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Lattice models are useful for understanding behaviors of interacting complex many-body systems. The lattice
dimer model has been proposed to study the adsorption of diatomic molecules on a substrate. Here we analyze the
partition function of the dimer model on a 2M × 2N checkerboard lattice wrapped on a torus and derive the exact
asymptotic expansion of the logarithm of the partition function. We find that the internal energy at the critical
point is equal to zero. We also derive the exact finite-size corrections for the free energy, the internal energy,
and the specific heat. Using the exact partition function and finite-size corrections for the dimer model on a
finite checkerboard lattice, we obtain finite-size scaling functions for the free energy, the internal energy, and the
specific heat of the dimer model. We investigate the properties of the specific heat near the critical point and find
that the specific-heat pseudocritical point coincides with the critical point of the thermodynamic limit, which
means that the specific-heat shift exponent λ is equal to ∞. We have also considered the limit N → ∞ for which
we obtain the expansion of the free energy for the dimer model on the infinitely long cylinder. From a finite-size
analysis we have found that two conformal field theories with the central charges c = 1 for the height function
description and c = −2 for the construction using a mapping of spanning trees can be used to describe the dimer
model on the checkerboard lattice.
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I. INTRODUCTION

Lattice models are useful for understanding behaviors of
interacting complex many-body systems. For examples, the
Ising model [1–3] can be used to understand the critical
behavior of gas-liquid systems [4,5], the lattice model of
interacting self-avoiding walks [6–9] can be used to understand
the collapse and the freezing transitions of the homopolymer,
and a charged hydrophobic-polar model [10,11] and multistate
Potts models [12–14] can be used to understand aggregation
of proteins. The lattice dimer model [15] has been proposed
to study the adsorption of diatomic molecules on a substrate.
In this paper we will use analytic equations to study finite-size
corrections and scaling of the dimer model [15] on the
checkerboard lattice.

Finite-size corrections and scaling for critical lattice sys-
tems [1,15–17], initiated more than four decades ago by
Ferdinand, Fisher, and Barber [18–20], have attracted much
attention in recent decades (see Refs. [21,22] for reviews).
Finite-size effects become of practical interest due to the recent
progress in fine processing technologies, which has enabled the
fabrication of nanoscale materials with novel shapes [23–25].
In the quest to improve our understanding of realistic systems
of finite extent, exactly solvable two-dimensional models play
a key role in statistical mechanics as they have long served as a
testing ground to explore the general ideas of corrections and
scaling under controlled conditions. Very few of them have
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been solved exactly and the dimer model [15–17] is one of the
most prominent examples.

The classical dimer model was introduced by Fowler and
Rushbrook as a model for the adsorption of diatomic molecules
on a substrate [15]. Later it became a general problem studied
in various scientific communities with a large spectrum of
applications. The dimer model has regained interest because
of its quantum version, the so-called quantum dimer model,
originally introduced by Rokhsar and Kivelson [26]. In
addition, a recent connection between dimer models and
D-brane gauge theories has been discovered [27], providing
a very powerful computational tool.

From the mathematical point of view, the dimer model
is extremely simple to define. We take a finite graph L and
consider all arrangements of dimers (dominoes) so that all sites
of L are covered by exactly one dimer. This is the so-called
close-packed dimer model. Here we focus on the dimer model
on a checkerboard lattice (see Fig. 1). The checkerboard lattice
is a unique two-dimensional (2D) system of great current
interest, a setup that provides a tool to study the evolution
of physical properties as the system transits between different
geometries. The checkerboard lattice is a simple rectangular
lattice with anisotropic dimer weights x1, x2, y1, and y2. Each
weight a is simply the Boltzmann factor e−Ea/kT for a dimer
on a bond of type a with energy Ea . When one of the weights
x1, x2, y1, or y2 on the checkerboard lattice is equal to zero, the
partition function reduces to that for the dimer model on the
one-dimensional strip. The dimer model on the checkerboard
lattice was first introduced by Kasteleyn [28], who showed that
the model exhibits a phase transition. The exact expression for
the partition function for the dimer model on the checkerboard
lattice on finite 2M × 2N lattices with periodic boundary
conditions was obtained in Ref. [29].
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FIG. 1. Unit cell for the dimer model on the checkerboard lattice.

In the present paper we study the finite-size effects of the
dimer model on the finite checkerboard lattice of Fig. 1. The
detailed study of the finite-size effects for free energy and
specific heat of the dimer model began with the work of
Ferdinand [18] a few years after the exact solution and has
continued in a long series of articles using analytical [30–41]
and numerical methods [42] for various geometries and bound-
ary conditions. In particular, Ivashkevich et al. [43] proposed
a systematic method to compute finite-size corrections to the
partition functions and their derivatives of free models on a
torus, including the Ising model, the dimer model, and the
Gaussian model. Their approach is based on relations between
the terms of the asymptotic expansion and the so-called
Kronecker double series, which are directly related to the
elliptic θ functions.

