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a b s t r a c t

This paper investigates statistical properties of high-frequency intraday stock returns
across various frequencies. Both time series and panel data are utilized to explore
the properties of probability distribution, dynamic conditional correlations, and scaling
analysis in Dow Jones Industrial Average (DJIA) andNasdaq intraday returns across 10-min,
30-min, 60-min, 120-min, and 390-min frequencies. The evidence shows that both returns
and volatility (standard deviation) increasewith the increasing scaling from10-min to 390-
min intervals. By fitting an AR(1)-GARCH(1,1) model to intraday data, we find that AR(1)
coefficients are negative for DJIA returns and positive for Nasdaq, exhibiting a positive
and negative feedback strategy in DJIA and Nasdaq, respectively. The evidence also shows
that these coefficients are statistically significant for either including or excluding opening
returns for the 10-min and 30-min frequencies. By examining the dynamic conditional
correlation between the DJIA and the Nasdaq across different frequencies, a positive
correlation ranging from 0.6 to 0.8 was found. In addition, the variance of the dynamic
correlation coefficients is decreasing and appears to be stable for the 2001–2003 period.
Finally, both returns on DJIA and Nasdaq satisfy the stable Lévy distributions, implying
that both markets can converge to equilibrium by self-governing mechanism after shocks.
Results of this work provide relevant implications for investors and policy makers.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Traditional analysis of stock returns relies heavily on economic fundamentals such as dividend yield, interest rate
spreads, risk, and market–book ratio etc. (see, ex. Refs. [1–4]). The advantage of fundamental analysis is that the underlying
economic rationale can be verified and the findings can then be used for either guiding investment decisions or monitoring
market behavior by regulators. The fundamental analysis is, of course, crucial if the issue to be investigated is a longer
run phenomenon based on quarterly and monthly data. Using longer horizon factors may not be feasible for analyzing
high-frequency data because the variations of the return series are unlikely to be explained by the economic fundamentals.
For this reason, analysts need to explore alternative data and techniques to provide more complete information of market
behaviors.
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In this study, we applymodern time series techniques to detect the empirical regularities of high-frequency data for both
the Dow Jones Industrial Average 30 (DJIA) and the Nasdaq stock indices. The reason for choosing these two indices stems
from the fact that the former represents well-established and well-known firms in the US market, while the latter consists
of high-tech and growth firms. These two indices thus represent not only the core of the US economy but also facilitate the
menu for investors’ choice inmaking themean–variance investment decision. A successful empirical investigation emerging
from this study is bound to provide insight into understanding the behavioral relation of high-frequency data and its validity
across different scales.
This study is motivated by the conventional approach usually focusing on a particular point of time series data to derive

the empirical regularities. This resulting statistical analysis may be misleading without considering a broader selection of
data points. For instance, in investigating daily observations, researchers often use closing price (return) or average price
(return)without carefully constructing an appropriatemeasure, not even taking into consideration the impact of the opening
observations. Taking different points in time from a particular trading day to represent a daily observation may inherently
introduce some sort of anomaly into data construction. As a result, it may produce a biased estimate and statistical inference.
Second, the conventional analysis of the empirical issue is usually based on a particular scale ofmeasurewithout concerning
for its scaling variants. For instance, daily data are frequently used to examine the AR(1) process. This approach pays no
attention to frequency variations, such as the validity of 10-min, 30-min, 60-min, 120-min, or 390-min horizons. Apparently,
the derived empirical regularity is conditional on a particular time scale and lacks general implications. Third, although high-
frequency data have been analyzed in a number of research papers [5–10], these papers focus mainly on a single market,
especially the foreign exchange market. The exceptions are Wood et al. [11] and Abhyankar et al. [12], who analyze the
equitymarkets. However, the dynamic relationship of intraday returns between twomarkets ismostly ignored in themarket
microstructure literature.
This paper differs from the extant literature in the followingways. First, in addition to exploring the time series properties

involving high-frequency data, this study extends the conventional analysis to include the scaling dimension, since time
series analysis can capture only limited information in terms of a particular time horizon.With the addition of the frequency-
varying dimension, we will have more complete knowledge of the test, ranging from short-span to long-horizon data.
Second, most of the empirical literature employs only time series data to investigate autocorrelation, without screening
out the significance of opening intervals. By reshaping the time series data into panel data, we are able to compare the panel
autocorrelations across different time frequencies. Our study shows that although both the DJIA and the Nasdaq indices
exhibit the highest return in the opening interval at 9:30 A.M., the autocorrelation of return coefficients in a GARCH(1,1)
specification are statistically significant for the 10-min and 30-min frequencies, either including or excluding the opening
returns. Third, although a dynamic conditional correlation (DCC) technique was utilized to investigate the leads and lags
across different markets, very few attempts have been geared to the analysis of intraday returns with different frequencies.
Our evidence shows that using different scaling would lead to cross-correlation variations, suggesting that the validity of
dynamic correlations between two time series is conditional on a particular time scale.
Finally, we analyze scaling behaviors of the time series on returns to probe the stability of time series distributions.

Following the scheme proposed byMantegna and Stanley [13,14], we perform scaling analyses on DJIA and Nasdaq changes
with various time intervals. Both exhibit well-behaved scaling and belong to a stable distribution based on the criterion of
Lévy’s α stable distribution condition [15].
This paper is organized as follows. Section 2 briefly outlines the data and the construction of series frequency with

various intervals for the intraday data of the DJIA and Nasdaq indices. Section 3 presents some summary statistics of returns
and volatility for both indices. Section 4 investigates the time series and panel autocorrelations between the DJIA and the
Nasdaq. Section 5 discusses the dynamic conditional correlation between the DJIA and the Nasdaq based on different time
frequencies. Section 6 presents the probability distribution and scaling analysis. Section 7 contains concluding remarks.

