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Scaling functions of interfacial tensions for a class of Ising cylinders
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We apply Plechko’s Grassmann path-integral method to Ising cylinders of rectangular, triangular, and
hexagonal lattices to obtain the analytic solutions of free energies for the periodic and antiperiodic boundary
conditions in the joined circumferences of the cylinders. These analytic solutions are used to analyze the
scaling functions of the interfacial tensions for isotropic and anisotropic couplings. The finite-size corrections
to the scaling functions are also discussed.@S0163-1829~99!12141-6#
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I. INTRODUCTION

There is extensive current interest in the properties of s
faces and interfaces near the bulk critical point in both the
and experiment. The interfacial free energy is defined as
difference of two finite-size systems with different bounda
conditions. For the case of the Ising model, the difference
free energy between a system with periodic and antiperio
boundary conditions is sometimes referred to as the Bl
wall free energy, and few results1,2,3 exist for the properties
of the free energy of an infinitely extended Block wall.
this paper we analyze the properties, mainly the scaling fu
tions, of the Bloch wall free energies of infinitely long Isin
cylinders of square, triangular, and hexagonal lattices, ba
on the analytic solutions of the free energies.

The analytic solution of the Ising model on a square l
tice was first solved by Onsager in the limit of an infinite
large lattice using the theory of Lie algebra.4 This method
was simplified by Kaufman5 using the theory of spinor rep
resentation. Then Schultz, Mattis, and Lieb6 gave explicitly
the fermionic treatment. The other alternative is the com
natorial method, which was first developed by Kac a
Ward7 and then rigorously reformulated by Hurst an
Green.8 More recently Plechko used a nonstandard and r
tively simple approach to obtain analytic expressions of
partition functions for the Ising model on a torus,9 a class of
triangular-type decorated lattices,10 and a triangular lattice
net with holes.11 This method is based on the Grassma
path-integral factorization of the Boltzmann weights alo
with the principle of mirror ordering of the arising Gras
mann factors. Here traditional transfer matrix or combina
rial considerations used in the previous methods are
needed. In this paper, we work in this framework to obt
analytic solutions of the partition functions for infinitely lon
PRB 600163-1829/99/60~18!/12994~12!/$15.00
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cylinders of square, triangular, and hexagonal lattices w
periodically or antiperiodically joined circumferences. Th
we use these solutions to find the interfacial tensions, an
study the scaling functions of the interfacial tensions for d
ferent coupling ratios.

This paper is organized as follows. In Sec. II, we set u
general form of the partition function of the Ising model th
can be applied to square, triangular, and hexagonal latti
In Sec. III, we first introduce three pairs of conjugate Gra
mann variables for a lattice site to factorize the Boltzma
weights, and then we use the principle of mirror ordering
rearrange the Grassmann factors so we can perform the
mation over Ising spins to obtain a pure fermionic express
of the partition function. In Sec. IV, using the Fourier tran
form technique we complete the integrations over the Gra
mann variables to obtain the analytic solutions of the f
energies. In Sec. V, we use the free energies obtained in
last section to study the scaling functions of the interfac
tensions for different coupling ratios. Finally, Sec. VI is r
served for the summary of the results.

II. GENERALIZED PARTITION FUNCTION

In this section, starting with a triangular lattice we set
a generalized partition function of the Ising model that c
be applied to rectangular, triangular, and hexagonal lattic

Consider a triangular lattice with site identification
shown in Fig. 1. The partition function is written as

Z5(
$s%

e2bH, ~1!

where b is the inverse of the reduced temperatureb
51/(kBT), H is the Hamiltonian defined as
12 994 ©1999 The American Physical Society
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H52(
m,n

~J1sm,nsm11,n1J2sm,nsm,n11

1J3sm11,nsm,n11!, ~2!

Ji with i 51,2,3 is the coupling constant, andsm,n is the
Ising spin defined on the site (m,n) and it has two possible
values,11 and21. Using the identity,

ebJis jsk5~12t i
2!21/2~11t is jsk!, ~3!

with t i5tanh(bJi), we can rewrite the partition function as

ZT5RT
NT)

m,n

1

2 (
sm,n

~11r 1
Tsm,nsm11,n!~11r 2

Tsm,nsm,n11!

3~11r 3
Tsm11,nsm,n11!, ~4!

whereNT is the total number of lattice sites of a triangul
lattice,

RT52)
i 51

3

~12t i
2!21/2, ~5!

andr i
T5t i with i 51,2,3. Note that this partition function ca

be transformed to the one on a rectangular lattice by set
t350.

For the case of a hexagonal lattice, we note that one
use the star-triangle transformation to transform a hexag
to a triangular lattice as shown in Fig. 2. First we can expr
the Hamiltonian as

H52(
m,n

~J1s0sm,n1J2s0sm,n111J3s0sm11,n!, ~6!

wheres0 denotes the Ising spins indicated in Fig. 2. Th
using the identity of Eq.~3!, we can obtain the partition
function as

ZH5RH
NH)

m,n

1

2 (
sm,n

H 1

2 (
s0

~11t1s0sm,n!~11t2s0sm,n11!

3~11t3s0sm11,n!J , ~7!

FIG. 1. A basic cell in the type of triangular lattices used in th
work. A lattice site is given by (m,n), and the coupling constant
areJ1 , J2 , andJ3 .
g

an
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s

where NH(52NT) is the total number of lattice sites of
hexagonal lattice, andRH52RT . After performing the sum
over s0 , the partition function becomes

ZH5RH
NH)

m,n

1

2 (
sm,n

3~a01a1sm,nsm11,n1a2sm,nsm,n11

1a3sm11,nsm,n11!, ~8!

with

a051, a15t1t3 , a25t1t2 , and a35t2t3 . ~9!

The above partition function can be reparametrized in a fo
similar to Eq.~4!, and the resultant form is

ZH5RH
NH)

m,n

1

2 (
sm,n

$r 0
H~11r 1

Hsm,nsm11,n!

3~11r 2
Hsm,nsm,n11!