We will apply the algorithm of Ivashkevich et al. [43] to
derive the exact asymptotic expansion of the logarithm of the
partition function. We will also derive the exact finite-size
corrections for the free energy F , the internal energy U ,
and the specific heat C(t). Using exact partition functions
and finite-size corrections for the dimer model on the finite
checkerboard lattice, we obtain finite-size scaling functions for
the free energy, the internal energy, and the specific heat. We
are particularly interested in the finite-size scaling behavior of
the specific-heat pseudocritical point. The pseudocritical point
tpseudo is the value of the temperature at which the specific
heat has its maximum for a finite 2M × 2N lattice. One can
determine this quantity as the point where the derivative of
C2M,2N (t) vanishes. Finite-size properties of the specific heat
C2M,2N (t) for the dimer model are characterized by the location
of its peak tpseudo, its height C(tpseudo), and its value at the
infinite-volume critical point C(tc). The peak position tpseudo

is a pseudocritical point that typically approaches tc as the
characteristic size of the system L tends to infinity as Lλ,
where λ is the shift exponent and L is characteristic size of the
system (L = √

4MN ). Usually the shift exponent λ coincides
with 1/ν, where ν is the correlation length critical exponent,
but this is not always the case and it is not a consequence
of the finite-size scaling [44]. In a classic paper, Ferdinand
and Fisher [19] determined the behavior of the specific-heat
pseudocritical point. They found that the shift exponent for
the specific heat is λ = 1 = 1/ν, except for the special case
of an infinitely long torus, in which case the pseudocritical
specific-heat scaling behavior was found to be of the form

L2 ln L [1]. Thus the actual value of the shift exponent depends
on the lattice topology (see Ref. [45] and references therein).
Izmailian and Kenna [37] found that the shift exponent can
be also depend on the parity of the number of lattice sites N

along a given lattice axis. They found for the dimer model on
the triangular lattice that the shift exponent for the specific
heat is equal to 1 (λ = 1) for odd N , while for even N the
shift exponent is equal to infinite (λ = ∞). In the former case,
therefore, the finite-size specific-heat pseudocritical point is
size dependent, while in the latter case it coincides with the
critical point of the thermodynamic limit. A question we wish
to address here is the corresponding status of the shift exponent
in the dimer model on the checkerboard lattice.

Our objective in this paper is to study the finite-size
properties of a dimer model on the plane checkerboard
lattice using the same techniques developed in Refs. [39,43].
The paper is organized as follows. In Sec. II we introduce
the dimer model on the checkerboard lattice with periodic
boundary conditions. In Sec. III we derive the exact asymptotic
expansions of the logarithm of the partition functions and
their derivatives and write down the expansion coefficients
up to second order. In Sec. IV we numerically investigate the
free energy, internal energy, and specific heat as a function of
temperaturelike parameter t and analyze the scaling functions
of the free energy, the internal energy, and the specific heat.
We also investigate the properties of the specific heat near the
critical point and find that the specific-heat shift exponent λ is
equal to infinity, which actually means that the specific-heat
pseudocritical point coincides with the critical point of the
thermodynamic limit. In Sec. V we consider the limit N → ∞
for which we obtain the expansion of the free energy for the
dimer model on the infinitely long cylinder. From a finite-size
analysis we find that the dimer model on a checkerboard
lattice can be described by a conformal field theory having
a central charge c = −2. Our main results are summarized
and discussed in Sec. VI.

II. PARTITION FUNCTION

In the present paper we consider the dimer model on a 2M ×
2N checkerboard lattice, as shown in Fig. 1, under periodic
boundary conditions. The partition function can be written as

Z =
∑

x
Nx1
1 x

Nx2
2 y

Ny1
1 y

Ny2
2 , (1)

where Na is the number of dimers of type a and the summation
is over all possible dimer configurations on the lattice. An
explicit expression for the partition function of the dimer model
on the 2M × 2N checkerboard lattice under periodic boundary
condition is given by [29]

Z2M,2N (t) = (x1x2)MN

2

{
−Z2

0,0(t) + Z2
1
2 , 1

2
(t)

+Z2
1
2 ,0(t) + Z2

0, 1
2
(t)

}
, (2)

Z2
α,β (t) =

M−1∏
m=0

N−1∏
n=0

4

{
t2 + z2 sin2

(
π

m + β

M

)

+ sin2

(
π

n + α

N

)}
, (3)
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where

t2 = (x1 − x2)2 + (y1 − y2)2

4x1x2
, z2 = y1y2

x1x2
. (4)

Without loss the generality we can set x1x2 = 1 and y1y2 = 1
such that z = 1.