2. Data and stock returns across different frequencies

The data employed here consists of Dow Jones Industrial Average index’s (DJIA) andNasdaq-100 index’s (Nasdaq) 10-min
intraday returns provided by the Bloomberg real-time data service. The DJIA stocks are the most actively traded securities,
and the capital size of the firms in the DJIA also helps to ensure a high degree of liquidity. Alternatively, the stocks listed on
the Nasdaq are characterized by growing high-tech firms, which are associated with higher price volatility.
The 10-min intraday scale values for both the DJIA and the Nasdaq span the period from August 1, 1997, through

December 31, 2003, including 1543 trading days with 60,177 intraday observations starting from 9:30 to 15:50 EST (Eastern
Time Zone). The overnight (or over-weekend) period constitutes an unusual time period, since it involves an interval much
longer than10-min. Therefore, the value of a stock index at openingprices is expected to present an anomalywhen compared
with other data points. Following the analysis in Ref. [9], we constructed 10-min returns with the daily transaction record
extending from 9:30 to 15:50, a total of 39 10-min returns for each day.1 The 10-min horizon is short enough that the
realized returns and volatility can be measured well and yet it is also long enough that the confounding influences from
market microstructure behavior such as the ‘‘bid-ask bounce’’ first noted in Ref. [18] can be largely mitigated.

1 Alternatively, Engle and Russell [16] have developed the autoregressive conditional duration (ACD) model to investigate high-frequency stock market
data. In the ACDmodel the expected duration between trades depends on past durations. Here we follow Andersen and Bollerslev’s approach to investigate
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Fig. 1. Time series plots of 10-min frequencies of DJIA and Nasdaq indices (Aug. 1, 1997 – Dec. 31, 2003).

Fig. 1 shows time series plots of the DJIA and Nasdaq indices sampled at 10-min frequencies. As mentioned above, the
trading time is defined in a continuous pattern, starting from the opening of the day to the closing, and this process repeats
again on the next trading days.
As shown in Fig. 1, both the DJIA and Nasdaq seem to follow a similar pattern and trend over time, perhaps because both

are influenced by common economic fundamentals. However, their short-run variations are somehow different, exhibiting
different extents of correlations and speeds of change. In particular, returns on theDJIA display a relatively stablemovement,
whereas the Nasdaq experiences a dramatic change, showing a speedy upward trend aroundmid-2000, followed by a sharp
downward trend thereafter.2 This differencemay be rooted in the nature of the corporations beingweighted in their indices:
theDJIA compriseswell-established companies,while theNasdaq ismadeupof growing high-tech firms. The latter is viewed
to have a higher return that compensates for higher risk. To further explore the underlying characteristics of these two series,
it is convenient to start with the investigation of the basic statistics for the returns of both indices.

3. Summary statistics of DJIA and Nasdaq

3.1. Basic statistics

Presented in Table 1 are the summary statistics reporting intraday returns from 10 min to 390 min and interday returns
from one day to five days and one week to five weeks. As reported in Table 1, the average return on the DJIA at a 10-min
interval is 0.000006 with a standard deviation of 0.0019. The distribution is slightly right-skewed (with a skewness of 0.17)
andhas a highnarrowpeak (with a kurtosis of 23.37), suggesting that positive returns occurmore often thannegative returns
in a 10-min interval series.With respect to the Nasdaq, both average returns (0.000013) and the standard deviation (0.0039)
are higher than those of DJIA. The return series is more right-skewed (0.25), associated with a higher kurtosis (29.15). The
feature of higher returns accompanied by higher risk is more pronounced when compared to the 10-min returns between
the DJIA and the Nasdaq.
By checking the average returns across different time scaling, it is apparent that the returns of larger scales are almost

equal to returns of 10-min multiplied by a 10-min scale. For example, the 390-min return almost equals 0.000006× 39 =
0.000234. The standard deviation, however, was growing at a rate almost proportional to the square root of the sampling
frequency. This result is consistent with that of Ref. [9] suggesting the similar ideas in foreign exchange (FX) market
intraday returns. This finding also implies that high-frequency returns reveal some common features between stock and FX
markets. In general, both returns and volatility (standard deviation) increasewith increasing scaling from10-min to 390-min
intervals. However, with interday data scaling from one day to five days or one week to five weeks, higher average returns
and volatility are seen to increase with increasing scaling, but the standard deviation does not grow at a rate proportional to

the time series properties of two high-frequency stock returns. However, unlike Andersen and Bollerslev [9] and Mian and Adam [17], we do not omit the
closing-to-opening returns. Rather, we keep them in the data to conduct sensitivity analyses. After eliminating the omitted days for which all of the 10-min
values of the index were not available, we obtained a total of 1543 trading days with 60,177 observations of 10-min index values.
2 Examination of their dynamic correlations between two series can be found in Section 5.
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Fig. 2. Time series plots of stock returns for intraday and interday DJIA data.

the square root of the sampling frequency as intraday frequency does. These observations are different from those reported
by Silva et al. [19]. Silva et al. [19] studied the distribution of stock returns of four individual large American companies at
mesoscopic time lags for the period 1993 to 1999. There were no major market disturbances during this period, and Silva
et al. found a linear relation between the square of variance and the time lag from fiveminutes to amonth, after introducing
an effective overnight time lag. However, we do not observe this feature for interday data even after the introduction of
overnight time lags. More specifically, we did not find a single overnight time lag that is global for different time intervals
from interday to weekly data. Since our empirical data are based on market indices from 1997 to 2003, they cover several
macroeconomic events, such as the collapse of the dot-com companies and the 9/11 attacks. Whether market disturbances
violate market efficiency [20] and, hence, the time-lag-variance proportionality may deserve further investigation.
By comparing the skewness, we find that most of the intraday returns have a positive sign, whereas the interday returns

