Scaling functions of interfacial tensions for a class of Ising cylinders

T. M. Liaw
Department of Physics, Chung-Yuan Christian University, Chungli 320, Taiwan
and Computing Centre and Institute of Physics, Academia Sinica, Nankang 115, Taiwan
M. C. Huang
Department of Physics, Chung-Yuan Christian University, Chungli 320, Taiwan
S. C. Lin
Department of Physics, Chung-Yuan Christian University, Chungli 320, Taiwan and Computing Centre and Institute of Physics, Academia Sinica, Nankang 115, Taiwan
M. C. Wu
Department of Physics, Chung-Yuan Christian University, Chungli 320, Taiwan
(Received 3 March 1999)

Abstract

We apply Plechko's Grassmann path-integral method to Ising cylinders of rectangular, triangular, and hexagonal lattices to obtain the analytic solutions of free energies for the periodic and antiperiodic boundary conditions in the joined circumferences of the cylinders. These analytic solutions are used to analyze the scaling functions of the interfacial tensions for isotropic and anisotropic couplings. The finite-size corrections to the scaling functions are also discussed. [S0163-1829(99)12141-6]

I. INTRODUCTION

There is extensive current interest in the properties of surfaces and interfaces near the bulk critical point in both theory and experiment. The interfacial free energy is defined as the difference of two finite-size systems with different boundary conditions. For the case of the Ising model, the difference in free energy between a system with periodic and antiperiodic boundary conditions is sometimes referred to as the Bloch wall free energy, and few results ${ }^{1,2,3}$ exist for the properties of the free energy of an infinitely extended Block wall. In this paper we analyze the properties, mainly the scaling functions, of the Bloch wall free energies of infinitely long Ising cylinders of square, triangular, and hexagonal lattices, based on the analytic solutions of the free energies.

The analytic solution of the Ising model on a square lattice was first solved by Onsager in the limit of an infinitely large lattice using the theory of Lie algebra. ${ }^{4}$ This method was simplified by Kaufman ${ }^{5}$ using the theory of spinor representation. Then Schultz, Mattis, and Lieb ${ }^{6}$ gave explicitly the fermionic treatment. The other alternative is the combinatorial method, which was first developed by Kac and Ward ${ }^{7}$ and then rigorously reformulated by Hurst and Green. ${ }^{8}$ More recently Plechko used a nonstandard and relatively simple approach to obtain analytic expressions of the partition functions for the Ising model on a torus, ${ }^{9}$ a class of triangular-type decorated lattices, ${ }^{10}$ and a triangular lattice net with holes. ${ }^{11}$ This method is based on the Grassmann path-integral factorization of the Boltzmann weights along with the principle of mirror ordering of the arising Grassmann factors. Here traditional transfer matrix or combinatorial considerations used in the previous methods are not needed. In this paper, we work in this framework to obtain analytic solutions of the partition functions for infinitely long
cylinders of square, triangular, and hexagonal lattices with periodically or antiperiodically joined circumferences. Then we use these solutions to find the interfacial tensions, and to study the scaling functions of the interfacial tensions for different coupling ratios.

This paper is organized as follows. In Sec. II, we set up a general form of the partition function of the Ising model that can be applied to square, triangular, and hexagonal lattices. In Sec. III, we first introduce three pairs of conjugate Grassmann variables for a lattice site to factorize the Boltzmann weights, and then we use the principle of mirror ordering to rearrange the Grassmann factors so we can perform the summation over Ising spins to obtain a pure fermionic expression of the partition function. In Sec. IV, using the Fourier transform technique we complete the integrations over the Grassmann variables to obtain the analytic solutions of the free energies. In Sec. V, we use the free energies obtained in the last section to study the scaling functions of the interfacial tensions for different coupling ratios. Finally, Sec. VI is reserved for the summary of the results.

II. GENERALIZED PARTITION FUNCTION

In this section, starting with a triangular lattice we set up a generalized partition function of the Ising model that can be applied to rectangular, triangular, and hexagonal lattices.

Consider a triangular lattice with site identifications shown in Fig. 1. The partition function is written as

$$
\begin{equation*}
Z=\sum_{\{\sigma\}} e^{-\beta H} \tag{1}
\end{equation*}
$$

where β is the inverse of the reduced temperature β $=1 /\left(k_{B} T\right), H$ is the Hamiltonian defined as

FIG. 1. A basic cell in the type of triangular lattices used in this work. A lattice site is given by (m, n), and the coupling constants are J_{1}, J_{2}, and J_{3}.

$$
\begin{align*}
H= & -\sum_{m, n}\left(J_{1} \sigma_{m, n} \sigma_{m+1, n}+J_{2} \sigma_{m, n} \sigma_{m, n+1}\right. \\
& \left.+J_{3} \sigma_{m+1, n} \sigma_{m, n+1}\right) \tag{2}
\end{align*}
$$

J_{i} with $i=1,2,3$ is the coupling constant, and $\sigma_{m, n}$ is the Ising spin defined on the site (m, n) and it has two possible values, +1 and -1 . Using the identity,

$$
\begin{equation*}
e^{\beta J_{i} \sigma_{j} \sigma_{k}}=\left(1-t_{i}^{2}\right)^{-1 / 2}\left(1+t_{i} \sigma_{j} \sigma_{k}\right), \tag{3}
\end{equation*}
$$

with $t_{i}=\tanh \left(\beta J_{i}\right)$, we can rewrite the partition function as

$$
\begin{align*}
Z_{T}= & R_{T}^{N_{T}} \prod_{m, n} \frac{1}{2} \sum_{\sigma_{m, n}}\left(1+r_{1}^{T} \sigma_{m, n} \sigma_{m+1, n}\right)\left(1+r_{2}^{T} \sigma_{m, n} \sigma_{m, n+1}\right) \\
& \times\left(1+r_{3}^{T} \sigma_{m+1, n} \sigma^{m, n+1}\right) \tag{4}
\end{align*}
$$

where N_{T} is the total number of lattice sites of a triangular lattice,

$$
\begin{equation*}
R_{T}=2 \prod_{i=1}^{3}\left(1-t_{i}^{2}\right)^{-1 / 2} \tag{5}
\end{equation*}
$$

and $r_{i}^{T}=t_{i}$ with $i=1,2,3$. Note that this partition function can be transformed to the one on a rectangular lattice by setting $t_{3}=0$.

For the case of a hexagonal lattice, we note that one can use the star-triangle transformation to transform a hexagonal to a triangular lattice as shown in Fig. 2. First we can express the Hamiltonian as

$$
\begin{equation*}
H=-\sum_{m, n}\left(J_{1} \sigma_{0} \sigma_{m, n}+J_{2} \sigma_{0} \sigma_{m, n+1}+J_{3} \sigma_{0} \sigma_{m+1, n}\right) \tag{6}
\end{equation*}
$$

where σ_{0} denotes the Ising spins indicated in Fig. 2. Then using the identity of Eq. (3), we can obtain the partition function as

$$
\begin{align*}
Z_{H}= & R_{H}^{N_{H}} \prod_{m, n} \frac{1}{2} \sum_{\sigma_{m, n}}\left\{\frac{1}{2} \sum_{\sigma_{0}}\left(1+t_{1} \sigma_{0} \sigma_{m, n}\right)\left(1+t_{2} \sigma_{0} \sigma_{m, n+1}\right)\right. \\
& \left.\times\left(1+t_{3} \sigma_{0} \sigma_{m+1, n}\right)\right\} \tag{7}
\end{align*}
$$