The dimer model on checkerboard lattice has a singularity
at t = 0 (x1 = x2,y1 = y2). With the help of the identity

4|sinh(Mω + iπβ)|2 = 4[sinh2Mω + sin2 πβ]

=
M−1∏
m=0

4

{
sinh2ω + sin2

[
π

M
(m + β)

]}
,

(5)

the Zα,β (t) can be transformed into a simpler form

Zα,β (t) =
N−1∏
n=0

2

∣∣∣∣sinh

{
Mωt

(
π

n + α

N

)
+ iπβ

}∣∣∣∣, (6)

where lattice dispersion relation has appeared

ωt (k) = arcsinh
√

sin2 k + t2. (7)

The Taylor expansion of the lattice dispersion relation of
Eq. (7) at the critical point is given by

ω0(k) = k

⎛
⎝λ0 +

∞∑
p=1

λ2p

(2p)!
k2p

⎞
⎠, (8)

where λ0 = 1, λ2 = −2/3, λ4 = 4, etc.
We are interested in computing the asymptotic expansions

for large M and N with fixed aspect ratio ρ = M/N of the
free energy F2M,2N (t), the internal energy U2M,2N (t), and the
specific heat C2M,2N (t). These quantities are defined as

F2M,2N (t) = 1

4MN
ln Z2M,2N (t), (9)

U2M,2N (t) = ∂

∂t
F2M,2N (t), (10)

C2M,2N (t) = ∂2

∂t2
F2M,2N (t). (11)

In addition to F2M,2N (t), U2M,2N (t), and C2M,2N (t), we will
also consider higher derivatives of the free energy at criticality

F (k)
c = ∂k

∂tk
F2M,2N (t)

∣∣∣∣
t=0

, (12)

with k = 3,4.

III. ASYMPTOTIC EXPANSION OF THE FREE ENERGY
AND ITS DERIVATIVES

A. Asymptotic expansion of the free energy

The exact asymptotic expansion of the logarithm of the
partition function of the dimer model on the checkerboard
lattice at the critical point t = tc = 0 can be obtained along the
same line as in Ref. [43]. We do not repeat here the calculations
and give the final result

ln Z2M,2N (0) = ln 1
2

{
Z2

1
2 , 1

2
(0) + Z2

1
2 ,0(0) + Z2

0, 1
2
(0)

}
. (13)

Here we use the fact that Z2
0,0(t) at the critical point is equal to

zero. The exact asymptotic expansion of ln Zα,β (0) for (α,β) =
(0, 1

2 ),( 1
2 ,0),( 1

2 , 1
2 ) is given by [43]

ln Zα,β(0) = S

π

∫ π

0
ω0(x)dx + ln

∣∣∣∣θα,β(iλρ)

η(iλρ)

∣∣∣∣
− 2πρ

∞∑
p=1

(
π2ρ

S

)p
�2p

(2p)!

ReKα,β

2p+2(iλρ)

2p + 2
. (14)

Here θα,β is the elliptic theta function [θ0, 1
2
(iλρ) = θ2(iλρ) ≡

θ2, θ 1
2 , 1

2
(iλρ) = θ3(iλρ) ≡ θ3, and θ 1

2 ,0(iλρ) = θ4(iλρ) ≡ θ4],

η(iλρ) ≡ η is the Dedekind η function, K
α,β

2p+2(iλρ) is the
Kronecker double series (see Appendix D of Ref. [43]),
which can be expressed through the elliptic theta function (see
Appendix F of Ref. [43]), and �2p is the differential operators,
which can be expressed via coefficients λ2p of the expansion
of the lattice dispersion relation at the critical point as

�2 = λ2,

�4 = λ4 + 3λ2
2

∂

∂λ
,

�6 = λ6 + 15λ4λ2
∂

∂λ
+ 15λ3

2
∂2

∂λ2
,

...

Now using Eqs. (13) and (14), it is easy to write down all
terms in the exact asymptotic expansion of the logarithm of
the partition function of the dimer model. Thus we find that the
exact asymptotic expansion of the free energy at the critical
point Fc = F2M,2N (0) can be written as

Fc = F2M,2N (0) = fbulk +
∞∑

p=1

fp(ρ)

Sp
, (15)

where S = 4MN . The expansion coefficients are

fbulk = G

π
= 0.291 560 7 . . . , (16)

f1(ρ) = ln
θ2

2 + θ2
3 + θ2

4

2η2
, (17)

f2(ρ) = 2π3ρ2

45

7
8

(
θ10

2 + θ10
3 + θ10

4

) + θ2
2 θ2

3 θ2
4

(
θ2

2 θ2
4 − θ2

3 θ2
2 − θ2

3 θ2
4

)
θ2

2 + θ2
3 + θ2

4

,

... (18)
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FIG. 2. Values of the free-energy asymptotic expansion coefficients (a) f1 and (b) f2 as functions of the aspect ratio ρ.

where G = 0.915 965 . . . is the Catalan constant and

2η3 = θ2θ3θ4.