display a negative sign. This indicates that most of the daily or weekly interday returns are negatively skewed, meaning
negative returns occurmore often than positive returns, since the distribution has a longer left tail. This phenomenon occurs
in both DJIA and Nasdaq markets.3
With respect to the kurtosis, all of the intraday returns show narrower peaks than normal, since the kurtosis is larger

than 3. However, the kurtoses are declining (from more than 20 to almost 3) with increasing time intervals (from 10 min
to five weeks) in both indices. Particularly, the kurtosis of the 10-min interval returns reaches the highest peak among all
intraday interval measures, and it is decreasing with increasing scales to 130-min, daily, and weekly statistics.
Several regularities can be drawn from in this section: First, low-frequency returns in multiples of higher-frequency

returns happen only in intraday returns; these results are not found significantly in interday returns. Second, the standard
deviation of intraday returns is shown growing at a rate almost proportional to the square root of the sampling frequency;
however, interday returns do not showa similar pattern. Third,most daily orweekly interday returns are negatively skewed;
however, most intraday returns are positively skewed. Fourth, all scales of kurtosis of the intraday returns are greater than
3; however, the kurtosis declines as scale increases. Fifth, the intraday return series does not necessarily exhibit the best fit
for normal distribution. Instead, daily returns (one-day series) show a better fit for normal distribution than those of other
frequencies based on both skewness and kurtosis estimates, although they are still not perfect.4
Fig. 2 provides the time series plots of stock returns for the intraday DJIA data sampled by 10, 30, 130, and 390 min as

well as interday data.5

3 It may be seen that most of the interday intervals show left skewness, especially the DJIA. As noted by Andersen and Bollerslev [9], the negative
skewness may be interpreted as evidence of the ‘‘leverage’’ and/or volatility feedback effects discussed by Black [21], Campbell and Hentschel [22] and
Bekaert and Wu [23].
4 The statistics show that daily returns have a skewness of−0.09 and kurtosis of 5.87 for the DJIA, and a skewness of 0.197 and kurtosis of 5.56 for the
Nasdaq.
5 We do not plot the Nasdaq to save space.
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The volatility in Fig. 2 gets larger from 1998 to 1999 across all various frequencies, including both intraday and interday
data. Moreover, these volatilities increase as scale increases. After checking the events during our sample period, we find
that the consequence of Asian financial crisis in late 1998 might be the most significant impact factor. This also implies that
the volatility spillover effect occurs across different continents’ stock markets. Moreover, this spillover effect occurs not
from big markets to small ones but from small to big ones.

3.2. Panel intraday returns and volatility

As we reported earlier, the intraday stock returns from 10 min to 390 min and the interday returns from one day to five
days and one week to five weeks are on average higher for the Nasdaq compared to those of the DJIA. The higher returns are
matched by higher volatilities measured by the standard deviations. As shown in Fig. 3, the differences in returns in Fig. 3(a)
corresponding to the higher volatilities in Fig. 3(b) are seen to increase as the calculation of the intervals increases.
Next, it would be of interest to focus on the relation between return and volatility for a particular interval. Thus,

we investigate the intraday behaviors of the return series among all 10-min intervals from 9:30 to 15:50. To this end,
we reshape the time series data into panel data with 39 10-min intervals on every trading day across all 1543 days.
Both 10-min intraday returns and volatilities from 9:30 a.m. to 15:50 p.m. for the DJIA and the Nasdaq are presented in
Fig. 4(a) and (b), respectively. Both indices exhibit the highest return in the opening interval of 9:30 a.m. and follow a
similar pattern across 10-min intervals. An especially high return in the opening interval reflects pronounced adjustments

Fig. 3. (a) Plots of returns (vertical axis) of DJIA and Nasdaq from 10-min to 5 week intervals (horizontal axis), (b) Plots of volatilities (standard deviations
along the vertical axis) of DJIA and Nasdaq from 10-min to 5-week intervals (horizontal axis).
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Fig. 4. (a) Panel data of 10-min intraday returns of DJIA and Nasdaq with opening interval, and (b) Panel data of 10-min intraday volatility of DJIA and
Nasdaq with opening interval.

to the information accumulated overnight. This opening interval reveals a much higher return and volatility than any
other 10-min interval. A parallel pattern, however, with a relatively moderate magnitude is displayed in the market
closures.
The Nasdaq on average has a higher return than the DJIA, and this becomes more apparent in both the opening and

closing intervals. The higher returns are associated with higher volatilities over the entire trading intervals. As shown in
Fig. 4(b), the volatility against the 10-min trading interval displays a U-shaped curve. This U-shaped curve is consistent with
the shape presented in equity [11] and derivative markets [24], implying a common feature associated with the volatility
among various high frequencies of financial assets.6
Two points are worth noting. First, the opening interval always shows the highest volatility; lunch intervals display the

lowest volatility. Second, it appears that the Nasdaq exhibits a greater curvature than the DJIA across all scales over the
entire intervals. Evidently, larger scale not only creates higher volatility but also accompanied by a higher speed of change
in volatility, so that a deeper curvature of the U-shape may result.
The finding of a U-shaped curve is consistent with social behavior during daily operations.7 On the morning of each

trading day, investors, in reacting to institutional arrangements for trading hours, tend to rack up voluminous transactions
based on the information accumulated overnight, creating excessive volatility in the opening interval. Trading activity
then slows down as investors collect news and process information over the course of the day. It reaches bottom around
the lunch hour.8 In projecting the closing hour, the accumulated trading activity rises and then accelerates before the
market closes. To provide a rationale, recent studies [27,25,26] argue that this observed intraday U-shaped pattern in
intraday stock market volatility is mainly attributable to the strategic interaction of traders around market openings and
closings.

