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We use the empirical mode decomposition method to decompose experimental respiratory signals into a set
of intrinsic mode functions �IMFs�, and consider one of these IMFs as a respiratory rhythm. We then use the
Hilbert spectral analysis to calculate the instantaneous phase of the IMF. Heartbeat data are finally incorporated
to construct the cardiorespiratory synchrogram, which is a visual tool for inspecting synchronization. We
perform analysis on 20 data sets collected by the Harvard medical school from ten young �21–34 years old�
and ten elderly �68–81 years old� rigorously screened healthy subjects. Our results support the existence of
cardiorespiratory synchronization. We also investigate the origin of the cardiorespiratory synchronization by
addressing the problem of correlations between regularities of respiratory and cardiac signals. Our analysis
shows that regularity of respiratory signals plays a dominant role in the cardiorespiratory synchronization.
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I. INTRODUCTION

The study of oscillations and couplings in physiological
systems has gained increasing attention in recent decades
�1–19�. On one hand, physiological systems can serve as a
playground for the study of analysis techniques of nonlinear
dynamics. On the other hand, the application of the existing
concepts and knowledge from other fields to provide insights
for solving problems in medical science has been an impor-
tant and promising topic. Among these, human cardiovascu-
lar and respiratory systems have been widely studied. It has
been found that these two systems do not act independently;
instead, they are coupled by several mechanisms. The nature
of the couplings between them has been extensively studied
from measured data in recent years �18–25�, and is known to
be both neurological �1� and mechanical �2�, and is also
known to be nonlinear. The interactions between them result
in the well-known modulation of heart rates known as respi-
ratory sinus arrhythmia �RSA�. Moreover, recent studies sug-
gest that besides modulations, there is also synchronization
between these two systems.

Almasi and Schmitt reported that there are voluntary syn-
chronization between subjects’ breathing and cardiac cycle
�3�. They found that subjects, signaled by a tone derived
from the electrocardiograms, inspired for a fixed number of
heart beats followed by expiration for a fixed number of
heart beats �3�. The typical pattern is two beats for inspira-
tion and three beats for expiration; in general such pattern
depends on age, tidal volume, and body position. More re-
cently, Schäfer et al. �5,6� and Rosenblum et al. �7� applied
the concept of phase synchronization of chaotic oscillators
�15� to develop a technique to analyze irregular nonstation-
ary bivariate data from cardiovascular and respiratory sys-
tems, and used the cardiorespiratory synchrogram �CRS� to
detect different synchronous states and transitions between
them. They found a sufficiently long period of hidden syn-

chronization and concluded that the cardiorespiratory syn-
chronization and RSA are two competing factors in cardio-
respiratory interactions. Later, Tolddo et al. �8� developed an
algorithm to detect epochs of synchronization automatically
and objectively. They further found that synchronization was
less abundant in normal subjects than in transplant patients,
which indicated that the physiological condition of the latter
promotes cardiorespiratory synchronization.

Up to now, cardiorespiratory synchronization has been re-
ported in young healthy athletes �5,6�, healthy adults �9–11�,
heart transplant patients �9�, infants �12�, and anesthetized
rats �13�. It follows that most of the studies support the ex-
istence of cardiorespiratory synchronization. However, most
of the studies focused on phenomenological interpretations,
and usually hoped to answer the effects of age, body posi-
tion, or respiratory tidal volume on the beat-to-beat heart rate
change, and of the breathing rate on heart rate variability. In
addition, in recent studies the nature of coupling has been
extensively investigated from measured data by synchroniza-
tion theory �18,19�, the information-theoretic approach
�20,21�, time-phase bispectral analysis �22�, the nonlinear
state space projection technique �23�, and time series analy-
sis based on the paradigm of deterministic chaos �24,25�.
Because of the limitation of experiments, a general under-
standing of the mechanisms of cardiorespiratory synchroni-
zation is still lacking. To address this issue, Kotani et al. �14�
developed a physiologicaly model to study the phenomena
from another aspect. Their model showed that both the
influence of respiration on heartbeat and the influence of
heartbeat on respiration are important for cardiorespiratory
synchronization.

Since the studies mentioned above are based on measured
data, the data processing method plays a crucial role in the
obtained results. It is reasonable to assume that respiratory
signals have noisy, linear, nonlinear, and nonstationary com-
ponents. An essential task for studies will be to process such
signals and pick up essential component�s� from experimen-
tal respiratory signals. Except for the Fourier spectral analy-
sis that has been widely used, to date there have been several
approaches to preprocess real data for this purpose. For ex-
ample, the Gabor transform �26� has been used to quantify
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and visualize the time evolution of the traditional frequency
bands defined in the analysis of electroencephalograms �27�;
the wavelet transform has been used to filter signals to esti-
mate the instantaneous phase based on time-frequency meth-
ods �28–30�, and the Karhunen-Loève decomposition �31,32�
has been used to decompose signals into separate modes, etc.
Even though proper filters can be used to filter out noise
from real data, the capabilities and effectiveness of the filtra-
tion are usually questionable. This is due to the fact that most
of these approaches require that the original time series
should be stationary and/or linear. However, respiratory sig-
nals are noisy, nonlinear, and nonstationary. Furthermore,
there are also no strict criteria to judge what is the inherent
dynamics and what is the contribution of the external factors
and noise in experimental respiratory signals. Improper ap-
proaches might then lead to misleading results. In addition,
there are also technical problems in the analysis of respira-
tory signals: insufficiently filtered signals may still have too
many noises, and overfiltered signals may be so regular as to
lose characteristics of respiratory rhythms.