For the case when the aspect ratio ρ is equal to 1, the
coefficients f1(ρ) and f2(ρ) are given by

f1(ρ = 1) = 0.881 374 . . . , f2(ρ = 1) = 0.805 761 . . . ,

(19)

which match very well with our numerical data [see Eq. (39)].
The values of f1 and f2 as functions of the aspect ratio ρ are
shown in Fig. 2. Both of f1 and f2 have their minima for the
isotropic case ρ = 1.

B. Asymptotic expansion of the internal energy

Now we will deal with the internal energy. The internal
energy at the critical point can be computed directly from
Eq. (10):

Uc = 2

S

−Z′
0,0Z0,0 + Z′

0,1/2Z0,1/2 + Z′
1/2,0Z1/2,0 + Z′

1/2,1/2Z1/2,1/2

−Z2
0,0 + Z2

0,1/2 + Z2
1/2,0 + Z2

1/2,1/2

. (20)

Here Z′
α,β = dZα,β (t)

dt
|t=0 is the first derivative of Zα,β (t) with respect to t at criticality. In what follow we will use the notation

Zα,β (t)|t=0 = Zα,β, Zα,β(t)′|t=0 = Z′
α,β,

Zα,β(t)′′|t=0 = Z′′
α,β, Zα,β(t)′′′|t=0 = Z′′′

α,β,

Zα,β(t)(4)|t=0 = Z
(4)
α,β . (21)

Since

Z0,0 = Z′
0,1/2 = Z′

1/2,0 = Z′
1/2,1/2 = 0, (22)

the internal energy at the critical point is equal to zero

Uc = 0. (23)

C. Asymptotic expansion of the specific heat

The specific heat at criticality is given by the formula

Cc = 2

S

−Z′2
0,0 + Z0,1/2Z

′′
0,1/2 + Z1/2,0Z

′′
1/2,0 + Z1/2,1/2Z

′′
1/2,1/2

Z2
0,1/2 + Z2

1/2,0 + Z2
1/2,1/2

. (24)

Following Ref. [43], we have found that the exact asymptotic expansion of the specific heat can be written in the form

Cc = 1

2π
ln S + cb +

∞∑
p=1

cp

Sp
+ · · ·

= 1

2π
ln S + cb + c1

S
+ · · · , (25)

where

cb = 1

π

(
CE − 1

2
ln ρ − ln π + 3

2
ln 2

)
− ρ

2

θ2
2 θ2

3 θ2
4

θ2
2 + θ2

3 + θ2
4

− 2

π

∑4
i=2 θ2

i ln θi

θ2
2 + θ2

3 + θ2
4

, (26)
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FIG. 3. Values of the specific-heat asymptotic expansion coefficients (a) cb and (b) c1 as functions of the aspect ratio ρ.

c1 = π2ρ2

6

θ2
2 θ2

3 θ2
4(

θ2
2 + θ2

3 + θ2
4

)2

[
θ2

4

(
θ4

2 + θ4
3

)
ln

θ2

θ3
+ θ2

3

(
θ4

2 − θ4
4

)
ln

θ4

θ2
+ θ2

2

(
θ4

3 + θ4
4

)
ln

θ4

θ3

]

+ π2ρ2

18

θ4
3 θ4

4

(
2θ2

2 − θ2
3 − θ2

4

)
θ2

2 + θ2
3 + θ2

4

+ π3ρ3

24

θ2
2 θ2

3 θ2
4

(
θ10

2 + θ10
3 + θ10

4

)
(
θ2

2 + θ2
3 + θ2

4

)2

+ πρ

18

(
θ2

2 − θ2
4

)(
θ4

3 − θ2
2 θ2

4 + θ2
2 θ2

3 + θ2
3 θ2

4

)
θ2

2 + θ2
3 + θ2

4

(
1 + 4ρ

∂

∂ρ
ln θ2

)
. (27)

Here CE = 0.577 215 664 9 . . . is the Euler constant and

∂

∂ρ
ln θ2 = −1

2
θ2

3 E, (28)

where E is the elliptic integral of the second kind. Note that cb and c1 are functions of the aspect ratio ρ. For the case when the
aspect ratio ρ is equal to 1 the coefficients cb and c1 are given by

cb(ρ = 1) = 0.017 882 9 . . . , c1(ρ = 1) = 0.240 428 . . . , (29)

which match very well with our numerical data [see Eq. (40)]. The values of cb and c1 as functions of ρ are shown in Fig. 3.
Interestingly, the nonmonotonicities cb and c1 as functions of anisotropy have maximum values at ρ = 1.