6 By increasing the time scale from 10-min to 30-min, we continue to find the U-shaped curve for both the DJIA and the Nasdaq. The plots are available
upon request.
7 Evidence of the U-shaped pattern of intraday volatility can be found in Refs. [11,9,10], among others. Theoreticalmodels of the U-shaped pattern appear
in Refs. [25,26].
8 The U-shaped curve of volatility reflects the fact that the highest point of return volatility occurs around the opening 9:30 interval (0.006216804),
followed by the 10:00, 9:40, and 9:50 intervals, respectively, and hits the lowest point around the 12:20 interval (0.001240272), followed by the second
lowest at the 13:00 interval and third lowest at the 12:10 interval, respectively.
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Table 2
Time series estimates of AR(1) for the DJIA and the Nasdaq across different time frequencies.

τ DJIA Nasdaq
Coefficient P-value Coefficient P-value

10 min δτ 0.00000604 0.4498 0.0000126 0.4399
φτ −0.001695 0.6758 −0.000938 0.8169
R2 0.00028 0.000002

30 min δτ 0.0000183 0.4716 0.0000385 0.4383
φτ 0.003285 0.64 0.005783 0.4102
R2 0.000841 0.000242

60 min δτ 0.0000361 0.465 0.0000768 0.4643
φτ −0.00124 0.9007 0.007409 0.4556
R2 0.001899 0.001201

120 min δτ 0.0000709 0.4423 0.000152 0.4431
φτ 0.027851 0.0476 0.014206 0.3118
R2 0.006283 0.000112

390 min δτ 0.000261 0.3782 0.000592 0.3819
φτ −0.022378 0.3797 −0.098186 0.0001
R2 0.006283 0.00964

Total sample included 60,879 observations for the 10-min series after adjustment. The estimated equation is: Rτ ,t = δτ + φτRτ ,t−1 + ετ ,t , where Rτ ,t is
stock return applied to the DJIA and the Nasdaq series; δτ is a constant term; φτ is a constant coefficient; the subscript τ is a scale index; ετ ,t is a vector of
random error terms.

4. Autocorrelations of time series

4.1. Time series estimates of AR(1)

Since autocorrelation plays a central role in evaluating market efficiency, the recent literature has used AR(1) to detect
feedback trading behavior [28,29]. Thus, it is of interest for us to investigate the sign of autocorrelation in order to understand
more about investors’ trading behaviors in bothmarkets. In this section, we first consider time series autocorrelationmodels
in our estimations. In expression, we write:

Rτ ,t = δτ + φτRτ ,t−1 + ετ ,t , (1)

where Rτ ,t is stock returns applied to the DJIA and the Nasdaq series; δτ is a constant term; φτ is the coefficient for the
AR(1) term; the subscript τ is a scale index, ranging from 10–390-min; and ετ ,t is the random error term. The AR(1) term
included in Eq. (1) accounts for autocorrelation, possibly arising from non-synchronous trading, price limitations, slow price
adjustments, market frictions, or feedback trading (see Refs. [30–32,28,33–37]).
Estimations are made on the return series by setting τ = 10 min, 20-min, . . . , 390-min frequencies. In this time series

estimation, the observations are arranged in the time sequence, including the lengthy opening interval. The estimates of the
AR(1) coefficients for each τ frequency are reported in Table 2.
The evidence in Table 2 shows that the AR(1) coefficients on both the DJIA and the Nasdaq present mixed signs and lack

of statistical significance. The exceptions are the coefficients for the 120-min intervals for the DJIA and the 390-min intervals
for the Nasdaq. These significant statistics do not seem to have a consistent pattern. It appears to us that the unsatisfactory
results may be attributable to the inclusion of the opening data point or, simply, to the misspecification of the model, or
both.

4.2. AR(1)-GARCH(1,1) model

As documented by Laux and Ng [7] and Andersen and Bollerslev [9], since the high-frequency return volatility, such
as that of the exchange rate and S&P 500 futures, displays a changing intraday pattern, we are led to consider the point
that estimations based on Eq. (1) could be misspecified. Following the conventional approach, the conditional variance for
high-frequency returns is assumed to follow a GARCH(1, 1) process as given by:

σ 2τ ,t = ωτ + ατ ε
2
τ ,t−1 + βτσ

2
τ ,t−1 (2)

where σ 2τ ,t is the conditional variance for frequency τ . Since volatility is likely to be time-varying and to present a clustering
phenomenon, the unconditional returns distributions generated by a normal GARCH model will have fat tails. This is
especially true for the high-frequency data. From this perspective, a student t-distribution [38] or a generalized error
distribution (GED) [39] is usually assumed for the error process in the conditional mean equation. In this paper, we follow
Nelson [39] by using the GED.9 The estimates based on the log-maximum likelihood method are reported in Table 3.

9 The parameters will be estimated by the log-maximum likelihood method. The density function in Nelson [39] is given by

f (µτ ,t , στ ,t , ν) =
ν[0(3/ν)]1/2

2[0(1/ν)]−3/2στ ,t
exp

[
−

∣∣∣∣ ετ ,tστ ,t

∣∣∣∣ν [0(3/ν)0(1/ν)

]ν/2]
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Table 3
Time series estimates of AR(1)-GARCH(1, 1) of DJIA and Nasdaq high-frequency returns.