FIG. 2. (a) The basic cell in the type of hexagonal lattices used in this work. There is no position specification at the location of the Ising spin σ_{0}. (b) The equivalent structure of the hexagonal lattice.
where $N_{H}\left(=2 N_{T}\right)$ is the total number of lattice sites of a hexagonal lattice, and $R_{H}=2 R_{T}$. After performing the sum over σ_{0}, the partition function becomes

$$
\begin{align*}
Z_{H}= & R_{H}^{N_{H}} \prod_{m, n} \frac{1}{2} \sum_{\sigma_{m, n}} \\
& \times\left(\alpha_{0}+\alpha_{1} \sigma_{m, n} \sigma_{m+1, n}+\alpha_{2} \sigma_{m, n} \sigma_{m, n+1}\right. \\
& \left.+\alpha_{3} \sigma_{m+1, n} \sigma_{m, n+1}\right) \tag{8}
\end{align*}
$$

with

$$
\begin{equation*}
\alpha_{0}=1, \alpha_{1}=t_{1} t_{3}, \quad \alpha_{2}=t_{1} t_{2}, \quad \text { and } \alpha_{3}=t_{2} t_{3} \tag{9}
\end{equation*}
$$

The above partition function can be reparametrized in a form similar to Eq. (4), and the resultant form is

$$
\begin{align*}
Z_{H}= & R_{H}^{N_{H}} \prod_{m, n} \frac{1}{2} \sum_{\sigma_{m, n}}\left\{r_{0}^{H}\left(1+r_{1}^{H} \sigma_{m, n} \sigma_{m+1, n}\right)\right. \\
& \times\left(1+r_{2}^{H} \sigma_{m, n} \sigma_{m, n+1}\right) \\
& \left.\times\left(1+r_{3}^{H} \sigma_{m+1, n} \sigma_{m, n+1}\right)\right\} \tag{10}
\end{align*}
$$

where r_{i}^{H} with $i=0,1,2,3$ is determined by the relations

$$
\begin{align*}
\alpha_{0} & =r_{0}^{H}\left(1+r_{1}^{H} r_{2}^{H} r_{3}^{H}\right),
\end{align*} \quad \alpha_{1}=r_{0}^{H}\left(r_{1}^{H}+r_{2}^{H} r_{3}^{H}\right), ~ 子 r_{0}^{H}\left(r_{2}^{H}+r_{1}^{H} r_{3}^{H}\right), \quad \alpha_{3}=r_{0}^{H}\left(r_{3}^{H}+r_{1}^{H} r_{2}^{h}\right), ~ l
$$

From Eqs. (4) and (10), we can define the generalized reduced partition function as

$$
\begin{equation*}
Q=\prod_{m=1}^{L_{x}} \prod_{n=1}^{L_{y}} \frac{1}{2} \sum_{\sigma_{m, n}} P_{m, n}(\sigma) \tag{12}
\end{equation*}
$$

where $P_{m, n}(\sigma)$ take the form

$$
\begin{align*}
P_{m, n}(\sigma)= & \left(1+r_{1} \sigma_{m, n} \sigma_{m+1, n}\right)\left(1+r_{2} \sigma_{m, n} \sigma_{m, n+1}\right) \\
& \times\left(1+r_{3} \sigma_{m, n+1} \sigma_{m+1, n}\right), \tag{13}
\end{align*}
$$

and the parameters r_{i} with $i=1,2,3$ vary from one lattice to the other.

III. FERMIONIC EXPRESSION OF PARTITION FUNCTION

In this section, first we introduce a set of anticommuting Grassmann variables for each lattice site to express the generalized reduced partition function Q of Eq. (12) as a mixed representation of spin and Grassmann variables. In this mixed representation, a Boltzmann weight in Eq. (12) is decoupled to the product of two factors of separated spins. Then by using the technique of the mirror-ordered factorization, we can group the factors containing the same spin together to perform the sum over spins. After eliminating the spin variables we obtain a purely fermionic expression of Q that is a multidimensional Gaussian integral. The boundary condition we use is defined as follows: For the y direction we first set $\sigma_{m, 1}=\sigma_{m, L_{y}+1}=0$ and then take the limit of L_{y} $\rightarrow \infty$, and for the x direction we set $\sigma_{L_{x}+1, n}=k \sigma_{1, n}$ with k $=1$ for the periodic boundary condition and $k=-1$ for the antiperiodic boundary condition. Thus the solution we obtain corresponds to the case of an Ising cylinder infinitely extending in the y direction and rounding periodically or antiperiodically in the x direction.

Three pairs of conjugate Grassmann variables, $\left\{a_{m, n}, a_{m, n}^{*} ; b_{m, n}, b_{m, n}^{*} ; c_{m, n}, c_{m, n}^{*}\right\}$, are defined on a lattice site (m, n). All Grassmann variables anticommute, and their squares are zeros. The basic rules of integration for one Grassmann variable are defined as

$$
\begin{equation*}
\int d a_{m, n} \cdot 1=0 \text { and } \int d a_{m, n} \cdot a_{m, n}=1 \tag{14}
\end{equation*}
$$

This definition can be viewed as the consequence of proper normalization and transnational invariance, namely

$$
\begin{equation*}
\int d a_{m, n} \cdot \Omega\left(a_{m, n}+\eta\right)=\int d a_{m, n} \cdot \Omega\left(a_{m, n}\right) \tag{15}
\end{equation*}
$$

for an arbitrary anticommuting complex number $\eta .{ }^{12}$ Also the symbols of the differentials anticommute with each other and with the variables. For each pair of conjugate variables introduced above, say $a_{m, n}$ and $a_{m, n}^{*}$, we follow Plechko's notation to define the average of an arbitrary function $f\left(a_{m, n}, a_{m, n}^{*}\right)$ with a Gaussian weight as

$$
\begin{align*}
& \underset{\left(a_{m, n}\right)}{\operatorname{Sp}}\left\{f\left(a_{m, n}, a_{m, n}^{*}\right)\right\} \\
& \quad=\int d a_{m, n}^{*} \int d a_{m, n} e^{a_{m, n} a_{m, n}^{*}}\left(a_{m, n}, a_{m, n}^{*}\right) \tag{16}
\end{align*}
$$

Similar definitions are used for $b_{m, n}$ and $b_{m, n}^{*}$, and $c_{m, n}$ and $c_{m, n}^{*}$. We also define the total average over all these pairs as

$$
\begin{align*}
\operatorname{Sp}_{(a, b, c)}\left\{g\left(a, a^{*} ; b, b^{*} ; c, c^{*}\right)\right\}= & \prod_{m=1}^{L_{x}} \prod_{n=1}^{L_{y}} \underset{\left(a_{m, n}\right)\left(b_{m, n}\right)\left(c_{m, n}\right)}{\operatorname{Sp}} \operatorname{Sp}_{\operatorname{Sp}} \\
& \times\left\{g\left(a, a^{*} ; b, b^{*} ; c, c^{*}\right)\right\} \tag{17}
\end{align*}
$$

Using these Grassmann variables, we can rewrite $P_{m, n}(\sigma)$ of Eq. (13) as

$$
\begin{align*}
P_{m, n}(\sigma)= & \underset{\left(a_{m, n}\right)\left(b_{m, n}\right)\left(c_{m, n}\right)}{\mathrm{Sp}} \mathrm{Sp} \\
& \times\left\{A_{m, n} A_{m+1, n}^{*} B_{m, n} B_{m, n+1}^{*} C_{m, n+1} C_{m+1, n}^{*}\right\},
\end{align*}
$$

where the Grassmann factors, A, A^{*}, B, B^{*}, C, and C^{*} are defined as

$$
\begin{array}{ll}
A_{m, n}=1+a_{m, n} \sigma_{m, n}, & A_{m, n}^{*}=1+r_{1} a_{m-1, n}^{*} \sigma_{m, n} \\
B_{m, n}=1+b_{m, n} \sigma_{m, n}, & B_{m, n}^{*}=1+r_{2} b_{m, n-1}^{*} \sigma_{m, n} \tag{20}
\end{array}
$$

and

$$
\begin{equation*}
C_{m, n}=1+c_{m, n-1} \sigma_{m, n}, \quad C_{m, n}^{*}=1+r_{m-1, n}^{*} \sigma_{m, n} \tag{21}
\end{equation*}
$$