To overcome the above difficulties, here we propose to
use the empirical mode decomposition �EMD� method pro-
posed by Huang et al. �33� and Hilbert spectral analysis �34�
as a candidate for such studies. Unlike conventional filters,
the EMD method provides an effective way to extract respi-
ratory rhythms from experimental respiratory signals. The
EMD method is designated for the analysis of nonlinear and
nonstationary time series, and has been used to analyze elec-
tric intracranial signals recorded from an epileptic patient
�35�. The method mainly has two advantages �33,36�. �i� By
the sifting process, one can eliminate most of the riding
waves and make the wave profiles more symmetric. The ef-
ficiency of EMD is that the expansion of the turbulence data
set has only a finite number of terms, and the completeness
and orthogonality of the decomposition have been restric-
tively proved. �ii� The sifting process separates the data into
locally nonoverlapping time scale components, known as in-
trinsic mode functions �IMFs�. The adaptive properties of
IMFs to empirical data also make it easy to give physical
significance to each mode of a complicated data set, and
allow us to choose a certain IMF as a respiratory rhythm.
This is the key point of our analysis. After a respiratory
rhythm is selected based on physical criteria, one can further
use CRS to detect synchronization.

In this paper, we also address the problem of effects of
signal regularities on the synchronization, and the correla-
tions between cardiac and respiratory signals. We further de-
sign a scheme to test the reliability of simple modeling of
cardiorespiratory synchronization.

This paper is organized as follows. In Sec. II, we intro-
duce the data processing method used in this paper, and
briefly review the EMD method. In Sec. III, the EMD pro-
cess is used to extract the respiratory signals and the Hilbert
transform is used to calculate the instantaneous phase of the
respiratory time series. The CRS is then constructed by as-
sessing heartbeat data on the phase of the respiratory signal,
and is used to visually detect the epochs of synchronization.
In Sec. IV we investigate the correlation between regularity
of cardiac and respiratory signals and cardiorespiratory syn-
chronization. Finally, we discuss our results in Sec. V.

II. DATA ACQUISITION AND PROCESSING

A. Experimental data sets

We analyze 20 data sets, which were collected by the
Harvard medical school in 1994 �37�. Ten young
�21–34 years old� and ten elderly �68–81 years old�
rigorously screened healthy subjects underwent 120 min of
continuous supine resting while continuous electrocardio-
graphic �ECG� and respiration signals were collected. All
subjects remained in a resting state in sinus rhythm while
watching the movie “Fantasia” �Disney 1940� to help
maintain wakefulness. The continuous ECG and respiration
data were digitized at 250 Hz �respiratory signals were
later preprocessed to be at 5 Hz, i.e., five data points per
second�. Each heartbeat was annotated using an automated
arrhythmia detection algorithm, and each beat annotation
was verified by visual inspection. The records f1y01,
f1y02,¼, f1y10 were obtained from the young cohort, and
records f1o01, f1o02, ¼, f1o10 were obtained from the elder
cohort. Each group of subjects includes equal numbers of
men and women.

B. The Hilbert-Huang signal analysis method

Since the respiratory signals represent measures of the
volume of expansion of the ribcage, the corresponding
time series are all positive numbers and there are no zero
crossings. In addition to respiratory rhythms, the empirical
data also contain noises originating from measurements,
external disturbances, and other factors. Hence, the experi-
mental data of respiratory signals are complicated with many
local extremes. To reduce noises of the empirical data, we
apply the EMD method �33� to preprocess the data. The
EMD method was developed from the assumption that any
time series data consist of different simple intrinsic modes of
oscillation. The essence of the method is to identify the
intrinsic oscillatory modes by their characteristic time scales
in the data empirically, and then decompose the data accord-
ingly �33�. This is achieved by “sifting” data to generate
IMFs. The IMFs obtained by EMD are a set of well-behaved
intrinsic modes, and these functions satisfy the conditions
that they are symmetric with respect to the local zero
mean and have the same numbers of zero crossings and
extremes. Based on this property, one can select a reasonable
one from IMFs as a respiratory rhythm and simply apply
the Hilbert transform on it to calculate the instantaneous
phase.

The algorithm to create IMFs in EMD is rather elegant,
and has two main steps.