D. Asymptotic expansion of the higher derivatives of the free energy

Using the fact that

Z0,0 = Z′
0,1/2 = Z′

1/2,0 = Z′
1/2,1/2 = Z′′

0,0 = Z′′′
0,1/2 = Z′′′

1/2,0 = Z′′′
1/2,1/2 = 0, (30)

it is easy to show that the third derivative of the logarithm of the partition function at criticality F (3)
c is equal to zero

F (3)
c = 0. (31)

Let us now consider the fourth derivative of the logarithm of the partition function at criticality F (4)
c which can be written as

follows:

F (4)
c = −3S C2

c + 6

S

Z′′2
0,1/2 + Z′′2

1/2,0 + Z′′2
1/2,1/2

Z2
0,1/2 + Z2

1/2,0 + Z2
1/2,1/2

− 8

S

Z′
0,0Z

′′′
0,0

Z2
0,1/2 + Z2

1/2,0 + Z2
1/2,1/2

+ 2

S

Z0,1/2Z
(4)
0,1/2 + Z1/2,0Z

(4)
1/2,0 + Z1/2,1/2Z

(4)
1/2,1/2

Z2
0,1/2 + Z2

1/2,0 + Z2
1/2,1/2

. (32)

We have found that the exact asymptotic expansion can be written in the form

F (4)
c = gS − 3

2π
ln S + g0 +

∞∑
p=1

gp

Sp

= gS − 3

2π
ln S + g0 + g1

S
+ · · · , (33)
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where

g(ρ) = 12

π2

θ2
3 θ2

4

(
ln θ3

θ4

)2 + θ2
2 θ2

4

(
ln θ2

θ4

)2 + θ2
2 θ2

3

(
ln θ2

θ3

)2

(
θ2

2 + θ2
3 + θ2

4

)2

− 3ρ

4

θ2
2 θ2

3 θ2
4

θ2
2 + θ2

3 + θ2
4

[
ρ

θ2
2 θ2

3 θ2
4

θ2
2 + θ2

3 + θ2
4

+ 8

π

(∑4
i=2 θ2

i ln θi

θ2
2 + θ2

3 + θ2
4

− ln 2η

)]

+ 3

16π3ρ

θ2
2

(
ρ ∂

∂ρ
− 1

)
R

0,1/2
4 (ρ) + θ2

3

(
ρ ∂

∂ρ
− 1

)
R

1/2,1/2
4 (ρ) + θ2

4

(
ρ ∂

∂ρ
− 1

)
R

1/2,0
4 (ρ)

θ2
2 + θ2

3 + θ2
4

. (34)

Here R
α,β

4 is given by

R
α,β

4 (ρ) = −ψ ′′(α) − ψ ′′(1 − α) + 4
∞∑

n=0

∞∑
m=1

{
e−2πm(ρ(n+α)+iβ)

(n + α)3
+ (α → 1 − α)

}
, (35)

where ψ ′′(x) is the second derivative of the digamma function ψ(x) with respect to x,

ψ ′′(1) = −2ζ (3), ψ ′′(1/2) = −14ζ (3). (36)

Here ζ (n) is the zeta function

ζ (n) =
∞∑

k=1

1

kn
, (37)

and for small x,

ψ(x) = −CE − 1

x
+ x

∞∑
k=1

1

k(k + x)
,

ψ ′′(x) = − 2

x3
+ 2x

∞∑
k=1

1

k(k + x)3
− 2

∞∑
k=1

1

k(k + x)2
.

One can show that(
ρ

∂

∂ρ
− 1

)
R

0, 1
2

4 (ρ) = −4π3ρ

3
− 4ζ (3) +

∞∑
n=1

8

n3(1 + e2πnρ)
+

∞∑
n=1

4πρ

n2 cosh2(πnρ)
,

(
ρ

∂

∂ρ
− 1

)
R

1
2 , 1

2
4 (ρ) = −28ζ (3) +

∞∑
n=1

8(
n + 1

2

)3
(e2πρ(n+ 1

2 ) + 1)
+

∞∑
n=1

4πρ(
n + 1

2

)2
cosh2

[
πρ

(
n + 1

2

)] ,
(

ρ
∂

∂ρ
− 1

)
R

1
2 ,0
4 (ρ) = −28ζ (3) −

∞∑
n=1

8(
n + 1

2

)3
(e2πρ(n+ 1

2 ) − 1)
−

∞∑
n=1

4πρ(
n + 1

2

)2
sinh2

[
πρ

(
n + 1

2

)] .