3~11r 3
Hsm11,nsm,n11!%, ~10!

wherer i
H with i 50,1,2,3 is determined by the relations

a05r 0
H~11r 1

Hr 2
Hr 3

H!, a15r 0
H~r 1

H1r 2
Hr 3

H!,

a25r 0
H~r 2

H1r 1
Hr 3

H!, a35r 0
H~r 3

H1r 1
Hr 2

h!. ~11!

From Eqs.~4! and ~10!, we can define the generalize
reduced partition function as

FIG. 2. ~a! The basic cell in the type of hexagonal lattices us
in this work. There is no position specification at the location of t
Ising spins0 . ~b! The equivalent structure of the hexagonal lattic
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Q5 )
m51

Lx

)
n51

Ly 1

2 (
sm,n

Pm,n~s!, ~12!

wherePm,n(s) take the form

Pm,n~s!5~11r 1sm,nsm11,n!~11r 2sm,nsm,n11!

3~11r 3sm,n11sm11,n!, ~13!

and the parametersr i with i 51,2,3 vary from one lattice to
the other.

III. FERMIONIC EXPRESSION OF PARTITION
FUNCTION

In this section, first we introduce a set of anticommuti
Grassmann variables for each lattice site to express the
eralized reduced partition functionQ of Eq. ~12! as a mixed
representation of spin and Grassmann variables. In
mixed representation, a Boltzmann weight in Eq.~12! is de-
coupled to the product of two factors of separated sp
Then by using the technique of the mirror-ordered factori
tion, we can group the factors containing the same spin
gether to perform the sum over spins. After eliminating t
spin variables we obtain a purely fermionic expression oQ
that is a multidimensional Gaussian integral. The bound
condition we use is defined as follows: For they direction we
first set sm,15sm,Ly1150 and then take the limit ofLy

→`, and for thex direction we setsLx11,n5ks1,n with k

51 for the periodic boundary condition andk521 for the
antiperiodic boundary condition. Thus the solution we obt
corresponds to the case of an Ising cylinder infinitely exte
ing in they direction and rounding periodically or antiper
odically in thex direction.

Three pairs of conjugate Grassmann variabl
$am,n ,am,n* ;bm,n ,bm,n* ;cm,n ,cm,n* %, are defined on a lattice
site (m,n). All Grassmann variables anticommute, and th
squares are zeros. The basic rules of integration for
Grassmann variable are defined as

E dam,n•150 and E dam,n•am,n51. ~14!

This definition can be viewed as the consequence of pro
normalization and transnational invariance, namely

E dam,n•V~am,n1h!5E dam,n•V~am,n!, ~15!

for an arbitrary anticommuting complex numberh.12 Also
the symbols of the differentials anticommute with each ot
and with the variables. For each pair of conjugate variab
introduced above, sayam,n and am,n* , we follow Plechko’s
notation to define the average of an arbitrary funct
f (am,n ,am,n* ) with a Gaussian weight as

Sp
~am,n!

$ f ~am,n ,am,n* !%

5E dam,n* E dam,neam,nam,n* f ~am,n ,am,n* !.

~16!
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Similar definitions are used forbm,n andbm,n* , andcm,n and
cm,n* . We also define the total average over all these pair

Sp
~a,b,c!

$g~a,a* ;b,b* ;c,c* !%5 )
m51

Lx

)
n51

Ly

Sp
~am,n!

Sp
~bm,n!

Sp
~cm,n!

3$g~a,a* ;b,b* ;c,c* !%.

~17!

Using these Grassmann variables, we can rewritePm,n(s)
of Eq. ~13! as

Pm,n~s!5 Sp
~am,n!

Sp
~bm,n!

Sp
~cm,n!

3$Am,nAm11,n* Bm,nBm,n11* Cm,n11Cm11,n* %,

~18!

where the Grassmann factors,A,A* ,B,B* ,C, and C* are
defined as

Am,n511am,nsm,n , Am,n* 511r 1am21,n* sm,n , ~19!

Bm,n511bm,nsm,n , Bm,n* 511r 2bm,n21* sm,n , ~20!

and

Cm,n511cm,n21sm,n , Cm,n* 511r m21,n* sm,n . ~21!

Here a Boltzmann weight in Eq.~12! is decoupled to the
product of two factors of separated spins. Then by substi
ing Eq. ~18! into Eq. ~12! and by using the fact tha
Cm,n11Cm11,n* for givenm andn is commutable with Grass
mann variables inside the Grassmann integral, we can
press the partition function as

Q5 Sp
~a,b,c!

H )
m51

Lx

)
n51

Ly 1

2 (
sm,n

Am,nCm,n11

3Cm11,n* Am11,n* Bm,nBm,n11* J . ~22!

To group the factors containing the same spin varia
together, we proceed by applying the principle of mirror o
dering. To simplify the notation, we define

Fm,n5Am,nCm,n11 and Fm11,n* 5Cm11,n* Am11,n* .
~23!

By using the fact that the combinationFm,nFm11,n* taken as
a whole is a commutable object inside the Grassmann i
gral, we can rewrite the partition function as

Q5 Sp
~a,b,c!

H 22NT(
$s%

S )
m51

Lx

)
n51

Ly

Fm,nFm11,n* D
3S )

m51

Lx

)
n51

Ly

Bm,nBm,n11* D J . ~24!

To factorize out the boundary terms, we can reexpress
~24! as
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Q5 Sp
~a,b,c!

H 22NT(
$s%

S )
m51

Lx21

)
n51

Ly

Fm,nFm11,n* D
3CB•S )

m51

Lx

)
n51

Ly21

Bm,nBm,n11* D J , ~25!

with CB , the boundary terms,

CB5S )
n51

Ly

FLx ,n
W

n D S )
n51

Ly

FLx11,n*Q
n D S )

m51

Lx

Bm,Ly
Q

m D . ~26!