Step 1. First, the local extremes in the experimental res-
piratory time series data �x�t�� are identified. Then, all the
local maxima are connected by a cubic spline line U�t�,
which forms the upper envelope of the time series, while the
same procedure is applied for the local minima to produce
the lower envelope L�t�. Both envelopes will cover all of the
original time series. The mean of upper envelope and lower
envelope m1�t� given by

m1�t� =
U�t� + L�t�

2
�1�

is a running mean. Subtracting the running mean m1�t� from
the original time series x�t� we get the first component h1�t�,
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x�t� − m1�t� = h1�t� . �2�

The resulting component h1�t� is an IMF if it satisfies the
following conditions: �i� h1�t� is free of riding waves; �ii� it
displays symmetry of the upper and lower envelopes with
respect to zero; �iii� the numbers of zero crossing and ex-
tremes are the same, or only differ by 1. Besides these, an
additional condition based on the intermittence �i.e., varying
numbers of data points per cycle; see the explanation below�
can be imposed here to sift out waveforms with a certain
range of intermittence for the purpose of physical consider-
ation. If h1�t� is not an IMF, the sifting process has to be
repeated as many times as is required to reduce the extracted
signal to an IMF.

In the subsequent sifting process steps, h1�t� is treated as
the data to repeat the steps mentioned above,

h1�t� − m11�t� = h11�t� . �3�

Again, if the function h11�t� does not yet satisfy criteria �i�–
�iii�, the sifting process continues up to k times until some
acceptable tolerance is reached:

h1�k−1��t� − m1k�t� = h1k�t� . �4�

Step 2. If the resulting time series is the first IMF, it is
designated as c1=h1k�t�. The first IMF is then subtracted
from the original data, and the difference r1 given by

x�t� − c1�t� = r1�t� �5�

is the first residue. The residue r1�t� is taken as if it were the
original data and we apply to it again the sifting process of
step 1.

Following the above procedures of step 1 and step 2, we
continue the process to find more intrinsic modes ci until the
last one. The final residue will be a constant or a monotonic
function which represents the general trend of the time se-
ries. Finally, we get

x�t� = �
i=1

n

ci�t� + rn�t� , �6�

ri−1�t� − ci�t� = ri�t� . �7�

Figure 1 shows typical results from EMD.
Having obtained IMFs, one can select one component as

the respiratory rhythm according to the criteria of intermit-
tencies of IMFs imposed in step 1 as an additional sifting
condition. Note that among these IMFs, the first IMF has the
highest oscillatory frequency, and in our practical EMD pro-
cess, there is a general relation of intermittence for different
modes:

�n = 2n−1�1, �8�

where �n denotes the intermittence of the nth mode. In other
words, if c1 has intermittence ranging from �1 to 2�1, then
the cn mode has intermittence ranging from 2n−1�1 to 2n�1.

After one of the IMFs is selected as the respiratory
rhythm, one further applies the Hilbert transform to the se-
lected IMF, say the rth component cr�t�. The procedures of
the Hilbert transform consist of calculation of the conjugate
pair of cr�t�, i.e.,

yr�t� =
1

�
P�

−�

� cr�t��
t − t�

dt�, �9�

where P indicates the Cauchy principal value. With this defi-
nition, two functions cr�t� and yr�t� forming a complex con-
jugate pair define an analytic signal zr�t�:

zr�t� = cr�t� + iyr�t� 	 Ar�t�ei�r�t�, �10�

with amplitude Ar�t� and the instantaneous phase �r�t�
defined by

Ar�t� = �cr
2�t� + yr

2�t��1/2, �11�

�r�t� = arctan
 yr�t�
cr�t�

� . �12�

C. Data processing

The number of breaths per minute for human beings has a
rather wide range; it is about 18 cycles in one minute for

FIG. 1. �Color online� Example of EMD for a typical respiratory
time series data �code f1o01 in our study�. The criteria for intermit-
tence in the sifting process is 3–6 data points per cycle for
c1. Signal x�t� is decomposed into 14 components including 13
IMFs and one residue; here only the first seven components
are shown.
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adults, and about 26 cycles in one minute for children. For
different healthy states, the number of cycles may also vary
case by case. To include most of these possibilities, one
should take respiratory cycles ranging from 10 to 30 times
per minute, and each respiratory cycle then roughly takes
2–6 s, i.e., 10–30 data points.

The procedures of data processing in this paper are as
follows. �i� Apply the EMD to decompose the recorded data
into several IMFs. The decomposition acquires input of the
number of sifting times and criteria of intermittence as the
parameters in the sifting process, and we use the time scale
of a respiratory cycle as the criterion. The number of sifting
times generally depends on the data quality, and it varies
case by case. Since the respiratory signal was preprocessed
to a sampling rate of 5 Hz, there are 10–30 data points in one
cycle. Then, for example, we can use c1: 3–6, c2: 6–12, c3:
12–24, etc. After the sifting processes of EMD, the original
respiratory data are decomposed into n empirical modes
c1 ,c2 , . . . ,cn, and a residue rn. �ii� Visually inspect the result-
ing IMFs decomposed by the EMD. If the amplitude of a
certain mode is dominant and the wave form is well distrib-
uted, then the data are said to be well decomposed and the
decomposition is successfully completed. Otherwise, the de-
composition may be inappropriate, and we have to repeat
step �i� with different parameters.