Accordingly, the value of the asymptotic expansion coefficient
g of Eq. (34) as a function of the aspect ratio ρ can be
determined and is shown in Fig. 4. More explicitly, g(ρ = 1) =
−0.032 122 . . . , g(ρ = 2) = 0.007 621 19 . . . , and g(ρ =
4) = −0.034 601 7 . . . . The maximum of g(ρ) takes place
at ρ = 5/3.

IV. DIMER MODEL ON THE CHECKERBOARD LATTICE
AT FINITE TEMPERATURE

A. Numerical calculations of thermodynamic variables

Using the partition function of Eq. (2), we plot the
free energy F2M,2N (t), the internal energy U2M,2N (t), and
the specific heat C2M,2N (t) as functions of t for different
lattice sizes in Figs. 5(a), 5(b), and 5(c), respectively. The
specific-heat curve becomes higher with the increase of the

system size, while the peaks are always located at t = 0
exactly. To study the scaling behaviors of thermodynamic
variables, we analyzed the variation of Fc = F (tc) with respect
to different system sizes S = 2M × 2N . Figure 6(a) shows Fc

as a function of 1/S. Using a polynomial function of 1/S to fit
the data, the best polynomial fitting to the data is found to be

Fc = 0.291 56(±0.000 000 01) + 0.881 38(±0.000 01)

S

+ 0.791(±0.004)

S2
+ · · · , (38)

which can be approximately expressed as

Fc ≈ G

π
+ 0.881 38(±0.000 01)

S
+ 0.791(±0.004)

S2
. (39)
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FIG. 4. Value of the asymptotic expansion coefficient g in the
fourth derivative of free energy F (4)

c as a function of the aspect ratio ρ.

This expression is consistent with Eq. (15) for the case ρ = 1
[see Eq. (19)]. For the specific heat, we plotted Cc − ln S/(2π )
as a function of 1/S in Fig. 6(b). The data points can be well
described by the polynomial fit

Cc − 1

2π
ln S = 0.017 88(±0.000 000 009)

+ 0.2402(±0.001)

S
− 3.7(±1.9)

S2
· · · . (40)

This expression is also consistent with Eq. (25) for the case
ρ = 1 [see Eq. (29)].

B. Scaling functions of the free energy, the internal energy,
and the specific heat

Following the proposal for the scaling functions in Ref. [46]
and using the exact expansions of the free energy in Eq. (15)
and the specific heat in Eq. (25), we define the scaling function
of the free energy �F (S,ρ,t) as

�F (S,ρ,τ ) = S

[
F2M,2N −

(
fbulk + f1

S
+ f2

S2

)

− 1

2S

(
cb + 1

2π
ln S

)
τ 2

]
, (41)

where τ , defined as

τ = tS
1
2 , (42)

is a scaled variable. The scaling function �F (S,ρ,τ ) as a
function of τ for different system size S with the aspect ratio

ρ = 1, 2, and 4 is shown in Fig. 7(a). With the help of the first
and second derivatives of the free energy, we obtain the exact
expression of the scaling function at criticality for small τ ,

�F (S,ρ,τ ) = 1

2

[
c1

S
+ O

(
1

S2

)]
τ 2 + O

(
1

S2

)
+ O(τ 4).

(43)
For ρ = 1, we have

�F (S,ρ = 1,τ ) = 1

2

[
0.240 428

S
+ O

(
1

S2

)]
τ 2

+O

(
1

S2

)
+ O(τ 4), (44)

which describes the behavior of the scaling function in the
critical region for small τ in Fig. 7(a).

We further propose the scaling function of the internal
energy �U (S,ρ,τ ) as

�U (S,ρ,τ ) = S
1
2

[
U2M,2N − 1

S
1
2

(
cb + 1

2π
ln S

)
τ

]
. (45)

The scaling function �U (S,ρ,τ ) as a function of τ for different
system size S with aspect ratio ρ = 1, 2, and 4 is shown in
Fig. 7(b).

Similarly, using the expression of expansion of the specific
heat in Eq. (25), we define the scaling function of the specific
heat �C(S,ρ,τ ),

�C(S,ρ,τ ) = C2M,2N −
(

cb + 1

2π
ln S

)
. (46)

The scaling function �C(S,ρ,τ ) as a function of τ for different
system size S with the aspect ratio ρ = 1, 2, and 4 is shown in
Fig. 7(c). Note that �C(S,ρ,τ ) at small τ can be formulated
as

�C(S,ρ,τ ) = c1(ρ)

S
+

[
1

2
g(ρ) − 3

4π

ln S

S
+ 1

2

g0

S

+O

(
1

S2

)]
τ 2 + O

(
1

S2

)
+ O(τ 4), (47)

as the case of the Ising model [46], while the leading term of
τ in the scaling function for Ising model is τ . For ρ = 1,

�C(S,ρ = 1,τ ) = 0.240 428

S
−

[
0.016 061 + 3

4π

ln S

S

+O

(
1

S2

)]
τ 2 + O

(
1

S2

)
+ O(τ 4). (48)

FIG. 5. (a) Free energy F2M,2N (t), (b) internal energy U2M,2N (t), and (c) specific heat C2M,2N (t) as functions of t . The aspect ratio ρ = M/N

has been set to unity.
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FIG. 6. (a) Fc as a function of 1/S and (b) Cc − (ln S)/2π as functions of 1/S. The aspect ratio ρ = M/N has been set to unity.