Here a Boltzmann weight in Eq. (12) is decoupled to the product of two factors of separated spins. Then by substituting Eq. (18) into Eq. (12) and by using the fact that $C_{m, n+1} C_{m+1, n}^{*}$ for given m and n is commutable with Grassmann variables inside the Grassmann integral, we can express the partition function as

$$
\begin{align*}
Q= & \underset{(a, b, c)}{\operatorname{Sp}}\left\{\prod_{m=1}^{L_{x}} \prod_{n=1}^{L_{y}} \frac{1}{2} \sum_{\sigma_{m, n}} A_{m, n} C_{m, n+1}\right. \\
& \left.\times C_{m+1, n}^{*} A_{m+1, n}^{*} B_{m, n} B_{m, n+1}^{*}\right\} \tag{22}
\end{align*}
$$

To group the factors containing the same spin variable together, we proceed by applying the principle of mirror ordering. To simplify the notation, we define

$$
\begin{equation*}
\Phi_{m, n}=A_{m, n} C_{m, n+1} \text { and } \Phi_{m+1, n}^{*}=C_{m+1, n}^{*} A_{m+1, n}^{*} \tag{23}
\end{equation*}
$$

By using the fact that the combination $\Phi_{m, n} \Phi_{m+1, n}^{*}$ taken as a whole is a commutable object inside the Grassmann integral, we can rewrite the partition function as

$$
\begin{align*}
Q= & \underset{(a, b, c)}{\operatorname{Sp}}\left\{2^{-N_{T}} \sum_{\{\sigma\}}\left(\prod_{m=1}^{L_{x}} \prod_{n=1}^{L_{y}} \Phi_{m, n} \Phi_{m+1, n}^{*}\right)\right. \\
& \left.\times\left(\prod_{m=1}^{L_{x}} \prod_{n=1}^{L_{y}} B_{m, n} B_{m, n+1}^{*}\right)\right\} . \tag{24}
\end{align*}
$$

To factorize out the boundary terms, we can reexpress Eq. (24) as

$$
\begin{align*}
Q= & \operatorname{Spp}_{(a, b, c)}\left\{2^{-N_{T}} \sum_{\{\sigma\}}\left(\prod_{m=1}^{L_{x}-1} \prod_{n=1}^{L_{y}} \Phi_{m, n} \Phi_{m+1, n}^{*}\right)\right. \\
& \left.\times \Psi_{B} \cdot\left(\prod_{m=1}^{L_{x}} \prod_{n=1}^{L_{y}-1} B_{m, n} B_{m, n+1}^{*}\right)\right\}, \tag{25}
\end{align*}
$$

with Ψ_{B}, the boundary terms,

$$
\begin{equation*}
\Psi_{B}=\left(\prod_{n=1}^{L_{y}} \stackrel{n}{\Phi_{L_{x}, n}}\right)\left(\prod_{n=1}^{L_{y}} \frac{n}{\Phi_{L_{x}+1, n}^{*}}\right)\left(\prod_{m=1}^{L_{x}} \widehat{B_{m, L_{y}}}\right) \tag{26}
\end{equation*}
$$

Here the two products in n are ordered in opposite direction as indicated by the arrows, and similarly the order of the product in m is also indicated by an arrow. Note that in obtaining Eq. (26), first we use the fact that the combination $\Phi_{L_{x}, n} \Phi_{L_{x}+1, n}^{*}$ taken as a whole is a commutable object. We have the order in n shown by the arrows, and then also using the property of commutability we arrange the product of $B_{m, L_{y}} B_{m, L_{y}+1}^{*}$ in m to have the order shown by an arrow, and finally we use the boundary condition $\sigma_{m, L_{y}+1}=0$ to set $B_{m, L_{y}+1}^{*}=1$. Subject to the boundary condition $\sigma_{L_{x}+1, n}$ $=k \sigma_{1, n}$ with $k=1$ or -1 , we have to impose the identifications

$$
\begin{equation*}
a_{0, n}^{*}=-k a_{L, n}^{*} \text { and } c_{0, n}^{*}=-k c_{L, n}^{*}, \tag{27}
\end{equation*}
$$

as the boundary conditions of the Grassmann variables so that we can rewrite the boundary terms as

$$
\begin{equation*}
\Psi_{B}=\left(\prod_{n=1}^{L_{y}} \frac{n}{\Phi_{1, n}^{*}}\right)\left(\prod_{n=1}^{L_{y}} \frac{n}{\Phi_{L_{x}, n}}\right)\left(\prod_{m=1}^{L_{x}} \stackrel{m}{\bar{B}_{m, L_{y}}}\right) . \tag{28}
\end{equation*}
$$

which have the mirror-ordered form for the terms in the first two brackets. To further simplify the notation, we define

$$
\begin{equation*}
\stackrel{n}{\Theta_{m}}=\prod_{n=1}^{L_{y}} \frac{n}{\overrightarrow{\Phi_{m, n}}} \text { and } \stackrel{n}{\Theta_{m}^{*}}=\prod_{n=2}^{L_{y}} \frac{n}{\Phi_{m, n}^{*}} . \tag{29}
\end{equation*}
$$

Then substituting Ψ_{B} of Eq. (28) into Eq. (25) and using the fact that $\stackrel{n}{\Theta_{m}} \frac{n}{\Theta_{m+1}^{*}}$ as a whole is a commutable object to insert it between $\stackrel{n}{\Theta_{1}^{*}}$ and $\stackrel{n}{\Theta_{L_{s}}}$ for $m=1$ to $L_{x}-1$ properly, we can rewrite the partition function as

$$
\begin{align*}
Q= & \underset{(a, b, c)}{\operatorname{Sp}}\left\{2^{-N_{T}} \sum_{\{\sigma\}}\left(\prod_{m=1}^{L_{x}}{\stackrel{n}{\Theta_{m}^{*}}}_{\underline{\Theta_{m}}}^{\vec{\theta}_{m}}\right)\left(\prod_{m=1}^{L_{x}} \frac{m}{B_{m, L_{y}}}\right)\right. \\
& \left.\times\left(\prod_{m=1}^{L_{x}} \prod_{n=1}^{L_{y}-1} B_{m, n} B_{m, n+1}^{*}\right)\right\}, \tag{30}
\end{align*}
$$

To have a complete mirror-ordered form, we have to rearrange the terms in the last two brackets. To achieve this, first we use Eqs. (23) and (29) to express $\vec{\Theta}_{m}$ as

$$
\begin{equation*}
\stackrel{n}{\Theta_{m}}=\left(\prod_{n=1}^{L_{y}-1} \frac{n}{A_{m, n} C_{m, n+1}}\right) A_{m, L_{y}} C_{m, L_{y}+1} \tag{31}
\end{equation*}
$$

with $C_{m, L_{y}+1}=1$. Then by using the fact that $B_{m, n} B_{m, n+1}^{*}$ as a whole for given m and n is a commutable object inside the Grassmann integral, we can have the insertion of $B_{m, n} B_{m, n+1}^{*}$ between $A_{m, n}$ and $C_{m, n+1}$ of $\overrightarrow{\Theta_{m}}$ to obtain the expression

$$
\begin{equation*}
Q=\operatorname{Sp}_{(a, b, c)}\left\{2^{-N_{T}} \sum_{\{\sigma\}} \prod_{m=1}^{L_{x}}\left[\frac{n}{\Theta_{m}^{*}}\left(\prod_{n=1}^{L_{y}-1} \frac{n}{A_{m, n} B_{m, n} B_{m, n+1}^{*} C_{m, n+1}}\right) A_{m, L_{y}}\right]\left(\prod_{m=1}^{L_{x}} \frac{m}{B_{m, L_{y}}}\right)\right\} \tag{32}
\end{equation*}
$$

By using the boundary condition $\sigma_{m, 1}=0$ to set $A_{m, 1}=B_{m, 1}=1$, we can rearrange the above equation to yield

$$
\begin{equation*}
Q=\operatorname{Sp}_{(a, b, c)}\left\{2^{-N_{T}} \sum_{\{\sigma\}} \prod_{m=1}^{L_{x}}\left[\frac{n}{\Theta_{m}^{*}}\left(\prod_{n=2}^{L_{y}-1} \frac{n}{B_{m, n}^{*} C_{m, n} A_{m, n} B_{m, n}}\right) B_{m, L_{y}}^{*} C_{m, L_{y}} A_{m, L_{y}}\right]\left(\prod_{m=1}^{L_{x}} \overrightarrow{B_{m, L_{y}}^{m}}\right)\right\} \tag{33}
\end{equation*}
$$