The physical meaning of IMFs can be understood from
their intermittencies. Here we should note that the variability
of respiratory signals is substantially preserved in a certain
IMF by using the property of the adaptive basis instead of
the a priori basis in other methods, such as Fourier-based
analysis and wavelet methods �33�. In other words, the fre-
quency in the EMD method is not global, but is local in time
�i.e., time dependent�. The range of intermittence imposed on
the sifting process can be adapted according to the physi-
ological condition revealed from empirical respiratory sig-
nals. Thus, the whole scheme is adaptive and self-consistent.
Here we should emphasize that in our study, only one IMF
should be taken for the respiratory rhythm and any sum of a
few IMFs cannot be used. This is due to the fact that the
Hilbert transform must be performed on an IMF to yield
correct phases with physical significance �33�. However, a
sum of two or more IMFs is never an IMF. Therefore, one
should properly choose the intermittence such that the respi-
ratory time signal can be correctly gathered into a single
IMF. The resultant benefit is that those IMFs having smaller
or larger intermittencies can be considered as noises involved
in the experiments or signals originating from sources other
than the respiratory system. The above requirement can be
easily achieved by the property of the EMD method in which
adaptive bases �i.e., IMFs� are generated by tuning the inter-
mittence in the sifting procedure, and the performance of the
method can be examined by comparing original data and the
resultant IMFs.

For example, in Fig. 1, the empirical signal was decom-
posed with a criteria of the intermittence being 3–6 data
points for c1, and 3�2n−1−3�2n data points for cn’s with
n�1. Comparing x�t� with the ci’s, it is obvious that c3

preserves the main structure of the signal and is dominant in
the decomposition. We thus pickup the third component c3,
corresponding to 12–24 data points per respiratory cycle,

as the respiratory rhythm. Note that for strongly noisy
data, this may not be the case, and the decomposition be-
comes difficult. Then, we can optionally filter empirical
data by proper filters, and then apply the EMD. Figure 2
compares respiratory signal in various stages. In Fig. 2�a�, a
typical respiratory time series x�t� is shown. The prepro-
cessed signal x��t� by a proper Fourier band filter is shown
in Fig. 2�b�, in which only fast oscillatory noises are filtered
out, and the main structures of the signal are preserved.
Figure 2�c� shows the IMF c3�t� obtained by performing
EMD on x��t�. The process is similar to that used to
obtain c3�t� in Fig. 1. Obviously, the IMF c3�t� of Fig. 2�c�
still preserves characteristic structure of x�t� shown in
Fig. 2�a�.

Here we note that the sifting processes in the EMD sepa-
rate the data into locally nonoverlapping time scale compo-
nents. Sometimes this leads to the situation that there is no
signal in some time period, due to higher oscillatory behav-
iors or noises in that period. If this occurs, one can optionally
use the Fourier spectrum analysis to recover the signal in that
period. For example, we can use the discrete Fourier trans-
form technique, and take

c3��t� =
4

N
�
f=fL

fH 
�
n=0

N

c3�n�ei2�nf/N�e−i2�tf/N, �13�

where N is the total number of data points of the respiratory
time series, fH is the high-frequency limit, and fL is the low-
frequency limit. The values of fH and fL can be chosen as
6/�t and 2/�t, respectively. However, we should inspect the
resulting signal visually to confirm whether the filtering is
applicable. Figure 2�d� shows the data postprocessing func-

FIG. 2. �Color online� Comparison of respiratory signals for a
typical subject �code f1o01� in different data processing stages: �a�
original experimental time series x�t�, �b� after performing low-pass
filtering, x��t�, �c� the third IMF c3�t� in Fig. 1, after performing
EMD on x��t�, and �d� the postprocessed signal c3��t� after perform-
ing the Fourier spectrum analysis.
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tion c3��t�, which is obtained by performing the Fourier spec-
trum analysis on c3�t� in Fig. 2�c�. It is preferable to require
that data postprocessing preserve the characteristic structures
of c3�t�, and has effects only on the time period of the blank
signal. It follows that this postprocessing step is usually un-
necessary.

After the above data processing scheme, the respiratory
rhythms are clean enough for further analysis. We can then
proceed in the next step to construct the CRS.