Here the two products inn are ordered in opposite directio
as indicated by the arrows, and similarly the order of
product in m is also indicated by an arrow. Note that
obtaining Eq.~26!, first we use the fact that the combinatio
FLx ,nFLx11,n* taken as a whole is a commutable object. W

have the order inn shown by the arrows, and then also usi
the property of commutability we arrange the product
Bm,Ly

Bm,Ly11* in m to have the order shown by an arrow, a

finally we use the boundary conditionsm,Ly1150 to set

Bm,Ly11* 51. Subject to the boundary conditionsLx11,n

5ks1,n with k51 or 21, we have to impose the identifica
tions

a0,n* 52kaL,n* and c0,n* 52kcL,n* , ~27!

as the boundary conditions of the Grassmann variable
that we can rewrite the boundary terms as

CB5S )
n51

Ly

F1,n*Q
n D S )

n51

Ly

FLx ,n
W

n D S )
m51

Lx

Bm,Ly
Q

m D . ~28!
n

e

f

so

which have the mirror-ordered form for the terms in the fi
two brackets. To further simplify the notation, we define

Qm
W

n

5 )
n51

Ly

Fm,n
W

n

and Qm*Q
n

5 )
n52

Ly

Fm,n*Q
n

. ~29!

Then substitutingCB of Eq. ~28! into Eq.~25! and using the

fact that Qm
W

n

Qm11*Q
n

as a whole is a commutable obje

to insert it betweenQ1*
Q

n

and QLs
W

n

for m51 to Lx21
properly, we can rewrite the partition function as

Q5 Sp
~a,b,c!

H 22NT(
$s%

S )
m51

Lx

Qm*Q
n

Qm
W

n D S )
m51

Lx

Bm,Ly
Q

m D
3S )

m51

Lx

)
n51

Ly21

Bm,nBm,n11* D J , ~30!

To have a complete mirror-ordered form, we have to re
range the terms in the last two brackets. To achieve this,

we use Eqs.~23! and ~29! to expressQm
W

n

as

~31!

with Cm,Ly1151. Then by using the fact thatBm,nBm,n11* as
a whole for givenm andn is a commutable object inside th
Grassmann integral, we can have the insertion

Bm,nBm,n11* betweenAm,n and Cm,n11 of Qm
W

n

to obtain the
expression
~32!

By using the boundary conditionsm,150 to setAm,15Bm,151, we can rearrange the above equation to yield

~33!
Now it is straightforward to show that the partition functio
given in the above is equivalent to

Q5 Sp
~a,b,c!

H )
m51

Lx

)
n52

Ly 1

2 (
sm,n

Cm,n* Am,n* Bm,n* Cm,nAm,nBm,nJ .

~34!

First we consider the term ofm5Lx in Eq. ~33! denoted by
T,
~35!

By substituting Eq.~29! into Eq. ~35!, we have
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~36!

which is equivalent to the form

T5 )
n52

Ly

(
sLx ,n

~CLx ,n* ALx ,n* BLx ,n* CLx ,nALx ,nBLx ,n!, ~37!

inside the Grassmann integration due to the fact t
after summing over spin, the facto
(sLx ,n

(CLx ,n* ALx ,n* BLx ,n* CLx ,nALx ,nBLx ,n), for a given n is

an even polynomial in Grassmann variables and becom
commutable object. Note that in obtaining Eq.~37!, we use
the boundary conditionsm,150 to setCLx,1* ALx,1* 51. Then

by continuing such construction fromm5Lx down to m
51, we can obtain the expression of Eq.~34!.

For the partition function given by Eq.~34!, the factors
containing the same spin are grouped together and we
perform the sum over spins. Note that for two Grassma
variablesg1 and g2, we can use the identitiess251 and
eg1g2511g1g2, to obtain the formula

~11g1s!~11g2s!5eg1g2@11~g11g2!s#, ~38!

and after summing over spin we have

(
s561

~11g1s!~11g2s!52eg1g2. ~39!

By using this formula to perform the sum over spins, w
obtain the result

1

2 (
sm,n

Cm,n* Am,n* Bm,n* Cm,nAm,nBm,n5exp~G̃m,n!, ~40!

with

G̃m,n5r 1r 3cm21,n* am21,n* 1~r 3cm21,n* 1r 1am21,n* !r 2bm,n21*

1~r 3cm21,n* 1r 1am21,n* 1r 2bm,n21* !cm,n21

1~r 3cm21,n* 1r 1am21,n* 1r 2bm,n21* 1cm,n21!am,n

1~r 3cm21,n* 1r 1am21,n* 1r 2bm,n21* 1cm,n21

1am,n!bm,n . ~41!

Then we obtain a purely fermionic expression ofQ,

Q5E )
m51

Lx

)
n52

Ly

dam,n* dam,ndbm,n* dbm,ndcm,n* dcm,n

3expS (
m51

Lx

(
n52

Ly

Gm,nD , ~42!

where

Gm,n5am,nam,n* 1bm,nbm,n* 1cm,ncm,n* 1G̃m,n . ~43!
t

a

an
n

Here the boundary condition isa0,n* 52aL,n* and c0,n* 5

2cL,n* for the periodic case, anda0,n* 5aL,n* andc0,n* 5cL,n* for
the antiperiodic case.

IV. FREE ENERGY

In this section, starting with the fermionic expression
the generalized reduced partition function obtained in the
section, we use the technique of Fourier transform to co
plete the integration so that we can have the analytic solu
of the reduced free energy.

The fermionic expression of the generalized reduced p
tition function Q given by Eq.~42! is a Gaussian integral o
the Grassmann variables that mix together with the variab
at different sites. To have a diagonal form, we make a F
rier transformation to obtain its momentum representati
The Fourier transformation is defined as

Xm,n5
1

ALxLy*
(
p̄,q̄

Xp̄,q̃e2t~2p/Lx!mp̄e2 i ~2p/Ly* !nq̄, ~44!

and

Xm,n* 5
1

ALxLy*
(
p̄,q̄

Xp̄,q̄
* ei ~2p/Lx!mp̄et~2p/Ly* !nq̄, ~45!

where the variableXm,n(Xm,n* ) denotes one of the variable
$am,n ,bm,n ,cm,n%($am,n* ,bm,n* ,cm,n* %), Ly* 5Ly21, and p̄
5p1 1

2 and q̄5q1 1
2 for the periodic case andp̄5p and q̄

5q for the antiperiodic case with the integerp ranging from
1 to Lx andq from 2 to Ly21. Note that owing to the free
boundary condition for they direction, which we used in
obtaining Eq.~42! by settingsm,15sm,Ly1150, the Fourier
transforms defined by Eqs.~44! and ~45! are exact only in
the limit of Ly→`. In this limit takingq̄ to be eitherq1 1

2 or
q leads to the same result.