Equations (43), (45), and (47) and Fig. 7 generally suggest the
relations [46]

�F (S,ρ,τ ) � 1

2
�C(S,ρ)τ 2 + O

(
1

S2

)
+ O(τ 4), (49)

�U (S,ρ,τ ) � �C(S,ρ)τ + O

(
1

S2

)
+ O(τ 3), (50)

�C(S,ρ,τ ) � �C(S,ρ) + O

(
1

S2

)
+ O(τ 2), (51)

where �C(S,ρ) = �C(S,ρ,τ = 0).

C. Specific heat near the critical point

Let us now consider the behavior of the specific heat near the
critical point. The specific heat C2M,2N (t) of the dimer model
on the 2M × 2N checkerboard lattice is defined as the second
derivative of the free energy in Eq. (11). The pseudocritical
point tpseudo is the value of the temperature at which the specific
heat has its maximum for the finite 2M × 2N lattice. One can
determine this quantity as the point where the derivative of
C2M,2N (t) vanishes. The pseudocritical point approaches the
critical point tc = 0 as L → ∞ in a manner dictated by the
shift exponent λ,

|tpseudo − tc| ∼ L−λ, (52)

where L = √
4MN is the characteristic size of the system. The

coincidence of λ with 1/ν, where ν is the correlation lengths
exponent, is common to most models, but it is not a direct
consequence of finite-size scaling and is not always true.

One can see from Eqs. (2), (3), and (11) that the partition
function Z2M,2N (t) and the specific heat C2M,2N (t) are an even

function with respect to its argument t ,

C2M,2N (t) = C(0) + t2

2
C(2)(0) + t4

4!
C(4)(0) + O(t6). (53)

Thus the first derivative of C2M,2N (t) vanishes exactly at

tpseudo = 0. (54)

In Fig. 5(c) we plot the t dependence of the specific heat
for different lattice sizes up to 512 × 512. We can see from
Fig. 5(c) that the position of the specific-heat peak tpseudo

is equal exactly to zero. Therefore, the maximum of the
specific heat (the pseudocritical point tpseudo) always occurs at
vanishing reduced temperature for any finite 2M × 2N lattice
and coincides with the critical point tc at the thermodynamic
limit (tpseudo = tc = 0). From Eqs. (52) and (54) we find that
the shift exponent is infinity λ = ∞.

V. DIMER ON THE INFINITELY LONG CYLINDER

Conformal invariance of the model in the continuum scaling
limit dictates that at the critical point the asymptotic finite-size
scaling behavior of the critical free energy fc of an infinitely
long two-dimensional cylinder of finite circumference N has
the form

fc = fbulk + A

N 2
+ · · · , (55)

where fbulk is the bulk free energy and A is a constant.
Unlike the bulk free energy, the constant A is universal,
which may depend on the boundary conditions. In some
2D geometries, the value of A is related to the conformal
anomaly number c and the highest conformal weights �,�̄

of the irreducible highest weight representations of two

FIG. 7. Scaling functions (a) �F (S,ρ,τ ), (b) �U (S,ρ,τ ), and (c) �C(S,ρ,τ ) as functions of τ for different system sizes S with the aspect
ratio ρ = 1, 2, and 4.
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commuting Virasoro algebras. These two dependences can
be combined into a function of the effective central charge
ceff = c − 12(� + �̄) [47–49],

A = π

6
ceff = 2π

( c

12
− � − �̄

)
, (56)

on a cylinder. Let us now consider the dimer model on the
infinitely long cylinder of widthN = 2N . Considering the log-
arithm of the partition function given by Eq. (6) at the critical
point (t = tc = 0), we note that it can be transformed as

ln Zα,β(0) = M

N−1∑
n=0

ω0

(
π (n + α)

N

)
+

N−1∑
n=0

ln

∣∣∣∣1
− exp

{
− 2

[
Mω0

(
π (n + α)

N

)
− iπβ

]}∣∣∣∣.
(57)

The second sum here vanishes in the formal limit M → ∞
when the torus turns into an infinitely long cylinder of
circumference 2N . Therefore, the first sum gives the logarithm
of the partition function on that cylinder. Its asymptotic
expansion can be found with the help of the Euler-Maclaurin
summation formula

M

N−1∑
n=0

ω

(
π (n + α)

N

)
= S

π

∫ π

0
ω0(x)dx − πλ0ρBα

2

− 2πρ

∞∑
p=1

(
π2ρ

S

)p
λ2p

(2p)!