III. THE CARDIORESPIRATORY SYNCHROGRAM

Cardiorespiratory synchronization is considered as a pro-
cess of adjustment of rhythms due to physiological interac-
tions between subsystems. These interactions can lead to a
perfect locking of their phases, whereas their amplitudes re-
main chaotic and noncorrelated �4�. Let us now denote the
phase of the respiratory signal calculated by Eq. �12� as �r
and the heartbeat as �c. If the two phases are coupled in a
fashion that the cardiovascular system completes m heart-
beats in n respiratory cycles, then a roughly fixed relation
can be proposed. In general, there will be the phase locking
condition �4–6�

�n�r − m�c� = const, �14�

with m ,n integer, or a weaker type of synchronization named
frequency locking �4,6�,

�n�r − m�c� 	 const. �15�

More precisely, frequency locking should be regarded as
modulation but not synchronization �6�. Note that Eq. �15� is
often considered as a condition for phase locking because the
phase difference in noisy systems fluctuates and cannot be a
constant as shown in Eq. �14�, and a loose condition �i.e.,
�n�r−m�c�
const� is used for the phase locking. In this
paper we use stricter conditions to distinguish the two types
of synchronization.

According to Eq. �14�, for the case that the ECG
completes m cycles while the respiration completes n cycles,
it is said to be a synchronization of m cardiac cycles with n
respiratory cycles. Using the heartbeat event time tk as the
time frame in which the length of time intervals are
not fixed, but vary with the time, then Eq. �14� implies the
relation

�r�tk+m� − �r�tk� = 2�n . �16�

Furthermore, by defining

�m�tk� =
1

2�
��r�tk�mod 2�n� �17�

and plotting �m�tk� versus tk, synchronization will result in n
horizontal lines in the case of n :m synchronization. By
choosing n adequately, a CRS which is a visual tool can be
developed for detecting the synchronization between heart-
beat and respiration �5,6�.

An example of 3:1 synchronization with n=6 and m=2 is
shown in Fig. 3�a�, where phase locking appear in several
epochs, e.g., at 2800–3600 s, and there is also frequency

locking, e.g., at 400 s, near which there are n parallel lines
with the same positive slope. For the purpose of comparison,
we also show the results of the same subject at 1800–3600 s,
but with respiratory signals without filtering, preprocessed
by the standard filters and the EMD method, in Fig. 3�b�. The
windows of the standard filters are 8–30 and
16–24 cycles per min. In general, some noise dressed sig-
nals can still show synchronization in some epochs but the
Hilbert spectral analysis failed at some time intervals �e.g.,

FIG. 3. �Color online� Cardiorespiratory synchrogram for a typi-
cal subject �code f1o06�. �a� Empirical data are preprocessed by the
EMD method. There is about 800 s synchronization at
2800–3600 s, and several spells of 50–300 s at other time inter-
vals. �b� Comparison of the results without filtering �top�, prepro-
cessed by the standard filters with windows of 8–30 and
16–24 cycles per minute �second and third�, and the EMD method
�bottom�.
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around 3400–3600 s of the case without filtering�, and over-
filtered signals reveal too strong synchronization �filter with
window of 16–24�. In other words, the global frequency used
in standard filters may dissolve local structures of the empiri-
cal data. This does not happen in the EMD filtering. More
specifically, the advantage of the EMD method is that it is a
nonlinear time-scale-based filter and a particular IMF can be
properly designed to catch the variability of the respiratory
signal as completely as possible.

Figure 4 shows the histogram of phases for the
phase locking period from 2800 to 3600 s in Fig. 4�a�.
Significant higher distributions can be found at

�2
0.25,0.6,0.9,1.25,1.6,1.9 in units of 2�, indicating
that heartbeat events occur roughly at these respiratory
phases during this period.

Following the above procedures, we analyze the data
of 20 subjects, and the results are summarized in Table I. The
results are ordered by the strength of the cardiorespiratory
synchronization, which is the total time length of synchroni-
zation. From our results, we do not find specific relations
between the occurrence of synchronization and sex of the
subjects as in Refs. �5,6� Here we note that if we used
the intermittency as the bandwidth of a generic Fourier-based
filter to filter the same empirical data, we will have different
results depending on the strength of synchronization. For
example, for the f1o06 subject, the intermittency of the third
IMF is 12–24. Using 12–24 as the bandwidth of the generic
Fourier-based filter, we have similar epochs of synchroniza-
tion. However, for the f1y02 subject with intermittency of
the second IMF 16–32 selected to optimize the decomposi-
tion, we have more epochs of 3:1 synchronization lasting
50 s and fewer 7:2 synchronization periods lasting 50
and 80 s when the bandwidth of 16–32 is used. For the f1o05
subject in which the second IMF with intermittency 10–20
is selected, epochs of 5:2 synchronization lasting 50 s
are found when the same bandwidth 10–20 is used. In
comparison with the results presented in Table I, the Fourier-
based filter with a bandwidth of the same intermittency
appears to smooth the data to have a more regular wave
form, and in turn may lead to a conclusion of stronger
synchronization than is the case. For a time series with
variable intermittencies, the smoothing of data may intro-
duce additional modes which do not exist in some segments

FIG. 4. �Color online� Histogram of phase for the phase locking
period from 2800 to 3600 s for a typical subject �code f1o06�
shown in Fig. 3�a�.

TABLE I. Summary of our results. 20 subjects are ordered by the strength �total time length� of the
cardiorespiratory synchronization. � is a measure of the variance for cardiac signals.