After performing the Fourier transformation, the partitio
function becomes

Q5)
p̄,q̄

Qp̄,q̄ , ~46!

whereQp̄,q̄ is given by

Qp̄,q̄5E dVp̄,q̄ exp~Hp̄,q̄!, ~47!

with the measuredVp̄,q̄ given by

dVp̄,q̄5dap̄,q̄
* dap̄,q̄dbp̄,q̄

* dbp̄,q̄dcp̄,q̄
* dcp̄,q̄ , ~48!

and the functionHp̄,q̄ , given in Table I. BecauseHp̄,q̄ con-
tains not only the variablesXp̄,q̄ andXp̄,q̄

* , but also the vari-

ablesXLx2 p̄,L
y* 2q̄ andXLx2 p̄,L

y* 2q̄
* , instead of calculatingQ

it is easier to calculateQ2 given by

Q25)
p̄,q̄

Qp̄,q̄
2 , ~49!

with
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Qp̄,q̄
2 5E dVp̄,q̄dVLx2 p̄,L

y* 2q̄ exp~Hp̄,q̄1HLx2 p̄,L
y* 2q̄

* !.

~50!

HereHLx2 p̄,L
y* 2q̄

* can be obtained fromHp̄,q̄ by replacingp̄

by Lx2 p̄ and q̄ by Ly* 2q̄ for the Grassmann variables an
replacing the coefficient in front of the Grassmann variab
by its complex conjugate. The integration in Eq.~50! is very
complicated, but the result turns out to be very simple an
yields

Qp̄,q̄5FA02A1 cosS 2p p̄

Lx
D2A2 cosS 2pq̄

Ly*
D

2A3 cosS 2p p̄

Lx
2

2pq̄

Ly*
D G1/2

, ~51!

with

A0511r 1
21r 2

21r 3
21r 1

2r 2
21r 2

2r 3
21r 1

2r 3
21r 1

2r 2
2r 3

218r 1r 2r 3 ,
~52!

A152r 1~12r 2
22r 3

21r 2
2r 3

2!, ~53!

A252r 2~12r 1
22r 3

21r 1
2r 3

2!, ~54!

and

A352r 3~12r 1
22r 2

21r 1
2r 2

2!. ~55!

Then the dimensionless free energy density on the i
nitely long cylinder, defined as

f 52 lim
Ly* →`

1

N
ln Q, ~56!

becomes

TABLE I. The terms contained inHp̄,q̄ of Eq ~47! with p̂
52p p̄/Lx andq̂52pq̄/Ly* . Each row with the coefficient in fron
of the variable represents a term appearing inHp̄,q̄ .

Variable Coefficient

cp̄,q̄
* aLx2 p̄,L

y* 2q̄
* r 1r 3

cp̄,q̄bLx2 p̄,L
y* 2q̄

* r 2r 3ei (q̂2 p̂)

ap̄,q̄
* bLx2 p̄,L

y* 2q̄
* r 1r 2ei (q̂2 p̂)

cp̄,q̄aLx2 p̄,L
y* 2q̄ eiq̂

cp̄,q̄bLx2 p̄,L
y* 2q̄ eiq̂

ap̄,q̄bLx2 p̄,L
y* 2q̄ 1

cp̄,q̄cp̄,q̄
* 12r 3ei (q̂2 p̂)

ap̄,q̄ap̄,q̄
* 12r 1e2 i p̂

bp̄,q̄bp̄,q̄
* 12r 2e2 i q̂

cp̄,q̄
* ap̄,q̄ r 3e2 i p̂

cp̄,q̄
* bp̄,q̄ r 3e2 i p̂

ap̄,q̄
* cp̄,q̄ r 1ei (q̂2 p̂)

ap̄,q̄
* bp̄,q̄ r 1e2 i p̂

bp̄,q̄
* cp̄,q̄ r 2

bp̄,q̄
* ap̄,q̄ r 2e2 i q̂
s

it

-

f 52C12
C2

Lx
(

p̄
E

0

2p df

2p
lnFA02A1 cosS 2p p̄

Lx
D2A2 cosf

2A3 cosS 2p p̄

Lx
2f D G , ~57!

with C15 ln RT and C25 1
2 for a triangular lattice, andC1

5 ln RH andC25 1
4 for a hexagonal lattice. Here the param

etersA0 , A1 , A2 , andA3 , are given in terms ofr 1 , r 2 , and
r 3 by Eqs. ~52!–~55! and vary with the lattices. We hav
r 15t1 , r 25t2 , and r 350 for a rectangular lattice;r 15t1 ,
r 25t2 , and r 35t3 for a triangular lattice. For a hexagona
lattice, we have

A05a0
21a1

21a2
21a3

2, ~58!

A152~a0a12a2a3!, ~59!

A252~a0a22a1a3!, ~60!

and

A352~a0a32a1a2!, ~61!

with a0 , a1 , a2 , anda3 given by Eq.~11!. Note that the
relations given by the above equations for a hexagonal lat
can be verified to be the same as Eqs.~52!–~55! by substi-
tuting the relations of Eq.~11! into these equations. For th
limit of Lx→`, Eq. ~57! becomes

f 52C12C2E
0

2p df1

2p E
0

2p df2

2p

3 ln@A02A1 cosf12A2 cosf22A3 cos~f12f2!#,

~62!

and the critical point is determined by the singular point
the free energy,A02A12A22A350, which comes from the
zero mode,p̄50 andq̄50, in Eq. ~51!.10

The expression of Eq.~57! for the free energy density ca
be further simplified by completing the integration. To obta
this, we reexpress Eq.~57! as

f 52C12
C2

Lx
(

p̄
I ~ p̄!, ~63!

where the integrationI ( p̄) is

I ~ p̄!5E
0

2p df

2p
ln@ f 1~ p̄!2X~ p̄!cosf2Y~ p̄!sinf#,

~64!

with

f 1~ p̄!5A02A1 cos
2p p̄

Lx
, ~65!