Now it is straightforward to show that the partition function given in the above is equivalent to

$$
\begin{equation*}
Q=\mathrm{Sp}_{(a, b, c)}\left\{\prod_{m=1}^{L_{x}} \prod_{n=2}^{L_{y}} \frac{1}{2} \sum_{\sigma_{m, n}} C_{m, n}^{*} A_{m, n}^{*} B_{m, n}^{*} C_{m, n} A_{m, n} B_{m, n}\right\} \tag{34}
\end{equation*}
$$

First we consider the term of $m=L_{x}$ in Eq. (33) denoted by T,

$$
\begin{align*}
T= & \sum_{\{\sigma\}}\left[\frac{n}{\Theta_{L_{x}}^{*}}\left(\prod_{n=2}^{L_{y}-1} \frac{n}{B_{L_{x}, n}^{*} C_{L_{x}, n} A_{L_{x}, n} B_{L_{x}, n}}\right)\right. \\
& \left.\times B_{L_{x}, L_{y}}^{*} C_{L_{x}, L_{y}} A_{L_{x}, L_{y}} B_{L_{x}, L_{y}}\right] \tag{35}
\end{align*}
$$

By substituting Eq. (29) into Eq. (35), we have

$$
\begin{align*}
T= & \sum_{\{\sigma\}}\left[\left(\prod_{n=2}^{L_{y}} \overline{C_{L_{x}, n}^{*} A_{L_{x}, n}^{*}}\right)\right. \\
& \left.\times\left(\prod_{n=2}^{L_{y}} \overline{B_{L_{x}, n}^{*} C_{L_{x}, n} A_{L_{x}, n} B_{L_{x}, n}}\right)\right] \tag{36}
\end{align*}
$$

which is equivalent to the form

$$
\begin{equation*}
T=\prod_{n=2}^{L_{y}} \sum_{\sigma_{L_{x}, n}}\left(C_{L_{x}, n}^{*} A_{L_{x}, n}^{*} B_{L_{x}, n}^{*} C_{L_{x}, n} A_{L_{x}, n} B_{L_{x}, n}\right), \tag{37}
\end{equation*}
$$

inside the Grassmann integration due to the fact that after summing over spin, the factor $\Sigma_{\sigma_{L_{x}, n}}\left(C_{L_{x}, n}^{*} A_{L_{x}, n}^{*} B_{L_{x}, n}^{*} C_{L_{x}, n} A_{L_{x}, n} B_{L_{x}, n}\right)$, for a given n is an even polynomial in Grassmann variables and becomes a commutable object. Note that in obtaining Eq. (37), we use the boundary condition $\sigma_{m, 1}=0$ to set $C_{L_{x}, 1}^{*} A_{L_{x}, 1}^{*}=1$. Then by continuing such construction from $m=L_{x}$ down to m $=1$, we can obtain the expression of Eq. (34).

For the partition function given by Eq. (34), the factors containing the same spin are grouped together and we can perform the sum over spins. Note that for two Grassmann variables g_{1} and g_{2}, we can use the identities $\sigma^{2}=1$ and $e^{g_{1} g_{2}}=1+g_{1} g_{2}$, to obtain the formula

$$
\begin{equation*}
\left(1+g_{1} \sigma\right)\left(1+g_{2} \sigma\right)=e^{g_{1} g_{2}}\left[1+\left(g_{1}+g_{2}\right) \sigma\right] \tag{38}
\end{equation*}
$$

and after summing over spin we have

$$
\begin{equation*}
\sum_{\sigma= \pm 1}\left(1+g_{1} \sigma\right)\left(1+g_{2} \sigma\right)=2 e^{g_{1} g_{2}} \tag{39}
\end{equation*}
$$

By using this formula to perform the sum over spins, we obtain the result

$$
\begin{equation*}
\frac{1}{2} \sum_{\sigma_{m, n}} C_{m, n}^{*} A_{m, n}^{*} B_{m, n}^{*} C_{m, n} A_{m, n} B_{m, n}=\exp \left(\widetilde{G}_{m, n}\right) \tag{40}
\end{equation*}
$$

with

$$
\begin{align*}
\widetilde{G}_{m, n}= & r_{1} r_{3} c_{m-1, n}^{*} a_{m-1, n}^{*}+\left(r_{3} c_{m-1, n}^{*}+r_{1} a_{m-1, n}^{*}\right) r_{2} b_{m, n-1}^{*} \\
& +\left(r_{3} c_{m-1, n}^{*}+r_{1} a_{m-1, n}^{*}+r_{2} b_{m, n-1}^{*}\right) c_{m, n-1} \\
& +\left(r_{3} c_{m-1, n}^{*}+r_{1} a_{m-1, n}^{*}+r_{2} b_{m, n-1}^{*}+c_{m, n-1}\right) a_{m, n} \\
& +\left(r_{3} c_{m-1, n}^{*}+r_{1} a_{m-1, n}^{*}+r_{2} b_{m, n-1}^{*}+c_{m, n-1}\right. \\
& \left.+a_{m, n}\right) b_{m, n} . \tag{41}
\end{align*}
$$

Then we obtain a purely fermionic expression of Q,

$$
\begin{align*}
Q= & \int \prod_{m=1}^{L_{x}} \prod_{n=2}^{L_{y}} d a_{m, n}^{*} d a_{m, n} d b_{m, n}^{*} d b_{m, n} d c_{m, n}^{*} d c_{m, n} \\
& \times \exp \left(\sum_{m=1}^{L_{x}} \sum_{n=2}^{L_{y}} G_{m, n}\right), \tag{42}
\end{align*}
$$

where

$$
\begin{equation*}
G_{m, n}=a_{m, n} a_{m, n}^{*}+b_{m, n} b_{m, n}^{*}+c_{m, n} c_{m, n}^{*}+\widetilde{G}_{m, n} . \tag{43}
\end{equation*}
$$

Here the boundary condition is $a_{0, n}^{*}=-a_{L, n}^{*}$ and $c_{0, n}^{*}=$ $-c_{L, n}^{*}$ for the periodic case, and $a_{0, n}^{*}=a_{L, n}^{*}$ and $c_{0, n}^{*}=c_{L, n}^{*}$ for the antiperiodic case.

IV. FREE ENERGY

In this section, starting with the fermionic expression of the generalized reduced partition function obtained in the last section, we use the technique of Fourier transform to complete the integration so that we can have the analytic solution of the reduced free energy.

The fermionic expression of the generalized reduced partition function Q given by Eq. (42) is a Gaussian integral of the Grassmann variables that mix together with the variables at different sites. To have a diagonal form, we make a Fourier transformation to obtain its momentum representation. The Fourier transformation is defined as

$$
\begin{equation*}
X_{m, n}=\frac{1}{\sqrt{L_{x} L_{y}^{*}}} \sum_{\bar{p}, \bar{q}} X_{\bar{p}, \tilde{q}} e^{-t\left(2 \pi / L_{x}\right) m \bar{p}} e^{-i\left(2 \pi / L_{y}^{*}\right) n \bar{q}} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{m, n}^{*}=\frac{1}{\sqrt{L_{x} L_{y}^{*}}} \sum_{\bar{p}, \bar{q}} X_{\bar{p}, \bar{q}}^{*} e^{i\left(2 \pi / L_{x}\right) m \bar{p}} e^{t\left(2 \pi / L_{y}^{*}\right) n \bar{q}} \tag{45}
\end{equation*}
$$

where the variable $X_{m, n}\left(X_{m, n}^{*}\right)$ denotes one of the variables $\left\{a_{m, n}, b_{m, n}, c_{m, n}\right\}\left(\left\{a_{m, n}^{*}, b_{m, n}^{*}, c_{m, n}^{*}\right\}\right), \quad L_{y}^{*}=L_{y}-1, \quad$ and \bar{p} $=p+\frac{1}{2}$ and $\bar{q}=q+\frac{1}{2}$ for the periodic case and $\bar{p}=p$ and \bar{q} $=q$ for the antiperiodic case with the integer p ranging from 1 to L_{x} and q from 2 to $L_{y}-1$. Note that owing to the free boundary condition for the y direction, which we used in obtaining Eq. (42) by setting $\sigma_{m, 1}=\sigma_{m, L_{y}+1}=0$, the Fourier transforms defined by Eqs. (44) and (45) are exact only in the limit of $L_{y} \rightarrow \infty$. In this limit taking \bar{q} to be either $q+\frac{1}{2}$ or q leads to the same result.