τ Obs. φτ P-value ατ P-value βτ P-value ατ +βτ

Panel A: DJIA including opening returns

10 min 60528 −0.0196 0.0000 0.2061 0.0000 0.7482 0.0000 0.9543
30 min 20176 −0.0123 0.0742 0.2959 0.0000 0.4744 0.0000 0.7703
60 min 10088 −0.0020 0.0749 0.0302 0.0000 0.9648 0.0000 0.9950
120 min 5045 0.0096 0.4578 0.0415 0.0000 0.9497 0.0000 0.9912
390 min 1613 −0.0348 0.1808 0.0921 0.0000 0.8836 0.0000 0.9757
1 day 1613 −0.0305 0.2581 0.0882 0.0000 0.8838 0.0000 0.9721

Panel B: Nasdaq including opening returns

10 min 60528 0.0271 0.0000 0.3371 0.0000 0.6952 0.0000 1.0323
30 min 20176 0.0134 0.0389 0.3586 0.0000 0.5233 0.0000 0.8819
60 min 10088 0.0025 0.3042 0.0284 0.0000 0.9695 0.0000 0.9979
120 min 5045 0.0283 0.0244 0.0358 0.0000 0.9612 0.0000 0.9970
390 min 1613 −0.1273 0.0000 0.0936 0.0000 0.8949 0.0000 0.9885
1 day 1613 0.0014 0.9600 0.1007 0.0000 0.8888 0.0000 0.9895

Panel C: DJIA excluding opening returns

10 min 58976 −0.0080 0.0583 0.1388 0.0000 0.8361 0.0000 0.9749
30 min 18624 −0.0139 0.0384 0.0470 0.0000 0.9460 0.0000 0.9929
60 min 9312 −0.0051 0.5705 0.0307 0.0000 0.9649 0.0000 0.9955
120 min 4656 0.0074 0.5791 0.0400 0.0000 0.9523 0.0000 0.9923

Panel D: Nasdaq excluding opening returns

10 min 58976 0.0528 0.0000 0.2024 0.0000 0.7970 0.0000 0.9995
30 min 18624 0.0298 0.0000 0.0505 0.0000 0.9474 0.0000 0.9979
60 min 9312 0.0064 0.4712 0.0320 0.0000 0.9660 0.0000 0.9981
120 min 4656 0.0312 0.0185 0.0355 0.0000 0.9619 0.0000 0.9974

There is only one observation in 390-min. interval per day; hence, there is no observation after excluding the opening interval in the 390-min. and daily
frequency series. The AR(1)-GARCH(1, 1) model is Rτ ,t = δτ + φτRτ ,t−1 + ετ ,t , σ 2τ ,t = ωτ + ατ ε

2
τ ,t−1 + βτσ

2
τ ,t−1 where τ represents different frequencies.

To maintain consistency in estimation, we set the scale of parameter at 1.5.

The evidence presented in Table 3 is quite consistent with respect to the sign and other statistical results. Specifically,
AR(1) coefficients are negative for the DJIA returns and positive for the Nasdaq returns. The p-values suggest that these
coefficients are statistically significant for the 10-min and 30-min frequencies, whether or not the data on opening returns
are included in the estimations. The diverse signs of AR(1) coefficients reflect two distinct trading behaviors associated with
investors involved in the DJIA and Nasdaq markets. Theory [28,29] suggests that the presence of positive feedback trading
leads to negatively autocorrelated stock returns, while negative feedback trading tends to produce positively autocorrelated
stock returns. Our evidence suggests that investors in theDJIAmarket have beendominated by the groupof positive feedback
traders, buying (selling) stocks after prices rise (fall), while investors in theNasdaqmarket aremainly governed by a negative
feedback group, buying (selling) after prices decline (rise).10
Another point that emerges from the empirical evidence in Table 3 is that the coefficients of the GARCH components are

all highly significant, justifying the fact that stock return volatilities are characterized by a heteroskedastic process. Note that
with the exception of the 30-min interval in the DJIA, α̂τ + β̂τ is very close to unity, indicating a high degree of persistence
of volatility.

5. Time-varying correlation between the DJIA and Nasdaq

It is generally recognized that financial markets are highly integrated and efficient; price movements in one market are
likely to spill over to another market instantaneously. Empirical evidence about stock return correlations abounds, ranging

where0(·) is the gamma function and ν is a scale parameter or degree of freedom to be estimated. For ν = 2, the GED yields the normal distribution, while
for ν = 1 it yields the Laplace or double-exponential distribution. Given initial values of ετ ,t and σ 2τ ,t , the parameter vector Θ ≡ (δτ , φτ , ωτ , ατ , βτ , ν)
can be estimated by the log-maximum likelihood method (log-MLE) over the sample period. The log-maximum likelihood function can be expressed as

L(Θ) =
T∑
t=1

log f (µτ ,t , στ ,t , ν)

where µτ ,t is the conditional mean and στ ,t is the conditional standard deviation. Since the log-likelihood function is non-linear, the numerical procedure
is used to derive estimates of the parameter vector.
10 As argued by Sentana and Wadhwani [28] and expounded by Antoniou et al. [29], positive feedback traders buy stocks after prices rise and sell stocks
after prices fall. Shiller [20] found that a main reason that prompted investors to sell their stocks in October 1987 was that stock prices had fallen, thus
inducing a fear of contagion in other investors. In contrast, the negative feedback traders sell stocks after prices increase and buy stocks after prices decline.
Shiller argued that feedback models suggest that price is determined in part by its own lagged values, increases in price tending at times to foster further
increases. However, as argued by Shiller, there is little, even a negative, serial correlation between price changes ([20], p. 375).
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from individual stocks andmutual funds to stock indices for national markets.11 For this reason the analysis of stock returns
should not be restricted to a single market. Rather, in a general equilibrium environment, the interrelation between asset
returns often carries some useful information content. One simple way to explore the relation of two asset returns is to
calculate the correlation coefficient. However, a textbook type of correlation coefficient is usually assumed to be constant
throughout a given window width. This approach is easy to calculate. However, it fails to capture the dynamics of financial
markets, which are continuously subjected to ongoing shocks due to endogenous changes or innovations [42]. For this
reason, we specify a multivariate model, which is capable of computing dynamic conditional correlation (DCC) coefficients.
Engle [44] and Cappiello et al. [45] provide a convenient dynamic system that specifies the conditional variance as:

Hτ ,t = Dτ ,tVτ ,tDτ ,t , (3)

where Vτ ,t is a symmetric conditional correlation matrix of εt , Dτ ,t = diag[
√
σ 2τ ,ii,t ](2,2). Eq. (3) suggests that the dynamic

properties of the covariance matrix Hτ ,t are determined by Dτ ,t and Vτ ,t for a given τ . To remove the heteroskedasticity

problem that may cause higher correlation [41], we standardize stock-return residuals via ητ ,i,t = ετ ,i,t/

√
σ 2τ ,ii,t , where

ητ ,i,t is then used to estimate the parameters of the conditional correlation. The variance and covariance are assumed to be
governed by Eqs. (4) and (5), respectively:

σ 2τ ,ii,t = cτ ,i + ατ ,iε
2
τ ,i,t−1 + βτ ,iσ

2
τ ,ii,t−1, i = 1, 2 (4)

Qτ ,t = (1− ατ ,i − βτ ,i)Q̄τ + ατ ,iητ ,i,t−1η′τ ,i,t−1 + βτ ,iQτ ,t−1, (5)

where Qτ ,t = (qτ ,ij,t) is the 2 × 2 time-varying covariance matrix of ητ ,i,t , Q̄τ = E[ητ ,i,tη′τ ,i,t ] is the 2 × 2 unconditional
variance matrix of ητ ,i,t , and ατ ,i and βτ ,t are non-negative scalar parameters satisfying (ατ ,i + βτ ,i) < 1. Since Qt does not
generally have ones on the diagonal, we scale it to obtain a proper correlation matrix Vτ ,t . Thus,

Vτ ,t = (diag(Qτ ,t))−1/2Qτ ,t(diag(Qτ ,t))−1/2, (6)

where (diag(Qτ ,t))−1/2 = diag(1/
√
qτ ,11,t , 1/

√
qτ ,22,t).

It can be shown that Vτ ,t in Eq. (6) is a correlation matrix with ones on the diagonal and off-diagonal elements less than
one in absolute value. A typical element of Vτ ,t is in the form of:

ρτ ,12,t = qτ ,12,t/
√
qτ ,11,tqτ ,22,t . (7)

The dynamic correlation coefficient, ρτ ,12,t , can be obtained by using the element of Qτ ,t in Eq. (5).
The estimates of dynamic correlation coefficients,12 ρτ ,12,t , between DJIA and Nasdaq index returns for one day, 10-min,

and 30-min are shown in Fig. 5(a)–(c), respectively.13
Several observations are immediately apparent from these figures. First, although the correlation coefficients lie mainly

in the range of 0.6 to 0.8 for most of the time, the estimated coefficients are time varying, reflecting some sort of portfolio
shifting of the indices. Second, fromahistorical perspective, the variations of the correlations are seen to be declining, and the
series appears to be more stable and displays less variance after the end of 2001. This suggests that both return series more
or less conform to common factors in the post-2001 period, such as systematic risk, macroeconomic announcements, or Fed
policy. This implies that the benefit of diversification by holding a combination of DJIA and Nasdaq stocks has declined in
recent years. Third, correlation variations occur more frequently during downturns than upturns. This may be attributable
to sector rotation between the new economy and the old economy in early 2000 or to diverse beliefs and expectations
triggered by outbreaks of news. Fourth, the correlation coefficients increase their variabilitywith frequent scales. It becomes
more apparent in highly volatile periods. For example, if we look at the data between April 4, 2000, and April 12, 2000, the
correlation coefficients for the daily data even display some negative values. To gain more insight into the dynamic nature

11 A variety of papers have documented the fact that correlations across major stock markets change over time. King et al. [40] find that the covariances
of stock returns change over time. Some evidence shows that correlations tend to increase during unstable periods [41]. Longin and Solnik [42] find that
correlations between the major stock markets rise in periods of high volatility. Karolyi and Stulz [43] report that covariances are high, while returns on the
national indices are high when ‘‘markets move a lot’’. All these papers are based mainly on daily data. Very few attempts have been devoted to analyzing
dynamic conditional correlations in high-frequency data. Moreover, we are interested in exploring the results from varying different scales of data in the
context.
12 An alternative definition of the correlation coefficient (more precisely, cross-correlation coefficient, see Refs. [46,47]) denoted by Cτ ,ij,t is defined as the

statistical overlap of the fluctuations δRτ ,i,t = Rτ ,i,t − E
(
Rτ ,i,t

)
between the two stocks i and j, that is, Cτ ,ij,t =

E(δRτ ,i,t δRτ ,j,t)
στ ,i,tστ ,j,t

, where Rτ ,t is the logarithmic

return, and σ 2τ ,i,t = E
([
δRτ ,i,t

]2). The average E (·) is over time period T . We are interested in exploring whether different scales of data types would
cause different results in dynamic cross correlations. Based on this equation, we can perform two analyses: one with T fixed to one day, and the other
with T fixed to a certain number of events. Using two ways (with and without deleting opening intervals) to investigate the DCC, we found that there is no
difference between the two, and we do not report it here. Additional methods for measuring correlation can be found in Refs. [48,49].
13 In our case, we fixed T = 38 after removing the 09:30 data point. The discontinuation of the correlation coefficients in the figures is due to missing
data for the sample period from February 9, 2002, to May 9, 2002.
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Fig. 5. Dynamic conditional correlation between the DJIA and the Nasdaq: (a) Daily dynamic conditional correlation between the DJIA and Nasdaq, (b)
10-min dynamic conditional correlation between the DJIA and the Nasdaq, (c) 30-min dynamic conditional correlation between the DJIA and the Nasdaq.

of these DCCs, the correlation coefficients have been fitted into a time series model, which allows the variances to evolve
over time. Since plots of ρτ ,ij,ts (from Fig. 5(a)–(c)) show non-stationarity, a first difference is required. Further, statistics
(not reported) from autocorrelation and partial autocorrelation functions for the 10-min and 30-min series indicate that the
MA(1) model appears to be a parsimonious representation. Thus, we write mean and variance equations as:

∆ρτ ,ij,t = µ− θ1υτ ,t−1 + υτ ,t , (8)

hτ ,ρ,t = ωτ ,0 + ω1υ2τ ,t−1 + ω2hτ ,ρ,t−1 (9)

where µ, θ1, and ω are parameters, and υτ ,t is the shock term. The variances expressed in (9) are assumed to evolve with a
GARCH(1, 1) process, as popularized by Bollerslev et al. [50].
Since investment strategy, environment, and investor sentiment and psychology have displayed a distinct change since

September 11, 2001, we use this date as a breakpoint based on the study by Enders and Sandler [51] to examine the DCC
changes for 10-min, 30-min, and daily correlation series.14 The results of the MA(1)-GARCH(1, 1) model are reported in
Table 4 (see footnote 13). As shown in statistics of means and standard deviations, the mean values are consistently greater
and have lower variances across all of the scales for the post-crisis period. This implies that both the DJIA and the Nasdaq

14 Enders and Sandler [51] employ a Bai-Perron procedure to examine the structural changes. They find little has changed since 9/11. We choose this
date to divide the data also based on its social costs and economic consequences in global markets [52]. See http://www.nato-pa.int.

http://www.nato-pa.int
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Table 4
Time series analysis of dynamic conditional correlation coefficients at various time scales.

Coefficient ∆ρτ ,t (1 day) ∆ρτ ,t (30 min) ∆ρτ ,t (10 min)
Before crisis After crisis Before crisis After crisis Before crisis After crisis

Panel A: Mean and standard deviation of ρτ ,t

µρ 0.664 0.852 0.726 0.865 0.725 0.857
σρ 0.158 0.094 0.129 0.060 0.127 0.061

Panel B: Mean equation

C −0.0005 −8.72E−06 −0.0002 0.0003 −3.23E−05 −2.17E−05
(0.628) (0.018) (0.229) (1.869)** (0.068) (0.099)

θ1 – – 0.894 0.975 0.887 0.929
(31.99)*** (35.90)*** (60.00)*** (54.28)***

Panel C: Variance equation

ω0 1.115E−05 2.4E−06 0.001 0.003 0.002 0.0002
(6.55)*** (3.77)*** (0.90) (3.039)*** (2.28)*** (1.64)

ω1 0.054 0.115 0.027 0.363 0.048 0.024
(9.97)*** (4.03)*** (0.98) (3.17)*** (2.22)*** (2.87)***

ω2 0.936 0.738 0.896 0.076 0.771 0.909
(174.84)*** (12.35)*** (8.40)*** (0.28) (8.78)*** (20.23)***

R̄ 0.000 0.000 0.422 0.510 0.400 0.441
SSE 0.029 0.013 5.170 0.604 14.836 1.811
LB(10) 7.436 3.41 14.809 4.094 21.86*** 10.203

a. The estimated equations are:∆ρτ ,t = µ− θ1υτ ,t−1 + υτ ,t and hτ ,ρ,t = ωτ ,0 + ω1υ2τ ,t−1 + ω2hτ ,ρ,t−1.
b. The numbers in parentheses are t-statistics. 0.000 indicates a very small value.
c.∆ρτ ,t (10-min) denotes change in conditional correlation coefficient for the (10-min) series, etc.
d. R̄ is the adjusted R-squared, SSE is the sum of squared errors, LB (10) is the Ljung-Box statistics testing for autocorrelation up to the 10th lag. The critical
values of the chi-squared distribution for the 10%, 5%, and 1% levels are 16.0, 18.3, and 23.2, respectively.
*** Indicate statistical significance at the 1% level.
** Indicate statistical significance at the 5% level.

indices have been commonly driven by certain market forces in a relatively stable fashion. The variations are still subject to
macroeconomic news, announcements, and dynamic social/political factors. Interestingly, the mean equation of∆ρτ ,ij,t for
intraday daily data consistently reveals anMA(1) pattern; no particular pattern is shown on the coefficient of the daily series.
It is generally recognized that an MA(1) process is equivalent to AR(∞), meaning that the∆ρτ ,ij,t is highly correlated in the
high-frequency data. The correlation coefficients exhibit even higher values in the post-2001 crisis period. Although the
pattern is rather stable, themessage derived from the GARCH coefficients indicates that the correlation coefficients are time
varying. By comparing values of the adjusted R-squared (R̄) and the sum of squared errors (SSE), we find that the explanatory
power increased and the SSE decreased after the crisis. Note that the post-crisis period coincides with a persistent downturn
in production in the US economy [52].
It is of interesting to note that the evidence in this section is consistentwith the theoretical results fromphase correlations

between DJIA and Nasdaq. Wu et al. [53] found that the distributions of phase differences between DJIA and Nasdaq show
an impressive change of phase correlation after the events of 911, 2001, and the scenario persisted in later trading activities.
The phenomenon has been attributable to speedy communications and a greater sensitivity to investors’ psychology and to
socio-political events after the 911 shock to stock markets.

