1.4595)
4156173779) 1.74186) 0.6100) 1.3902)
3282035813) 142148) 0.1777) 1.2734)
2269185289) 0.98649) —0.2989) 1.0082)
1.641017914) 0.61355 —0.9005) 0.704(4)
1.385391277) 0.42191) —1.6676) 0.5223)
1.239077737) 0.30309) —2.70009) 0.397(5)
1.1415583Q9) 0.22337) —4.011) 0.307(0)
1.0706374Q9) 0.16749) —5.6357) 0.2394)
1.016055173) 0.12749) —7.5427) 0.187(9)
0.972344523) 0.09755) —9.7730) 0.1483)

olRNRolRvIRARWRENE B N W A 01O N 00

0.78543

0.78542

0.78541

Figure 5. The finite-size dependence of the interfacial

tension amplitude at the critical poidt , (r1) = A1+

ar(r1)y + ax(r1)y? + - -] for coupling ratiory = 1. The

P R T T solid line is given bya, , (1) = 0.78539821 + 0.4113y +

0.000 0002 0.004 0006  0.008  0.010 0.60832), and the crossed points are calculated from
1Ly equation (44).

0.78540

A(1)[1+0.4113y +0.6083)2+- - -]. The fitting curve and the data are shown in figure 5. Once
a,(r1) are determined, using equation (44) with = A, we can determine the parameter
b(1) of equation (8), and the resultd§l) = —0.8790. Then we extend the calculation to the
caser; # 1 to obtainA(r1), a1(r1) andb(ry) for differentry, and the results are summarized
in table 3. From the results listed in table 3, we notice that we Have = /8, A(1) = /4,
andA(3) = /2, as indicated in figure &]. Note that the behaviour of(r,) as a function of
r1 is given in figure 2i§) by the curve, = 0.

In conclusion, we performed a detailed study on coupling-anisotropy and finite-size effects
in interfacial tension of the Ising model on a rectangular lattice and infinitely long cylinder,
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Table 3. The values of the parameters in the scaling functde; r1) = ar,(ri) + b(r1)z, with

ap,(ry) = A(r)[l+ayGr)y +---]andy = 1/L§, for an Ising cylinder with a different coupling
ratio, r1. ’

A(ry) ay(ry) b(ry)

302131) 3.2595) —1.5104)
275655) 2.7479) —1.470(1)
248232) 22815 —1.4298)
219622) 1.8313) —1.361(6)
189449) 14168 —1.27809)
157079) 1.0433) —1.2021)
121240) 0.6920) —1.081(3)
078539) 0.4113) -0.8790)
0.50878) 0.292(4) —0.696(6)
0.39270) 0.257(5) —0.5992)
0.32560) 0.241(5) —0.5338)
0.28087) 02325 —0.4853)
0.24849) 0.227(3) —0.447(7)
0.22377) 0.2233) —0.4180)
0.20447) 0.2200) —0.3933)

~
-

kNRoRJIRARWRENE P N W A 01O N 00

based on the analytic solutions of the partition functions. We summarize and discuss our results
as follows:

(i) With the proposed form of the scaling function of equation (3) or (8), our data strongly

indicated that the leading order of the finite-size effeat;in(r1, r2) ora, (r1) is of the
order I/L?. This reflects the fact that the finite-size correction is very small.

(i) The amplitude of the interfacial tension at the critical poiAty, r,) decreases with
the coupling ratio and increases with the aspect ratio. For an Ising cylinder, we have
A(r1) = 7/8, /4, andr /2 for the coupling rati%, 1 and 3.

(iii) The value of the parametén(r1) for any coupling ratio-; is always less than zero. This
is due to the fact shown in figure 1 thadecreases when the temperature decreases from
the critical point.

(iv) For the Ising model on a rectangular lattice, we can use equations (2) and (3) to write the
interfacial tension as

1 ap (r1,12)
t,ri; Ly, L) =b(ry, rp)f | 1+ ————1|, 45
o(t,ry ) (r1, r2) [ Lt b1.r2) ] (45)
When we compare this equation with the form of the scaling function
B
Fx)=1+— (46)
X
with x = L, ¢, used by Mon and Jasnow [3], we have
_ ap, (r1,r2) _ A(ry, 12) 1+a1(r1, 2) . (47)
b(ri, r2) b(r1,r2) L2

and if the finite-size correction is neglected, we h&ve- 0.9785 forr; = 1 andr, = 1.
Similar results also hold for Ising cylinders, and we h&ve- —0.8935 forr, = 1.
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