After performing the Fourier transformation, the partition function becomes

$$
\begin{equation*}
Q=\prod_{\bar{p}, \bar{q}} Q_{\bar{p}, \bar{q}} \tag{46}
\end{equation*}
$$

where $Q_{\bar{p}, \bar{q}}$ is given by

$$
\begin{equation*}
Q_{\bar{p}, \bar{q}}=\int d V_{\bar{p}, \bar{q}} \exp \left(H_{\bar{p}, \bar{q}}\right), \tag{47}
\end{equation*}
$$

with the measure $d V_{\bar{p}, \bar{q}}$ given by

$$
\begin{equation*}
d V_{\bar{p}, \bar{q}}=d a_{\bar{p}, \bar{q}}^{*} d a_{\bar{p}, \bar{q}} d b_{\bar{p}, \bar{q}}^{*} d b_{\bar{p}, \bar{q}} d c_{\bar{p}, \bar{q}}^{*} d c_{\bar{p}, \bar{q}}, \tag{48}
\end{equation*}
$$

and the function $H_{\bar{p}, \bar{q}}$, given in Table I. Because $H_{\bar{p}, \bar{q}}$ contains not only the variables $X_{\bar{p}, \bar{q}}$ and $X_{\bar{p}, \bar{q}}^{*}$, but also the variables $X_{L_{x}-\bar{p}, L_{y}^{*}-\bar{q}}$ and $X_{L_{x}-\bar{p}, L_{y}^{*}-\bar{q}}^{*}$, instead of calculating Q it is easier to calculate Q^{2} given by

$$
\begin{equation*}
Q^{2}=\prod_{\bar{p}, \bar{q}} Q_{\bar{p}, \bar{q}}^{2}, \tag{49}
\end{equation*}
$$

with

TABLE I. The terms contained in $H_{\bar{p}, \bar{q}}$ of Eq (47) with \hat{p} $=2 \pi \bar{p} / L_{x}$ and $\hat{q}=2 \pi \bar{q} / L_{y}^{*}$. Each row with the coefficient in front of the variable represents a term appearing in $H_{\bar{p}, \bar{q}}$.

Variable	Coefficient
$c_{\bar{p}, \bar{q}}^{*} a_{L_{r}-\bar{p}, L^{*}-\bar{q}}^{*}$	$r_{1} r_{3}$
$c_{\bar{p}, \bar{q}} b_{L_{x}}^{*} \bar{p}_{x}, L_{*}^{*}-\bar{q}$	$r_{2} r_{3} e^{i(\hat{q}-\hat{p})}$
$a_{\bar{p}, \bar{q}}^{*} b_{L_{x}-\bar{p}, L_{*}^{*}-\bar{q}}^{*}$	$r_{1} r_{2} e^{i(\hat{q}-\hat{p})}$
$c_{\bar{p}, \bar{q}} a_{L_{x}-\bar{p}, L_{y}^{*}-\bar{q}}$	$e^{i \hat{q}}$
$c_{\bar{p}, \bar{q}} b_{L_{x}-\bar{p}, L_{y}^{*}-\bar{q}}$	$e^{i \hat{q}}$
$a_{\bar{p}, \bar{q}} b_{L_{x}-\bar{p}, L_{y}^{*}-\bar{q}}$	1
$c_{\bar{p}, \bar{q}} c_{\bar{p}, \bar{q}}^{*}$	$1-r_{3} e^{i(\hat{q}-\hat{p})}$
$a_{\bar{p}, \bar{q}} a_{\bar{p}, \bar{q}}^{*}$	$1-r_{1} e^{-i \hat{p}}$
$b_{\bar{p}, \bar{q}} b_{\bar{p}, \bar{q}}^{*}$	$1-r_{2} e^{-i \hat{q}}$
$c^{*}, \bar{q}, \bar{q} a_{\bar{p}, \bar{q}}$	$r_{3} e^{-i \hat{p}}$
	$r_{3} e^{-i \hat{p}}$
$a_{\bar{p}, \bar{q}}^{*} c_{\bar{p}, \bar{q}}$	$r_{1} e^{i(\hat{q}-\hat{p})}$
$a_{\bar{p}, \bar{q}}^{*} b_{\bar{p}, \bar{q}}$	$r_{1} e^{-i \hat{p}}$
$b_{\bar{p}, \bar{q}}^{*} c_{\bar{p}, \bar{q}}$	r_{2}
$b_{\bar{p}, \bar{q}}^{*} a_{\bar{p}, \bar{q}}$	$r_{2} e^{-i \hat{q}}$

$$
\begin{equation*}
Q_{\bar{p}, \bar{q}}^{2}=\int d V_{\bar{p}, \bar{q}} d V_{L_{x}-\bar{p}, L_{y}^{*}-\bar{q}} \exp \left(H_{\bar{p}, \bar{q}}+H_{L_{x}-\bar{p}, L_{y}^{*}-\bar{q}}^{*}\right) . \tag{50}
\end{equation*}
$$

Here $H_{L_{x}-\bar{p}, L_{y}^{*}-\bar{q}}^{*}$ can be obtained from $H_{\bar{p}, \bar{q}}$ by replacing \bar{p} by $L_{x}-\bar{p}$ and \bar{q} by $L_{y}^{*}-\bar{q}$ for the Grassmann variables and replacing the coefficient in front of the Grassmann variables by its complex conjugate. The integration in Eq. (50) is very complicated, but the result turns out to be very simple and it yields

$$
\begin{align*}
Q_{\bar{p}, \bar{q}}= & {\left[A_{0}-A_{1} \cos \left(\frac{2 \pi \bar{p}}{L_{x}}\right)-A_{2} \cos \left(\frac{2 \pi \bar{q}}{L_{y}^{*}}\right)\right.} \\
& \left.-A_{3} \cos \left(\frac{2 \pi \bar{p}}{L_{x}}-\frac{2 \pi \bar{q}}{L_{y}^{*}}\right)\right]^{1 / 2}, \tag{51}
\end{align*}
$$

with

$$
\begin{equation*}
A_{0}=1+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{1}^{2} r_{2}^{2}+r_{2}^{2} r_{3}^{2}+r_{1}^{2} r_{3}^{2}+r_{1}^{2} r_{2}^{2} r_{3}^{2}+8 r_{1} r_{2} r_{3}, \tag{52}
\end{equation*}
$$

$$
\begin{align*}
& A_{1}=2 r_{1}\left(1-r_{2}^{2}-r_{3}^{2}+r_{2}^{2} r_{3}^{2}\right), \tag{53}\\
& A_{2}=2 r_{2}\left(1-r_{1}^{2}-r_{3}^{2}+r_{1}^{2} r_{3}^{2}\right), \tag{54}
\end{align*}
$$

and

$$
\begin{equation*}
A_{3}=2 r_{3}\left(1-r_{1}^{2}-r_{2}^{2}+r_{1}^{2} r_{2}^{2}\right) \tag{55}
\end{equation*}
$$