X~ p̄!5A22A3 cos
2p p̄

Lx
, ~66!

and

Y~ p̄!5A3 sin
2p p̄

Lx
. ~67!
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By defining the angleQ as

tanQ5
Y~ p̄!

X~ p̄!
, ~68!

we can rewrite the integration as

I ~ p̄!5E
2Q

2p2Q dF

2p
ln@ f 1~ p̄!2 f 2~ p̄!cosF#, ~69!

where the functionf 2( p̄) is

f 2~ p̄!5AX2~ p̄!1Y2~ p̄!. ~70!

This integration can be completed, and the resultant free
ergy density is

f 52C12
C2

Lx
(

p̄
ln

f 1~ p̄!1Af 1
2~ p̄!2 f 2

2~ p̄!

2
, ~71!

where the limits of the sum inp̄ depend on the boundar
condition and are specified previously after Eq.~45!.

V. INTERFACIAL TENSION

The usual way of defining interfacial tension is as follow
Consider aLx3Ly Ising rectangle with periodic boundar
condition alongLy so that the geometry is a finite cylinde
Such an Ising system has either no domain walls or an e
number of such walls for the cases where the boundary c
ditions alongLx are 11 and 22, respectively. Here the
boundary condition11 ~22! refers to the situation in
which the Ising spins on the left and on the right have fix
values511 ~21!. On the other hand, for the12 boundary
condition in which the Ising spins are specified as11 on the
left and 21 on the right, the system has an odd number
domain walls. Then comparing with the boundary conditio
11 or 22 the system with the12 boundary condition has
excess free energy caused by domain walls, and for
enough temperatures it is conjectured that the excess
energy is caused exactly by one domain wall in the therm
dynamic limit.13 Thus the interfacial tension, which is th
excess free energy per site and perkBT, is

t~u,R,Lx!5Lx@ f 12~u,R,Lx!2 f 11~u,R,Lx!#, ~72!

whereu is the reduced temperatureu5(T2Tc)/Tc , R is the
aspect ratioR5Ly /Lx , f 12 is the free energy density pe
kBT with the 12 boundary condition, andf 11 is that with
the 11 boundary condition. In the limitLx , Ly→` with
fixed R, the quantityt(u,R,Lx) approaches the bulk interfa
cial tensiontb(u) which vanishes foru>0, and tb(u);
(2u)m for u,0. Herem is the critical index for the interfa-
cial tension, and its value is 1 for the two-dimensional Isi
model.

In this work we extend the above consideration to a d
ferent situation. Similar to the above case, we consider
Lx3Ly Ising rectangles that both have a periodic bound
condition alongLy . But the boundary conditions alongLx
are periodic and antiperiodic, respectively, and hence
geometric shapes are toruses. Note that for the antiperi
boundary alongLx the spins between the first and the la
rows at the same column have antiferromagnetic couplin
n-

.
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Both systems have either no domain walls or an even n
ber of such walls, and hence the physical situation h
is different from the usual case defined previously. B
comparing with the case of periodic boundary conditions
both sides, the system with a periodic boundary condit

FIG. 3. The interfacial tensiont for square lattices with isotro-
pic coupling as a function of the reduced temperatureu5(T
2Tc)/Tc calculated from Eq.~74! ~solid lines! for ~a! given values
of (R,Lx) with aspect ratioR, and~b! given values of (Lx ,Ly). The
dotted lines in~a! are from the relationt5a2bu with constanta
andb.
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on one side and an antiperiodic boundary condition on
other side may still have excess free energy caused by
additional antiferromagnetic layer. Thus, similar to Eq.~72!,
for the isotropic couplings we define the interfacial tens
as

t~u,R,Lx!5Lx@ f ap~u,R,Lx!2 f pp~u,R,Lx!#, ~73!

where f ap is the free energy density perkBT with an antipe-
riodic boundary condition alongLx and a periodic boundary
condition alongLy , and f pp is that with a periodic boundary
condition on both sides. The analytical expression of the
terfacial tension was obtained to have the form14

t~u,R,Lx!5
1

Ly
lnFa11a21a32sgn~u!a4

a12a21a31sgn~u!a4
G , ~74!

where

a15 )
p50

Lx21

)
q50

Ly21 Fl02l1S cos
2pp1p

Lx
1cos

2pq1p

Ly
D G1/2

,

~75!

a25 )
p50

Lx21

)
q50

Ly21 Fl02l1S cos
2pp1p

Lx
1cos

2pq

Ly
D G1/2

,

~76!

FIG. 4. The interfacial tensionst as a function of the reduce
temperatureu for infinitely long cylinders of a rectangular~solid
line!, triangular~dashed line!, and hexagonal~dotted line! lattices.
The couplings are isotropic, and the circumference of the cylinde
Lx5100.
e
he

-

a35 )
p50

Lx21

)
q50

Ly21 Fl02l1S cos
2pp

Lx
1cos

2pq1p

Ly
D G1/2

,

~77!

a45 )
p50

Lx21

)
q50

Ly21 Fl02l1S cos
2pp

Lx
1cos

2pq

Ly
D G1/2

,

~78!