Code Sex Age Synchronization �

f1o06 F 74 3:1 �800,300,250,150,100,50 s� 0.0009

f1y05 M 23 3:1 �350,300,200,100 s� 0.0105

f1o03 M 73 3:1 �200,50,30 s� 0.0026

f1y10 F 21 7:2 �200,50 s�, 4:1 �50 s� 0.0079

f1o07 M 68 7:2 �120,100,80 s� 0.0048

f1o02 F 73 3:1 �100 s, several spells of 50 s� 0.0019

f1y01 F 23 7:2 �several spells of 30 s� 0.0087

f1y04 M 31 5:2 �80,50,30 s� 0.0156

f1o08 F 73 3:1 �50,30 s� 0.0021

f1y06 M 30 4:1 �50,30 s� 0.0104

f1o01 F 77 7:2 �several spells of 50 s� 0.0023

f1y02 F 28 3:1 �50 s� 0.0103

f1y08 F 30 3:1 �50 s� 0.0087

f1o10 F 71 3:1 �30 s� 0.0033

f1o05 M 76 No synchronization detectable 0.0019

f1y07 M 21 No synchronization detectable 0.0404

f1y09 F 32 No synchronization detectable 0.0077

f1y03 M 34 No synchronization detectable 0.0043

f1o09 M 71 No synchronization detectable 0.0164

f1o04 M 81 No synchronization detectable 0.0076
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of the primary data and thus leads to misleading results.
For example, in Fig. 5, comparisons for the results of the
fly02 subject obtained by using the Fourier-based filter
and the EMD approach are shown. The original time series
x�t� is dressed with noise such that the signal almost
disappears at t=2320–2380 s. The Fourier-based filter intro-
duces a new wave form at this epoch, but the new wave form
cannot be processed directly by the Hilbert transform. This
is not the case for the EMD method. Furthermore, at
t=2000–2100 s, the Fourier-based filter does not preserve
the structure of the original time series and leads to a
conclusion of phase locking at this epoch. Therefore,
from the aspect of data processing that keeps the reality of
empirical data, the EMD approach is better than Fourier-
based filtering.

IV. CORRELATION AND REGULARITY

In this section, we discuss the correlations between
cardiac and respiratory signals and their regularities; we
also test the effects of regularity on the occurrence of
synchronization.

As mentioned above, the data processing method plays a
crucial role in the analysis of real data. We have observed
that overfiltered respiratory signals may lose detailed struc-

tures and become too regular. It follows that the final con-
clusions may be method dependent. One might then ask how
the results depend on the data processing methods; espe-
cially, how the quality of signals affects the conclusion. This
problem arises when one addresses the issue of existence or
strength of the cardiorespiratory synchronization, and the an-
swers may also be helpful for understanding or clarifying the
mechanisms of the synchronization.

In general, the existence of cardiorespiratory synchroniza-
tion is confirmed simply when it is proved to appear in
enough subjects analyzed by various approaches. The exist-
ing studies on this topic have positive answers on its exis-
tence �5,6,9–13�. Nevertheless, the strength of synchroniza-
tion for these subjects may depend on the methods one used,
and need further investigation. For this purpose, we first con-
sider two data sets �f1o06.res, f1o06.hrt� and �f1y05.res,
f1y05.hrt�. Here we have used the notation “code.signal” to
indicate one code and a corresponding signal, and .res
indicates respiratory signal and .hrt indicates heart beat sig-
nal. Both of these two data sets, codes f1o06 and f1y05, have
been analyzed to show 3:1 synchronization in some periods.
The synchronization exhibited by these two data sets in an
interval from 2000 to 3600 s is shown, respectively, in Figs.
6�a� and 6�b�. There are short spells of phase locking and
frequency locking appearing in these periods. We now inter-
change the respiratory and cardiac time series of these sets to
be �f1o06.res, f1y05.hrt� and �f1y05.res, f1o06.hrt�, and then
construct their synchrograms. Note that the two data sets are
from real time series. The results are respectively shown in
Figs. 6�c� and 6�d�. There is still phase locking appearing in
shorter spells for the “mixed” states, such as at 3000 s of Fig.

FIG. 5. �Color online� Comparison of the data processing for a
typical subject �code fly02�. �a� The empirical time series, �b� the
time series filtered by a Fourier-based filter with bandwidth 16–32
and the corresponding synchrogram, and �c� the time series of the
third IMF decomposed by the EMD method with intermittency
16–32 and the corresponding synchrogram.