Then the dimensionless free energy density on the infinitely long cylinder, defined as

$$
\begin{equation*}
f=-\lim _{L_{y}^{*} \rightarrow \infty} \frac{1}{N} \ln Q \tag{56}
\end{equation*}
$$

becomes

$$
\begin{align*}
f= & -C_{1}-\frac{C_{2}}{L_{x}} \sum_{\bar{p}} \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \ln \left[A_{0}-A_{1} \cos \left(\frac{2 \pi \bar{p}}{L_{x}}\right)-A_{2} \cos \phi\right. \\
& \left.-A_{3} \cos \left(\frac{2 \pi \bar{p}}{L_{x}}-\phi\right)\right] \tag{57}
\end{align*}
$$

with $C_{1}=\ln R_{T}$ and $C_{2}=\frac{1}{2}$ for a triangular lattice, and C_{1} $=\ln R_{H}$ and $C_{2}=\frac{1}{4}$ for a hexagonal lattice. Here the parameters A_{0}, A_{1}, A_{2}, and A_{3}, are given in terms of r_{1}, r_{2}, and r_{3} by Eqs. (52)-(55) and vary with the lattices. We have $r_{1}=t_{1}, r_{2}=t_{2}$, and $r_{3}=0$ for a rectangular lattice; $r_{1}=t_{1}$, $r_{2}=t_{2}$, and $r_{3}=t_{3}$ for a triangular lattice. For a hexagonal lattice, we have

$$
\begin{align*}
& A_{0}=\alpha_{0}^{2}+\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}, \tag{58}\\
& A_{1}=2\left(\alpha_{0} \alpha_{1}-\alpha_{2} \alpha_{3}\right), \tag{59}\\
& A_{2}=2\left(\alpha_{0} \alpha_{2}-\alpha_{1} \alpha_{3}\right), \tag{60}
\end{align*}
$$

and

$$
\begin{equation*}
A_{3}=2\left(\alpha_{0} \alpha_{3}-\alpha_{1} \alpha_{2}\right) \tag{61}
\end{equation*}
$$

with $\alpha_{0}, \alpha_{1}, \alpha_{2}$, and α_{3} given by Eq. (11). Note that the relations given by the above equations for a hexagonal lattice can be verified to be the same as Eqs. (52)-(55) by substituting the relations of Eq. (11) into these equations. For the limit of $L_{x} \rightarrow \infty$, Eq. (57) becomes

$$
\begin{align*}
f= & -C_{1}-C_{2} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi_{2}}{2 \pi} \\
& \times \ln \left[A_{0}-A_{1} \cos \phi_{1}-A_{2} \cos \phi_{2}-A_{3} \cos \left(\phi_{1}-\phi_{2}\right)\right] \tag{62}
\end{align*}
$$

and the critical point is determined by the singular point of the free energy, $A_{0}-A_{1}-A_{2}-A_{3}=0$, which comes from the zero mode, $\bar{p}=0$ and $\bar{q}=0$, in Eq. (51). ${ }^{10}$

The expression of Eq. (57) for the free energy density can be further simplified by completing the integration. To obtain this, we reexpress Eq. (57) as

$$
\begin{equation*}
f=-C_{1}-\frac{C_{2}}{L_{x}} \sum_{\bar{p}} I(\bar{p}), \tag{63}
\end{equation*}
$$

where the integration $I(\bar{p})$ is

$$
\begin{equation*}
I(\bar{p})=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \ln \left[f_{1}(\bar{p})-X(\bar{p}) \cos \phi-Y(\bar{p}) \sin \phi\right], \tag{64}
\end{equation*}
$$

with

$$
\begin{align*}
& f_{1}(\bar{p})=A_{0}-A_{1} \cos \frac{2 \pi \bar{p}}{L_{x}} \tag{65}\\
& X(\bar{p})=A_{2}-A_{3} \cos \frac{2 \pi \bar{p}}{L_{x}} \tag{66}
\end{align*}
$$

and

$$
\begin{equation*}
Y(\bar{p})=A_{3} \sin \frac{2 \pi \bar{p}}{L_{x}} \tag{67}
\end{equation*}
$$

By defining the angle Θ as

$$
\begin{equation*}
\tan \Theta=\frac{Y(\bar{p})}{X(\bar{p})} \tag{68}
\end{equation*}
$$

we can rewrite the integration as

$$
\begin{equation*}
I(\bar{p})=\int_{-\Theta}^{2 \pi-\Theta} \frac{d \Phi}{2 \pi} \ln \left[f_{1}(\bar{p})-f_{2}(\bar{p}) \cos \Phi\right], \tag{69}
\end{equation*}
$$

where the function $f_{2}(\bar{p})$ is

$$
\begin{equation*}
f_{2}(\bar{p})=\sqrt{X^{2}(\bar{p})+Y^{2}(\bar{p})} . \tag{70}
\end{equation*}
$$

This integration can be completed, and the resultant free energy density is

$$
\begin{equation*}
f=-C_{1}-\frac{C_{2}}{L_{x}} \sum_{\bar{p}} \ln \frac{f_{1}(\bar{p})+\sqrt{f_{1}^{2}(\bar{p})-f_{2}^{2}(\bar{p})}}{2} \tag{71}
\end{equation*}
$$

where the limits of the sum in \bar{p} depend on the boundary condition and are specified previously after Eq. (45).

V. INTERFACIAL TENSION

The usual way of defining interfacial tension is as follows. Consider a $L_{x} \times L_{y}$ Ising rectangle with periodic boundary condition along L_{y} so that the geometry is a finite cylinder. Such an Ising system has either no domain walls or an even number of such walls for the cases where the boundary conditions along L_{x} are ++ and -- , respectively. Here the boundary condition $++(--)$ refers to the situation in which the Ising spins on the left and on the right have fixed value $\sigma=+1(-1)$. On the other hand, for the +- boundary condition in which the Ising spins are specified as +1 on the left and -1 on the right, the system has an odd number of domain walls. Then comparing with the boundary conditions ++ or -- the system with the +- boundary condition has excess free energy caused by domain walls, and for low enough temperatures it is conjectured that the excess free energy is caused exactly by one domain wall in the thermodynamic limit. ${ }^{13}$ Thus the interfacial tension, which is the excess free energy per site and per $k_{B} T$, is

$$
\begin{equation*}
\tau\left(\theta, R, L_{x}\right)=L_{x}\left[f_{+-}\left(\theta, R, L_{x}\right)-f_{++}\left(\theta, R, L_{x}\right)\right] \tag{72}
\end{equation*}
$$

where θ is the reduced temperature $\theta=\left(T-T_{c}\right) / T_{c}, R$ is the aspect ratio $R=L_{y} / L_{x}, f_{+-}$is the free energy density per $k_{B} T$ with the +- boundary condition, and f_{++}is that with the ++ boundary condition. In the limit $L_{x}, L_{y} \rightarrow \infty$ with fixed R, the quantity $\tau\left(\theta, R, L_{x}\right)$ approaches the bulk interfacial tension $\tau^{b}(\theta)$ which vanishes for $\theta \geqslant 0$, and $\tau^{b}(\theta) \sim$ $(-\theta)^{\mu}$ for $\theta<0$. Here μ is the critical index for the interfacial tension, and its value is 1 for the two-dimensional Ising model.

In this work we extend the above consideration to a different situation. Similar to the above case, we consider two $L_{x} \times L_{y}$ Ising rectangles that both have a periodic boundary condition along L_{y}. But the boundary conditions along L_{x} are periodic and antiperiodic, respectively, and hence the geometric shapes are toruses. Note that for the antiperiodic boundary along L_{x} the spins between the first and the last rows at the same column have antiferromagnetic couplings.

FIG. 3. The interfacial tension τ for square lattices with isotropic coupling as a function of the reduced temperature $\theta=(T$ $-T_{c}$)/ T_{c} calculated from Eq. (74) (solid lines) for (a) given values of (R, L_{x}) with aspect ratio R, and (b) given values of (L_{x}, L_{y}). The dotted lines in (a) are from the relation $\tau=a-b \theta$ with constant a and b.