l05(11t2)2, and l152t(12t2), with J15J25J and t
5tanh(bJ). Note that the sign factor in front of the last ter
of Eq. ~74! is equal to11 for u.0 and21 for u,0. Some
results calculated from Eq.~74! are shown in Fig. 3. We find
that the interfacial tension agrees very well with the relat
t5a1b(2u)m for u,0 andm51, as shown in Fig. 3~a!.
However, when we fix theLx size to be 60 and increase th
Ly size, the behavior oft changes dramatically and ap
proaches that in an infinitely long cylinder forLy>1500 as
shown in Fig. 3~b!. This dramatic change in the behavior
t may be caused by the suppression of the fluctuation of
antiferromagnetic layer for sufficiently largeLy . For an in-
finitely long cylinder as shown also in Fig. 3~b!, the peak of
t is located exactly at the critical point, the value oft de-
creases in a symmetrical way from the critical point, and
distribution oft becomes more sharp but with the same cr
cal indexm51 when theLx size is decreased.14 These fea-
tures may be understood in the following way. In a lo
enough temperature, the spin configuration with all the sp
up or down, which gives the lowest energy to the case o
periodic boundary condition, also gives the lowest energy
the case of an antiperiodic boundary, and hence the inte
cial tension tends to vanish. However, the free energy d
sity at the critical point for the case of an antiperiodic boun
ary condition given by Eq.~57! contains the zero mode~i.e.,
f50 andp̄5Lx), and this is responsible for the rise of th
peak. Similar to the finite case, for the infinite cylinder w
have the peak decreased when theLx size increases, and thi

is

TABLE II. The values of the parameters in the scaling functio
S(z;r 21)5aNx

(r 21)1b(r 21)z, with aNx
(r 21)5A(r 21)@1

1a1(r 21)x
21¯# andx51/Nx , for an Ising cylinder of the rectan

gular lattice with different coupling ratior 21.

r 21 uc A(r 21) a1(r 21) b(r 21)

8 7.778 755 996~9! 3.0213~1! 3.259~5! 21.510~4!

7 7.112 386 204~1! 2.7565~5! 2.747~9! 21.470~1!

6 6.423 824 381~0! 2.4823~2! 2.281~5! 21.429~8!

5 5.707 791 440~4! 2.1962~2! 1.831~3! 21.361~6!

4 4.956 310 931~2! 1.8944~9! 1.416~8! 21.278~9!

3 4.156 173 778~9! 1.5707~9! 1.043~3! 21.202~1!

2 3.282 035 818~1! 1.2124~0! 0.692~0! 21.081~3!

1 2.269 185 283~4! 0.7853~9! 0.411~3! 20.879~0!
1
2 1.641 017 906~5! 0.5087~8! 0.292~4! 20.696~6!
1
3 1.385 391 270~5! 0.3927~0! 0.257~5! 20.599~2!
1
4 1.239 077 730~2! 0.3256~0! 0.241~5! 20.533~8!
1
5 1.141 558 295~8! 0.2808~7! 0.232~5! 20.485~3!
1
6 1.070 637 394~9! 0.2484~9! 0.227~3! 20.447~7!
1
7 1.016 055 166~4! 0.2237~7! 0.223~3! 20.418~0!
1
8 0.972 344 505~3! 0.2041~7! 0.220~0! 20.393~3!
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TABLE III. The values of the parameters in the scaling fun
tion, S(z;r 21,r 31)5aNx

(r 21,r 31)1b(r 21,r 31)z, with aNx
(r 21,r 31)

5A(r 21,r 31)@11a1(r 21,r 31)x
21¯# and x51/Nx , for an Ising

cylinder of the triangular lattice with different coupling ratiosr 21

and r 31.

r 21 r 31 uc A(r 21,r 31) a1(r 21,r 31) b(r 21,r 31)

3 5 10.464 490 200~2! 0.4584~5! 20.099~5! 20.670~8!

3 4 9.421 100 552~0! 0.4801~4! 20.109~1! 20.687~6!

3 3 8.312 347 584~8! 0.4995~2! 20.111~7! 20.704~0!

3 2 7.12 386 086~0! 0.5100~7! 20.072~9! 20.710~2!

3 1 5.770 780 116~4! 0.4936~5! 0.027~1! 20.693~9!

3 1
2 5.013 521 949~8! 0.4608~1! 0.132~4! 20.664~2!

3 1
3 4.741 590 822~9! 0.44431~6! 0.174~4! 20.648~5!

3 1
4 4.600 956 724~0! 0.4326~5! 0.193~0! 20.638~0!

3 1
5 4.514 901 660~4! 0.4257~3! 0.209~3! 20.632~1!

2 5 9.105 411 127~5! 0.4396~8! 20.030~5! 20.652~2!

2 4 8.138 513 891~1! 0.4729~5! 20.056~0! 20.680~8!

2 3 7.112 386 086~0! 0.5100~7! 20.072~9! 20.710~2!

2 2 6.003 554 752~3! 0.5479~5! 20.080~3! 20.739~0!

2 1 4.766 243 976~4! 0.5719~0! 20.004~2! 20.752~7!

2 1
2 4.069 256 947~4! 0.5620~7! 0.108~5! 20.742~1!

2 1
3 3.819 300 277~9! 0.5511~6! 0.163~1! 20.732~3!

2 1
4 3.690 116 851~2! 0.5435~3! 0.191~5! 20.727~2!

2 1
5 3.611 101 260~6! 0.5381~2! 0.213~1! 20.722~3!

1 5 7.575 056 002~7! 0.3916~2! 0.083~2! 20.603~4!

1 4 6.699 628 590~4! 0.4359~0! 0.058~7! 20.644~3!

1 3 5.770 780 116~4! 0.4936~5! 0.027~1! 20.694~9!

1 2 4.766 243 976~4! 0.5719~0! 0.004~2! 20.752~8!

1 1 3.640 956 876~2! 0.6801~7! 0.001~0! 20.823~1!

1 1
2 3.001 777 392~7! 0.7437~4! 0.091~3! 20.860~1!

1 1
3 2.770 782 536~3! 0.7632~0! 0.158~8! 20.869~6!

1 1
4 2.650 888 491~0! 0.7716~3! 0.202~3! 20.874~4!

1 1
5 2.577 356 032~8! 0.7760~3! 0.235~9! 20.876~6!

1
2 5 6.703 889 888~0! 0.3476~0! 0.163~1! 20.562~3!
1
2 4 5.884 122 697~0! 0.3947~3! 0.146~2! 20.604~9!
1
2 3 5.013 521 949~8! 0.4608~1! 0.132~4! 20.664~2!
1
2 2 4.069 256 947~4! 0.5620~7! 0.108~5! 20.742~1!
1
2 1 3.001 777 392~7! 0.7437~4! 0.091~3! 20.860~1!
1
2

1
2 2.383 121 980~6! 0.9089~4! 0.144~5! 20.948~2!