Bα
2p+2

2p + 2
,

(58)

where
∫ π

0 ω0(x)dx = 2G and the Bα
p are the so-called

Bernoulli polynomials. Here we have also used the coefficients
λ2p of the Taylor expansion of the lattice dispersion relation
ω0(k) at the critical point given by Eq. (8). Thus one can easily
write down all the terms of the exact asymptotic expansion for
Fα,β = limM→∞ 1

M
ln Zα,β (0),

Fα,β = lim
M→∞

1

M
ln Zα,β (0)

= 2G

π
N − 2

∞∑
p=0

( π

N

)2p+1 λ2p

(2p)!

Bα
2p+2

2p + 2
. (59)

From Fα,β we can obtain the asymptotic expansion of free
energy per bond of an infinitely long cylinder of circumference
N = 2N ,

f = lim
M→∞

1

4MN
ln Z2M,2N (0)

= lim
M→∞

1

2MN
ln Z1/2,0(M,N ) = 1

2N
F1/2,0(N ). (60)

From Eq. (60) using Eq. (59) one can easily obtain that for
even N = 2N the asymptotic expansion of the free energy is
given by

f = fbulk − 1

π

∞∑
p=0

(
2π

N

)2p+2
λ2p

(2p)!

B
1/2
2p+2

2p + 2

= fbulk + π

6

1

N + · · · (for N = 2N ), (61)

where fbulk is given by Eq. (16). Thus we can conclude from
Eqs. (55), (56), and (61) that ceff = 1. Since the effective
central charge ceff is defined as a function of c, �, and �̄,
one cannot obtain the values of c, �, and �̄ without some
assumption about one of them. This assumption can be a
posteriori justified if the conformal description obtained from
it is fully consistent. It is easy to see that there are two
consistent values of c that can be used to describe the dimer
model, namely, c = −2 and c = 1. For example, for the dimer
model on an infinitely long cylinder of even circumference
N , one can obtain from Eqs. (55), (56), and (61) that the
central charge c and the highest conformal weights �,�̄

can take the values c = 1 and � = �̄ = 0 or c = −2 and
� = �̄ = −1/8. Thus, from the finite-size analyses we can
see that two conformal field theories with the central charges
c = 1 and c = −2 can be used to describe the dimer model on
the checkerboard lattice.

Somewhat surprisingly, these finite-size corrections in the
free energy can be consistently interpreted in a conformal
scheme based on two conformal descriptions of the dimer
model: one with c = −2 and the other with c = 1. The
description of the dimer model in terms of spanning trees
on a cylinder [38] and on a rectangle [36,50] supported
the c = −2 interpretation, whereas the use of the height
function to describe dimer configurations yields c = 1 [40,51].
Quiet recently Morin-Duchesne et al. [41] provided additional
evidence supporting the consistency of a c = −2 description
of the dimer model on the square lattice. The connection
between the dimer model and the critical dense polymer
model [52] adds further support to c = −2. Results from the
computation of dimer correlation functions similarly allow
for dual representations. Dimer correlations can be naturally
accounted for in a c = −2 conformal theory [53], but can
also be easily interpreted as c = 1 correlators [40]. Together,
these observations suggest that there exist two conformal
descriptions of the dimer model.

VI. SUMMARY AND DISCUSSION

We analyze the partition function of the dimer model
on a 2M × 2N checkerboard lattice wrapped on a torus.
We have obtained exact asymptotic expansions for the free
energy, the internal energy, the specific heat, and the third and
fourth derivatives of the free energy of a dimer model on the
square lattice wrapped on a torus at the critical point t = 0.
Using exact partition functions and finite-size corrections for
the dimer model on a finite checkerboard lattice, we obtain
finite-size scaling functions for the free energy, the internal
energy, and the specific heat of the dimer model. From a
finite-size analysis we have found that the shift exponent λ

is infinity and the finite-size specific-heat pseudocritical point
coincides with the critical point of the thermodynamic limit.
This adds to the catalog of anomalous circumstances where
the shift exponent is not coincident with the correlation-length
critical exponent. We have also considered the limit N → ∞
for which we obtain the expansion of the free energy for
the dimer model on the infinitely long cylinder. From a
finite-size analysis we have found that the dimer model on the
checkerboard lattice can be described by two consistent values
of the central charge, namely, c = −2 for the construction of a
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conformal field theory using a mapping of spanning trees and
c = 1 for the height function description.
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