Both systems have either no domain walls or an even number of such walls, and hence the physical situation here is different from the usual case defined previously. But comparing with the case of periodic boundary conditions on both sides, the system with a periodic boundary condition

FIG. 4. The interfacial tensions τ as a function of the reduced temperature θ for infinitely long cylinders of a rectangular (solid line), triangular (dashed line), and hexagonal (dotted line) lattices. The couplings are isotropic, and the circumference of the cylinder is $L_{x}=100$.
on one side and an antiperiodic boundary condition on the other side may still have excess free energy caused by the additional antiferromagnetic layer. Thus, similar to Eq. (72), for the isotropic couplings we define the interfacial tension as

$$
\begin{equation*}
\tau\left(\theta, R, L_{x}\right)=L_{x}\left[f_{a p}\left(\theta, R, L_{x}\right)-f_{p p}\left(\theta, R, L_{x}\right)\right] \tag{73}
\end{equation*}
$$

where $f_{a p}$ is the free energy density per $k_{B} T$ with an antiperiodic boundary condition along L_{x} and a periodic boundary condition along L_{y}, and $f_{p p}$ is that with a periodic boundary condition on both sides. The analytical expression of the interfacial tension was obtained to have the form ${ }^{14}$

$$
\begin{equation*}
\tau\left(\theta, R, L_{x}\right)=\frac{1}{L_{y}} \ln \left[\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}-\operatorname{sgn}(\theta) \alpha_{4}}{\alpha_{1}-\alpha_{2}+\alpha_{3}+\operatorname{sgn}(\theta) \alpha_{4}}\right] \tag{74}
\end{equation*}
$$

where

$$
\begin{gather*}
\alpha_{1}=\prod_{p=0}^{L_{x}-1} \prod_{q=0}^{L_{y}-1}\left[\lambda_{0}-\lambda_{1}\left(\cos \frac{2 \pi p+\pi}{L_{x}}+\cos \frac{2 \pi q+\pi}{L_{y}}\right)\right]^{1 / 2}, \tag{75}\\
\alpha_{2}=\prod_{p=0}^{L_{x}-1} \prod_{q=0}^{L_{y}-1}\left[\lambda_{0}-\lambda_{1}\left(\cos \frac{2 \pi p+\pi}{L_{x}}+\cos \frac{2 \pi q}{L_{y}}\right)\right]^{1 / 2}, \tag{76}
\end{gather*}
$$

TABLE II. The values of the parameters in the scaling function, $\Sigma\left(z ; r_{21}\right)=a_{N_{x}}\left(r_{21}\right)+b\left(r_{21}\right) z, \quad$ with $\quad a_{N_{x}}\left(r_{21}\right)=A\left(r_{21}\right)[1$ $\left.+a_{1}\left(r_{21}\right) x^{2}+\cdots\right]$ and $x=1 / N_{x}$, for an Ising cylinder of the rectangular lattice with different coupling ratio r_{21}.

r_{21}	θ_{c}	$A\left(r_{21}\right)$	$a_{1}\left(r_{21}\right)$	$b\left(r_{21}\right)$
8	$7.778755996(9)$	$3.0213(1)$	$3.259(5)$	$-1.510(4)$
7	$7.112386204(1)$	$2.7565(5)$	$2.747(9)$	$-1.470(1)$
6	$6.423824381(0)$	$2.4823(2)$	$2.281(5)$	$-1.429(8)$
5	$5.707791440(4)$	$2.1962(2)$	$1.831(3)$	$-1.361(6)$
4	$4.956310931(2)$	$1.8944(9)$	$1.416(8)$	$-1.278(9)$
3	$4.156173778(9)$	$1.5707(9)$	$1.043(3)$	$-1.202(1)$
2	$3.282035818(1)$	$1.2124(0)$	$0.692(0)$	$-1.081(3)$
1	$2.269185283(4)$	$0.7853(9)$	$0.411(3)$	$-0.879(0)$
$\frac{1}{2}$	$1.641017906(5)$	$0.5087(8)$	$0.292(4)$	$-0.696(6)$
$\frac{1}{3}$	$1.385391270(5)$	$0.3927(0)$	$0.257(5)$	$-0.599(2)$
$\frac{1}{4}$	$1.239077730(2)$	$0.3256(0)$	$0.241(5)$	$-0.533(8)$
$\frac{1}{5}$	$1.141558295(8)$	$0.2808(7)$	$0.232(5)$	$-0.485(3)$
$\frac{1}{6}$	$1.070637394(9)$	$0.2484(9)$	$0.227(3)$	$-0.447(7)$
$\frac{1}{7}$	$1.016055166(4)$	$0.2237(7)$	$0.223(3)$	$-0.418(0)$
$\frac{1}{8}$	$0.972344505(3)$	$0.2041(7)$	$0.220(0)$	$-0.393(3)$

$$
\begin{equation*}
\alpha_{3}=\prod_{p=0}^{L_{x}-1} \prod_{q=0}^{L_{y}-1}\left[\lambda_{0}-\lambda_{1}\left(\cos \frac{2 \pi p}{L_{x}}+\cos \frac{2 \pi q+\pi}{L_{y}}\right)\right]^{1 / 2}, \tag{77}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{4}=\prod_{p=0}^{L_{x}-1} \prod_{q=0}^{L_{y}-1}\left[\lambda_{0}-\lambda_{1}\left(\cos \frac{2 \pi p}{L_{x}}+\cos \frac{2 \pi q}{L_{y}}\right)\right]^{1 / 2} \tag{78}
\end{equation*}
$$

$\lambda_{0}=\left(1+t^{2}\right)^{2}$, and $\lambda_{1}=2 t\left(1-t^{2}\right)$, with $J_{1}=J_{2}=J$ and t $=\tanh (\beta J)$. Note that the sign factor in front of the last term of Eq. (74) is equal to +1 for $\theta>0$ and -1 for $\theta<0$. Some results calculated from Eq. (74) are shown in Fig. 3. We find that the interfacial tension agrees very well with the relation $\tau=a+b(-\theta)^{\mu}$ for $\theta<0$ and $\mu=1$, as shown in Fig. 3(a). However, when we fix the L_{x} size to be 60 and increase the L_{y} size, the behavior of τ changes dramatically and approaches that in an infinitely long cylinder for $L_{y} \geqslant 1500$ as shown in Fig. 3(b). This dramatic change in the behavior of τ may be caused by the suppression of the fluctuation of the antiferromagnetic layer for sufficiently large L_{y}. For an infinitely long cylinder as shown also in Fig. 3(b), the peak of τ is located exactly at the critical point, the value of τ decreases in a symmetrical way from the critical point, and the distribution of τ becomes more sharp but with the same critical index $\mu=1$ when the L_{x} size is decreased. ${ }^{14}$ These features may be understood in the following way. In a low enough temperature, the spin configuration with all the spins up or down, which gives the lowest energy to the case of a periodic boundary condition, also gives the lowest energy to the case of an antiperiodic boundary, and hence the interfacial tension tends to vanish. However, the free energy density at the critical point for the case of an antiperiodic boundary condition given by Eq. (57) contains the zero mode (i.e., $\phi=0$ and $\bar{p}=L_{x}$), and this is responsible for the rise of the peak. Similar to the finite case, for the infinite cylinder we have the peak decreased when the L_{x} size increases, and this

TABLE III. The values of the parameters in the scaling function, $\Sigma\left(z ; r_{21}, r_{31}\right)=a_{N_{x}}\left(r_{21}, r_{31}\right)+b\left(r_{21}, r_{31}\right) z$, with $a_{N_{x}}\left(r_{21}, r_{31}\right)$ $=A\left(r_{21}, r_{31}\right)\left[1+a_{1}\left(r_{21}, r_{31}\right) x^{2}+\cdots\right]$ and $x=1 / N_{x}$, for an Ising cylinder of the triangular lattice with different coupling ratios r_{21} and r_{31}.