1
2

1
3 2.154 752 616~2! 0.9875~7! 0.214~1! 20.985~4!

1
2

1
4 2.034 628 476~9! 1.0337~7! 0.276~3! 21.005~8!

1
2

1
5 1.960 277 937~3! 1.0642~0! 0.322~1! 21.019~1!

1
3 5 6.389 269 794~0! 0.3283~9! 0.190~0! 20.539~5!
1
3 4 5.590 457 061~5! 0.3755~3! 0.180~8! 20.587~2!
1
3 3 4.741 590 822~9! 0.4431~6! 0.176~7! 20.648~5!
1
3 2 3.819 300 277~9! 0.5511~6! 0.175~7! 20.732~6!
1
3 1 2.770 782 536~3! 0.7632~0! 0.158~8! 20.869~6!
1
3

1
2 2.154 752 616~2! 0.9875~7! 0.214~1! 20.985~5!

1
3

1
3 1.923 593 864~8! 1.1107~2! 0.291~7! 21.038~7!

1
3

1
4 1.800 587 707~0! 1.1899~3! 0.361~6! 21.071~0!

1
3

1
5 1.723 802 091~0! 1.2455~0! 0.423~3! 21.092~3!
TABLE IV. The values of the parameters in the scaling fun
tion, S(z;r 21,r 31)5aNx

(r 21,r 31)1b(r 21,r 31)z, with aNx
(r 21,r 31)

5A(r 21,r 31)@11a1(r 21,r 31)x
21¯# and x51/Nx , for an Ising

cylinder of the hexagonal lattice with different coupling ratiosr 21

and r 31.

r 21 r 31 uc A(r 21,r 31) a1(r 21,r 31) b(r 21,r 31)

3 5 3.679 615 323~3! 0.8333~6! 0.701~5! 20.779~1!

3 4 3.462 985 702~8! 0.8540~0! 0.532~1! 20.820~1!

3 3 3.159 685 820~5! 0.8797~9! 0.234~9! 20.855~7!

3 2 2.729 042 824~5! 0.9040~7! 20.189~3! 20.868~8!

3 1 2.078 086 900~5! 0.8781~0! 20.630~3! 20.806~6!

3 1
2 1.579 842 912~5! 0.7509~5! 20.466~1! 20.677~9!

3 1
3 1.355 032 037~9! 0.6450~6! 20.173~4! 20.591~9!

3 1
4 1.220 860 463~5! 0.5652~9! 0.056~1! 20.530~9!

3 1
5 1.129 383 577~4! 0.5041~4! 0.018~9! 20.485~1!

2 5 3.074 559 426~4! 1.0392~5! 0.944~3! 20.837~5!

2 4 2.939 116 469~2! 1.0513~6! 0.772~8! 20.889~4!

2 3 2.729 042 824~5! 1.0654~4! 0.496~4! 20.943~5!

2 2 2.405 456 680~5! 1.0701~0! 0.037~1! 20.980~4!

2 1 1.884 525 563~7! 0.9990~4! 20.443~7! 20.931~9!

2 1
2 1.469 558 234~8! 0.8220~1! 20.324~6! 20.785~8!

2 1
3 1.277 843 623~4! 0.6920~6! 20.058~6! 20.680~8!

2 1
4 1.161 682 666~5! 0.5989~6! 0.011~8! 20.605~5!

2 1
5 1.081 552 639~2! 0.5296~1! 0.237~6! 20.548~3!

1 5 2.228 707 560~8! 1.5703~9! 1.547~0! 20.947~7!

1 4 2.179 079 795~0! 1.5687~6! 1.400~5! 21.000~5!

1 3 2.078 086 900~4! 1.5610~7! 1.127~6! 21.075~2!

1 2 1.884 525 563~7! 1.5263~9! 0.635~6! 21.152~1!

1 1 1.518 651 422~3! 1.3603~4! 0.011~2! 21.139~5!

1 1
2 1.202 728 340~5! 1.0701~0! 0.046~1! 20.979~8!

1 1
3 1.053 228 607~8! 0.8798~0! 0.224~6! 20.854~6!

1 1
4 0.962 116 467~2! 0.7499~9! 0.366~9! 20.762~7!

1 1
5 0.899 143 260~4! 0.6560~7! 0.482~9! 20.692~4!

1
2 5 1.634 866 759~0! 2.4215~1! 2.744~9! 21.101~7!
1
2 4 1.621 073 685~0! 2.4138~6! 2.657~4! 21.136~7!
1
2 3 1.579 842 912~5! 2.3889~9! 2.406~8! 21.209~4!
1
2 2 1.469 558 234~8! 2.3066~2! 1.799~6! 21.316~5!
1
2 1 1.202 728 340~5! 1.9968~4! 0.831~8! 21.338~6!
1
2

1
2 0.942 262 781~9! 1.5264~0! 0.628~6! 21.151~4!

1
2

1
3 0.813 906 957~1! 1.2398~4! 0.722~7! 20.998~7!

1
2

1
4 0.734 779 119~9! 1.0513~6! 0.771~3! 20.888~0!

1
2

1
5 0.679 874 711~1! 0.9179~0! 0.807~0! 20.804~6!

1
3 5 1.383 523 162~2! 3.1393~1! 4.059~5! 21.212~6!
1
3 4 1.377 673 355~1! 3.1320~8! 4.010~2! 21.236~1!
1
3 3 1.355 032 037~9! 3.1032~0! 3.789~3! 21.298~5!
1
3 2 1.277 843 623~4! 2.9930~8! 3.102~8! 21.415~9!
1
3 1 1.053 228 607~8! 2.5639~1! 1.726~7! 21.459~2!
1
3

1
2 0.813 906 957~1! 1.9325~0! 1.212~4! 21.247~0!

1
3

1
3 0.692 695 635~7! 1.5160~6! 1.133~8! 21.074~1!

1
3

1
4 0.617 535 937~8! 1.3218~4! 1.100~2! 20.951~9!