6. Scaling analysis

To gain more insight into understanding the collective behaviors revealed by activities in stock markets, we perform
scaling analysis on the DJIA and the Nasdaq indices at different scales. To elucidate, let us define the probability distribution
P as a normalized distribution (i.e., the total probability is equal to one) of a measure Z , which satisfies∫

∞

−∞

P(Zτ ,t)dZτ ,t = 1 (10)

where Zτ ,t is the measure of stock return, and τ (=10-min, 20-min, . . . etc.) is a multiple of the primary time sampling
unit ∆t . Fig. 6(a) and (b) depict the probability distributions P(Zτ ,t) of the intraday frequencies for both DJIA and Nasdaq
return changes Zτ ,t observed at five different time intervals τ , ranging from 10 to 1950-min, in which the opening intervals
have been included. These distributions are scale-dependent, and the shorter the time interval, the narrower the width
of the distribution. It has been reported that a properly normalized version of return can have its probability distribution
behave as a rescaled-like distribution, such that probability distributions of normalized returns for different time scales
can converge into a single curve [15,53]. The probability distribution of the normalized return can be described well by
the double-exponential distribution at not-too-long t [19]. The double-exponential distribution of return at not-too-long
times t is a universal, ubiquitous feature of financial time series and was observed for different countries, stock-market
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Fig. 6. Probability distributions of return changes of (a) DJIA, and (b) Nasdaq for intraday data with time sampling intervals of multiples of 10-min.

indices, and individual stocks. According to Ref. [19], the central part of the curves can be fitted by the scaling form using a
Bessel function, where 99% of probability resides and statistics are good, followed by power laws in the far tails, where data
statistics are often poor. These features can be modeled by the Heston model with stochastic volatility [54].
As suggested byMantegna and Stanley [13,14], it is possible tomap probability distributionswith different time sampling

scales into a single curve by performing scaling analysis. We plot P(Zτ ,t = 0) of two indices against the time sampling
intervals τ as shown in Fig. 7(a). Within a truncated time scale, the distributions of P(Zτ ,t = 0) in relation to τ plotted in
logarithmic scale are linear [14]; the best-fitting straight lines (also plotted in Fig. 7(a)) obey the following [53]:

log10 P(Zτ ,t = 0) = c −
1
α
log10 τ , (11)

where c is a constant, andα is a quantity characterizing the class of distribution. It has been shown that theα value in Eq. (11)
can be used to determine the stability of a distribution, which, in turn, enables us to determine the stability of the process
under consideration (see Ref. [14]). By measuring the slope of the fitting straight line, we obtain α ≈ 1.84 for the DJIA and
α ≈ 1.75 for the Nasdaq; both of the α values are greater than 1.4 [13] and less than or equal to 2 (α ≤ 2), satisfying the
condition for stable Lévy distributions [15].
Note that the stable non-Gaussian type of the probability distributions is a stochastic process with infinite variance

characterized by distributions with power-law tails. Power-law distributions also imply a lack of a characteristic scale. We
then rescale the probability distribution function P(Zτ ,t) and return changes Zτ ,t as suggested byMantegna and Stanley [13].
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Fig. 7. (a) Probability of return variation P(Zτ ,t = 0) as a function of the time sampling intervals τ . The slope of the best-fit straight line is−0.54± 0.01
for the DJIA, and−0.57± 0.01 for the Nasdaq. Scaled plot of the probability distributions with (b) α = 1.84 for the DJIA, and (c) α = 1.75 for the Nasdaq.

It follows

Zs,τ ,t =
Zτ ,t
τ 1/α

, Ps
(
Zs,τ ,t

)
=
P(Zτ ,t)
τ−1/α

(12)

where the subscript s is used to denote scaled quantities. Fig. 7(b) and (c) show the scaled plots of the probability
distributions with α = 1.84 for the DJIA and α = 1.75 for the Nasdaq. Apparently, probability distributions of time scales
can coincide with each other very well.
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We can now argue that for a stock market showing that the collective behavior of a large number of investors, either
DJIA (with α = 1.84) or Nasdaq (with α = 1.75) can converge to a stable state by itself after a shock, without relying on
external intervention. This also implies that stock markets such as the DJIA and the Nasdaq are considered to have mature,
self-governing capacity for maintaining their own stability. Meanwhile, the scaling analysis indicates that the DJIA, with a
slightly higher α value than that of the Nasdaq, is equipped with a relatively stronger self-governing mechanism.
The sameanalysis has also beenperformedby excluding the opening interval of the 9:30data,with the results ofα = 1.88

for DJIA andα = 1.85 for Nasdaq. According to stability analysis of probability distribution [14], a value of 1 ≤ α ≤ 2 implies
a stable distribution, and α = 2 corresponds to the Gaussian distribution. System with a α value closer to 2 may exhibit a
distribution with rarer large-fluctuation. From this perspective, opening intervals are likely to perturb a distribution to have
more larger fluctuation and lead to smaller values of α. This evidence can be observed from Fig. 4(a), in which the average
of the opening interval has larger return.

7. Conclusions and discussion

In this paper, we investigate the statistical properties of high-frequency data on stock returns. We find that both Nasdaq
and DJIA have excessively high returns at opening intervals, although the Nasdaq, on average, has a higher return than
DJIA. The higher returns in Nasdaq are associated with higher volatilities across all the intervals in each trading day. Our
evidence also shows that the high-frequency-return variances for a given scale produce a U-shaped curve, and the curvature
is increasing with the increasing scales.
Our AR(1)-GARCH(1, 1) result shows that for both 10-min and 30-min return horizons, DJIA returns are negatively

autocorrelated, whereas Nasdaq are positively autocorrelated. These results imply that investors in DJIA follow a positive
feedback strategy, whereas a negative feedback strategy in Nasdaq.
By examining the dynamic correlation coefficients between DJIA and Nasdaq returns over time, a series of positive

correlations are found and fluctuate mainly ranging from 0.6 to 0.8. The statistics show that the correlation coefficients
are time varying, reflecting some sort of dynamic portfolio allocations among different financial assets. By inspecting the
time series path of conditional correlation coefficients, we find that the variations of the coefficients are declining and appear
to be more stable over the post-2001 period. This suggests that both markets are driven by some common factors, such as
systematic risk, macroeconomic announcements, Fed policy, or investor psychology etc. This also implies that the benefit of
diversifying by holding a portfolio of DJIA and Nasdaq stocks declined.
By checking the conditions of a stable Lévy distribution, we find that both the DJIA and the Nasdaq can converge to stable

equilibrium after the shocks without needing external intervention. This implies that both markets are characterizing with
self-governing mechanisms, especially the DJIA market.
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