FIG. 6. �Color online� Cardiorespiratory synchrogram for data
sets �a� �f1o06.res, f1o06.hrt�, �b� �f1y05.res, f1y05.hrt�, �c�
�f1o06.res, f1y05.hrt�, �d� �f1y05.res, f1o06.hrt�, at period
2000–3600 s.
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6�c� and at 2000 s of Fig. 6�d�. This implies the synchroni-
zation �phase locking� and modulation �frequency locking�
should be detectable provided that there are characteristic
features coupled between respiratory and cardiac signals.
Therefore, emergence of short spells of synchronization does
not necessarily imply true coupling between cardiovascular
and respiratory systems. If cardiorespiratory synchronization
exists in a subject, the cardiovascular and respiratory systems
must correlate with the same intermittence variation scheme
such that synchronization can appear again and again in
some time intervals. Therefore, the phase locking in the syn-
chrogram of Fig. 3�a�, where synchronization disappears and
recovers repeatedly at 1800–3600 s due to the variation of
intermittence of respiratory time series, indicates true cardio-
respiratory synchronization.

Next, we study the dependence of the results on the regu-
larity of signals. The regularity of a cardiac signal can be
measured by the variance � defined as

� = ���tn − 
�2� , �18�

where �tn is the time interval between the nth heartbeat and
�n−1�th heartbeat, and 
 is an average of the time intervals
�tn in the period of measurement. Accordingly, a smaller
value of � corresponds to higher regularity. The measured
values of � for 20 subjects are listed in Table I, which shows
that the cardiac signals are quite regular and the � value is
not necessarily related to the strength of synchronization. In
contrast to cardiac signals, real respiratory signals are essen-
tially irregular. Therefore, we will not measure regularity of
respiratory cycles directly; instead we compare synchroniza-
tion in CRS for various sets of cardiac and respiratory time
series.

We then introduce an artificial respiratory signal by using
a generic cosine wave s�S0 ,T , t�, say,

s�S0,T,t� = S0 cos
2�t

T
� , �19�

where S0 is the amplitude, and T is the period �or somewhat
similar with the intermittence in EMD�. The frequency
of this wave is fixed and the phase varies regularly.
We then construct the synchrogram for �s�S0 ,T , t�,
f1o06.hrt�. The results are shown in Fig. 7, in which different
periods T=15,16,17,17.6,18 have been used. According
to Fig. 7, the cardiac signals for this subject are rather
regular, and a fixed heartbeat frequency can last a relatively
long time, even if it changes finally. When T is a multiple
of 3, such as T=15 and 18, there are synchronization
spells observed at the period from 100 to 220 s, and phase
locking at the other epochs. For T=17.6, phase locking
can be observed at most epochs of the period. Here
we should note that, in comparing Figs. 3�a� and 7, a
short spell from 100 to 220 s appears as phase locking
corresponds to respiratory intermittence T=18. However, a
short spell from 1220 to 1350 s corresponds to respiratory
intermittence roughly about T=17.6. Even though the inter-
mittence varies, the synchronization persists. This indicates
the existence of correlations.

Comparing the patterns of the periods where synchroniza-
tion occurs in Fig. 7 and the corresponding periods in
Fig. 6, we find that cardiac signals are regular enough that
synchronization occurs in the framework of regular time
series, and respiratory cycles are not regular so that there
is weaker or even no synchronization in the corresponding
periods.

To have more results for comparison, we examine another
subject having data set �f1o09.res, f1o09.hrt�, which has no
synchronization at all in the preceding analysis. The synchro-
gram for data set �f1o09.res, f1o09.hrt� is shown in Fig. 8�a�,
and data sets �s�S0 ,T , t�, f1o09.hrt� with T=15,16,17,18 are
respectively shown in Figs. 8�b�–8�e�. We find that there are
short spells where phase locking or frequency locking ap-
pear, and the length of the spells depends on the period T.
Therefore, more regular respiratory signals have better mani-
festation of synchronization.

From the above observations, we find the following.
�1� In most cases, cardiac oscillations are more regular

than respiratory oscillations and the respiratory signal could
be the key factor to determine the strength of the cardiores-
piratory synchronization.

�2� Cardiorespiratory phase locking and frequency lock-
ing take place when respiratory oscillations become regular
enough and have a particular frequency relation coupled
with cardiac oscillations. We observed that the intermittence
of respiratory oscillation varies with time but synchroniza-
tion persists in some subjects, such as codes f1o06 and
f1y05. This confirms correlations in the cardiorespiratory
synchronization.

FIG. 7. �Color online� Cardiorespiratory synchrogram for data
sets �s�S0=1000,T , t�, f1o06.hrt� with T= �a� 15, �b� 16, �c� 17, �d�
18, and �e� 17.6.

M.-C. WU AND C.-K. HU PHYSICAL REVIEW E 73, 051917 �2006�

051917-8



�3� Overfiltered respiratory signals may be too regular,
and in turn, appear to have stronger synchronization than
they should have. Therefore, if the Fourier-based approach
with narrow band filtration is used, some epochs of phase
locking or frequency locking should be considered as origi-
nating from these effects.