1
3

1
5 0.565 397 928~1! 1.1546~9! 1.071~0! 20.862~1!
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is again due to the suppression of the fluctuation of the
tiferromagnetic layer. In the following, we analyze th
coupling-anisotropy and finite-size effects in the scal
functions of the interfacial tensions based on the analyt
expressions of free energies obtained in the last section.
cause the value oft decreases in a symmetrical way from t
critical point, we restrict our analysis to the ordered phas

FIG. 5. The scaling function of the interfacial tension is defin
as S(uNx

1/n ;r 21,r 31)5A(r 21,r 31)•@11a1(r 21,r 31)/Nx
21¯#

1b(r 21,r 31)•(uNx
1/n). ~a! The A(r 21,r 31) vs r 31 curve for a given

value ofr 21, and~b! theb(r 21,r 31) vs r 31 curve for a given value of
r 21, for triangular lattices. The data points atr 3150 correspond to
the case of the rectangular lattice.
n-

al
e-

.

For a class of Ising cylinders discussed in the previo
sections, we define the interfacial tension as

t~u,r 21,r 31;Nx!5Nx@ f a~u,r 21,r 31;Nx!

2 f p~u,r 21,r 31;Nx!#, ~79!

FIG. 6. The scaling function of the interfacial tension is defin
as S(uNc

1/n ;r 21,r 31)5A(r 21,r 31)•@11a1(r 21,r 31)/Nx
21¯#

1b(r 21,r 31)•(uNx
1/n). ~a! The A(r 21,r 31) vs r 31 curve for a given

value ofr 21, and~b! theb(r 21,r 31) vs r 31 curve for a given value of
r 21, for hexagonal lattices.
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where f a is the free energy density perkBT for the circum-
ference joined antiperiodically,f p is for the circumference
joined periodically,Nx is the number of sites along the ci
cumference, and the coupling ratiosr 21 andr 31 are defined as
r 215J2 /J1 and r 315J3 /J1 . Note that we choose the cou
pling constantJ1 as the scale to measure the temperature
to define the coupling ratios, andNx is Lx for a triangular
lattice, 2Lx for a hexagonal lattice. Then from Eq.~73! we
have

t~u,r 21,r 31;Nx!

5
1

2 (
p51

Lx

lnF f 1~p1 1
2 !1Af 1

2~p1 1
2 !2 f 2

2~p1 1
2 !

f 1~p!1Af 1
2~p!2 f 2

2~p!
G .

~80!

The numerical results of this equation for three types of
tices with isotropic couplings andLx5100 are shown in Fig.
4.

From the usual scaling ansatz, we can write the sca
form of t as

t~u,r 21,r 31;Nx!5Nx
21S~uNx

1/n ;r 21,r 31!, ~81!

where S(z;r 21,r 31) with z5uNx
1/n is the scaling function.

We then employ the form

S~z;r 21,r 31!5aNx
~r 21,r 31!1b~r 21,r 31!z, ~82!

to approximate the scaling function. There is a finite-s
correction inaNx

due to the finite sizeNx , and we define

A(r 21,r 31) as the value ofaNx
(r 21,r 31) in the limit of large

Nx ,

A~r 21,r 31![ lim
Nx@

aNx
~r 21,r 31!. ~83!

The value ofA is referred to the amplitude ofs at the critical
point. The finite-size dependence of the value ofaNx

is de-
termined by fitting to the form of

aNx
~r 21,r 31!5A~r 21,r 31!@11a1~r 21,r 31!x

21¯#,
~84!

with x51/Nx . The leading order of the finite-size effect
the order of 1Nx

2, and this reflects the fact that the finite-si
correction is very small.

For isotropic couplings, the values ofA, a1 , and b are
p/4, 0.411~3!, and 20.879~0! for a rectangular lattice
0.6801~7!, 0.001~0!, and 20.823~1! for a triangular lattice,
and 1.3603~4!, 0.011~2!, and21.139~5! for a hexagonal lat-
tice. For anisotropic couplings, the values ofA, a1 , andb are
listed in Table II for a rectangular lattice, in Table III for
triangular lattice, and in Table IV for a hexagonal lattic
The qualitative behaviors ofA andb as functions ofr 31 for a
d

t-

g

e

.

specified value ofr 21 are shown in Fig. 5 for a triangula
lattice and in Fig. 6 for a hexagonal lattice. Note that in F
5~a! the values for a triangular lattice atr 3150 and the given
r 21 correspond to the values for a rectangular lattice at
given r 21.

VI. SUMMARY

We work in the framework of Plechko’s Grassmann pa
integral factorization of the Boltzmann weights with th
principle of mirror ordering of the arising Grassmann facto
to obtain the analytic solutions for Ising cylinders of recta
gular, triangular, and hexagonal lattices. To deal with
boundary conditions imposed on the joined circumferen
of the cylinders, which are periodic or antiperiodic, we i
troduce three pairs of conjugate Grassmann variables o
lattice site. Then we use the analytic solutions to study
scaling functions of the interfacial tensions, and the res
are summarized in the following way:

~i! The peaks of the interfacial tensions are located
actly at the critical point, and then their values decrease
symmetrical way from the critical point.

~ii ! The scaling functions of the interfacial tensions a
expressed asS(z;r 21,r 31)5aNx

(r 211r 31)1b(r 21,r 31)z with

z5uNx
1/n , r 215J2 /J1 , and r 315J3 /J1 . We determine the

values of the parametersaNx
and b, for various coupling

ratios on three types of lattices. Our results indicate that
finite-size correction to the values ofaNx

is very small, and it
is extremely small on triangular lattice.

~iii ! If the finite-size correction is neglected, the interf
cial tensions can be rearranged to the form of

t~u,r 21,r 31;Nx!5b~r 21,r 31!u
1/nF11

1

Nxu
1/n

A~r 21,r 31!

b~r 21,r 31!
G .

~85!

This form gives the scaling function

F~x!511
B

x
, ~86!

with x5Nxu
1/n, used by Mon and Jasnow.3 For the isotropic

couplings, the value ofB is 20.893~5! for a rectangular lat-
tice, 20.826~4! for a triangular lattice, and21.193~8! for a
hexagonal lattice.
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