V. DISCUSSION

We have used the EMD method and CRS to study the
synchronization between human heartbeat and respiration.
The reason for using this method is that it is considered to be
able to catch the primary structures of respiratory rhythms
based on its adaptive features �38�. By imposing intermit-
tency criteria based on physiological conditions revealed
from empirical time series, this feature allows us to effec-
tively keep the signal structures and avoid the introduction of
artificial signals which easily appear in the Fourier-based fil-
ters with a priori bases that cannot process properly variable
intermittencies in a nonlinear time series. Furthermore, the
introduction of IMFs in the EMD provides a reasonable defi-
nition of the instantaneous phase. This advantage is consid-
ered to be helpful for drawing reliable conclusions on the
studies of empirical data. From our results, we also found the
existence of cardiorespiratory synchronization with several
locking ratios occurring in several subjects as in Refs. �5,6�,
and there was one subject having phase locking lasting up to
800 s. However, significant relations between the occurrence

of synchronization and the sex and age of the subjects were
not found in our results. At the current stage, even though
cardiorespiratory synchronization has been observed in a
number of studies, there is still no confident conclusion
about its dependence on sex and age because few subjects
were studied and most of the experiments were performed in
different physiological stages. Although the tendency of car-
diorespiratory synchronization to become weaker with in-
creasing RSA was observed in earlier studies �5,6�, the infer-
ences about the strength of cardiorespiratory synchronization
from the relation of the appearance of RSA and age may be
misleading since ages usually do not reflect the same real
physiological stage in different countries. Furthermore, the
statistics of our results indicates most synchronization exhib-
its 3:1 �eight subjects�, 4:1 �one subject�, and 7:2 �four sub-
jects� synchronization, which is consistent with the report of
Ref. �12� that mature physiological subjects �adults� have
larger probabilities of 3:1, 4:1, and 7:2 synchronization than
5:2 synchronization. Be aware that the subjects we studied in
this paper are few; further investigations are required to draw
global conclusions on these issues. In this context, our stud-
ies may be considered as constituting the statistics for further
studies.

In this paper, we also discuss the origin of the cardiores-
piratory synchronization from the viewpoint of signal char-
acteristics: correlation and regularity. Regarding the results
obtained by using the EMD method as a reference, we found
that even though CRS can exhibit correlation between car-
diac and respiratory signals, the strength of the synchroniza-
tion �dominantly contributed by the regularity of respiratory
signals� may not be precisely calculated. We then conclude
that the existence of cardiorespiratory synchronization is
true, but the strength �duration� of the synchronization could
be dependent on the method used.

From a physiological viewpoint, it is difficult to precisely
identify the mechanisms responsible for the observed nonlin-
ear interactions. In particular, the human heart and respira-
tory systems are coupled by several mechanisms. Even
though some early studies have suggested that cardiorespira-
tory synchronization is related to neural systems �5,6�, the
mechanical effects of respiratory motion may also induce
frequency locking and phase locking. From our studies, we
found that cardiac oscillations are more regular than respira-
tory oscillations, and cardiorespiratory synchronization oc-
curs at the period when respiratory signals become regular
enough. In other words, the regularity of respiratory signals
contributes dominantly to the synchronization. Thus cardio-
respiratory synchronization and RSA are two competing fac-
tors in the cardiorespiratory interactions. Our observations
are indeed consistent with the results reported in Refs.
�21,39�. Recently, Rosenblum and Pikovsky �39� proposed a
technique for experimental detection of the directionality of
weak coupling between two self-sustained oscillatory sys-
tems, based on the Fourier approximation of phase incre-
ments or instantaneous periods as a function of the phases, or
on mutual predictability of the instantaneous phase. Paluš
and Stefanovska �21� further proposed a directionality index
to distinguish unidirectional from bidirectional coupling.
Their studies demonstrated that the respiration is driving the
cardiac system in a large part of the recording �21,39�. Such
results are consistent with our observation.

FIG. 8. �Color online� Cardiorespiratory synchrogram for data
sets �a� �f1o09.res, f1o09.hrt� and �s�S0=1000,T , t�, f1o09.hrt�,
with T= �b� 15, �c� 16, �d� 17, and �e� 18.
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Besides the limitations of experiments, our knowledge of
the rhythm coordination of the subsystems in the body is still
incomplete. As we have shown in this paper, using a simple
�or, more complicated, a time-varying� cosine wave as respi-
ratory signal and a time-varying ECG signal may produce a
synchrogram similar to a real one. This makes modeling too
easy to check its validity.

Our studies cannot point out the mechanism behind the
synchronization phenomena, but can benefit investigations of
the phenomena. Nevertheless, the improvements of respira-
tion and heartbeat data processing indeed allow more reliable
and precise analysis. In particular, regardless of the origin of
the synchronization, an interesting question in clinical prac-
tice is whether rhythm coordination is a sign of good physi-
cal condition. The methods we used in this paper can con-
tribute to signal analyses for clinical practice and academic
studies.

Furthermore, the technique used in this paper can also be
applied to the analysis of other time series, such as returns of

financial markets �40,41�. In the present paper, we consider
only synchronization between two variables. Synchroniza-
tion among many variables has been studied extensively in
recent years �42�. It is of interest to extend the method of the
present paper to analyze signals from many-body systems
�e.g. signals of a set of neurons� and study their synchroni-
zation.
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