r_{21}	r_{31}	θ_{c}	$A\left(r_{21}, r_{31}\right)$	$a_{1}\left(r_{21}, r_{31}\right)$	$b\left(r_{21}, r_{31}\right)$
3	5	10.464490 200(2)	0.4584(5)	-0.099(5)	-0.670 (8)
3	4	$9.421100552(0)$	0.4801(4)	-0.109(1)	-0.687(6)
3	3	$8.312347584(8)$	0.4995(2)	-0.111(7)	-0.704(0)
3	2	$7.12386086(0)$	0.5100(7)	-0.072(9)	-0.710(2)
3	1	$5.770780116(4)$	0.4936(5)	0.027(1)	-0.693(9)
3	$\frac{1}{2}$	$5.013521949(8)$	0.4608(1)	$0.132(4)$	-0.664(2)
3	$\frac{1}{3}$	$4.741590822(9)$	$0.44431(6)$	0.174(4)	-0.648(5)
3	$\frac{1}{4}$	$4.600956724(0)$	0.4326 (5)	0.193(0)	-0.638(0)
3	$\frac{1}{5}$	4.514901 660(4)	0.4257(3)	0.209(3)	-0.632(1)
2	5	$9.105411127(5)$	0.4396(8)	-0.030(5)	-0.652(2)
2	4	8.138513891 (1)	$0.4729(5)$	-0.056(0)	-0.680(8)
2	3	$7.112386086(0)$	0.5100(7)	-0.072(9)	-0.710(2)
2	2	$6.003554752(3)$	$0.5479(5)$	-0.080(3)	-0.739(0)
2	1	$4.766243976(4)$	$0.5719(0)$	-0.004(2)	-0.752(7)
2	$\frac{1}{2}$	$4.069256947(4)$	0.5620(7)	0.108(5)	-0.742(1)
2	$\frac{1}{3}$	$3.819300277(9)$	0.5511 (6)	$0.163(1)$	-0.732(3)
2	$\frac{1}{4}$	$3.690116851(2)$	0.5435(3)	0.191 (5)	-0.727(2)
2	$\frac{1}{5}$	$3.611101260(6)$	0.5381(2)	0.213(1)	-0.722(3)
1	5	$7.575056002(7)$	0.3916(2)	0.083(2)	-0.603(4)
1	4	$6.699628590(4)$	0.4359(0)	0.058(7)	-0.644(3)
1	3	$5.770780116(4)$	0.4936(5)	0.027(1)	-0.694(9)
1	2	$4.766243976(4)$	0.5719(0)	0.004(2)	-0.752(8)
1	1	$3.640956876(2)$	0.6801(7)	0.001 (0)	-0.823(1)
1	$\frac{1}{2}$	$3.001777392(7)$	0.7437(4)	0.091(3)	-0.860(1)
1	$\frac{1}{3}$	$2.770782536(3)$	0.7632(0)	0.158(8)	-0.869(6)
1	$\frac{1}{4}$	2.650888491 (0)	0.7716 (3)	0.202(3)	-0.874(4)
1	$\frac{1}{5}$	$2.577356032(8)$	0.7760(3)	0.235(9)	-0.876(6)
$\frac{1}{2}$	5	$6.703889888(0)$	0.3476(0)	0.163(1)	-0.562(3)
$\frac{1}{2}$	4	$5.884122697(0)$	0.3947(3)	0.146(2)	-0.604(9)
$\frac{1}{2}$	3	$5.013521949(8)$	0.4608(1)	0.132(4)	-0.664(2)
$\frac{1}{2}$	2	$4.069256947(4)$	0.5620(7)	$0.108(5)$	-0.742(1)
$\frac{1}{2}$,	3.001777 392(7)	$0.7437(4)$	0.091(3)	-0.860(1)
$\frac{1}{2}$	$\frac{1}{2}$	$2.383121980(6)$	0.9089(4)	$0.144(5)$	-0.948(2)
$\frac{1}{2}$	$\frac{1}{3}$	2.154752 616(2)	0.9875 (7)	0.214(1)	-0.985(4)
$\frac{1}{2}$	$\frac{1}{4}$	$2.034628476(9)$	1.0337(7)	0.276(3)	-1.005(8)
$\frac{1}{2}$	$\frac{1}{5}$	1.960277 937(3)	1.0642(0)	0.322(1)	-1.019(1)
$\frac{1}{3}$	5	$6.389269794(0)$	0.3283(9)	0.190(0)	-0.539(5)
$\frac{1}{3}$	4	$5.590457061(5)$	0.3755(3)	0.180(8)	-0.587(2)
$\frac{1}{3}$	3	$4.741590822(9)$	$0.4431(6)$	0.176(7)	-0.648(5)
$\frac{1}{3}$	2	$3.819300277(9)$	0.5511(6)	$0.175(7)$	-0.732(6)
$\frac{1}{3}$	1	$2.770782536(3)$	$0.7632(0)$	0.158(8)	-0.869(6)
$\frac{1}{3}$	$\frac{1}{2}$	$2.154752616(2)$	$0.9875(7)$	0.214(1)	-0.985(5)
$\frac{1}{3}$	3	1.923593 864(8)	1.1107(2)	0.291 (7)	-1.038(7)
$\frac{1}{3}$	$\frac{1}{4}$	$1.800587707(0)$	1.1899(3)	0.361(6)	-1.071(0)
$\frac{1}{3}$	$\frac{1}{5}$	$1.723802091(0)$	1.2455(0)	0.423(3)	-1.092(3)

TABLE IV. The values of the parameters in the scaling function, $\Sigma\left(z ; r_{21}, r_{31}\right)=a_{N_{x}}\left(r_{21}, r_{31}\right)+b\left(r_{21}, r_{31}\right) z$, with $a_{N_{x}}\left(r_{21}, r_{31}\right)$ $=A\left(r_{21}, r_{31}\right)\left[1+a_{1}\left(r_{21}, r_{31}\right) x^{2}+\cdots\right]$ and $x=1 / N_{x}$, for an Ising cylinder of the hexagonal lattice with different coupling ratios r_{21} and r_{31}.

r_{21}	r_{31}	θ_{c}	$A\left(r_{21}, r_{31}\right)$	$a_{1}\left(r_{21}, r_{31}\right)$	$b\left(r_{21}, r_{31}\right)$
3	5	$3.679615323(3)$	$0.8333(6)$	$0.701(5)$	$-0.779(1)$
3	4	$3.462985702(8)$	$0.8540(0)$	$0.532(1)$	$-0.820(1)$
3	3	$3.159685820(5)$	$0.8797(9)$	$0.234(9)$	$-0.855(7)$
3	2	$2.729042824(5)$	$0.9040(7)$	$-0.189(3)$	$-0.868(8)$
3	1	$2.078086900(5)$	$0.8781(0)$	$-0.630(3)$	$-0.806(6)$
3	$\frac{1}{2}$	$1.579842912(5)$	$0.7509(5)$	$-0.466(1)$	$-0.677(9)$
3	$\frac{1}{3}$	$1.355032037(9)$	$0.6450(6)$	$-0.173(4)$	$-0.591(9)$
3	$\frac{1}{4}$	$1.220860463(5)$	$0.5652(9)$	$0.056(1)$	$-0.530(9)$
3	$\frac{1}{5}$	$1.129383577(4)$	$0.5041(4)$	$0.018(9)$	$-0.485(1)$
2	5	$3.074559426(4)$	$1.0392(5)$	$0.944(3)$	$-0.837(5)$
2	4	$2.939116469(2)$	$1.0513(6)$	$0.772(8)$	$-0.889(4)$
2	3	$2.729042824(5)$	$1.0654(4)$	$0.496(4)$	$-0.943(5)$
2	2	$2.405456680(5)$	$1.0701(0)$	$0.037(1)$	$-0.980(4)$
$\frac{1}{3}$	2	$1.277843623(4)$	$2.9930(8)$	$3.102(8)$	$-1.415(9)$
$\frac{1}{3}$	1	$1.053228607(8)$	$2.5639(1)$	$1.726(7)$	$-1.459(2)$
$\frac{1}{3}$	$\frac{1}{2}$	$0.813906957(1)$	$1.9325(0)$	$1.212(4)$	$-1.247(0)$
$\frac{1}{3}$	$\frac{1}{3}$	$0.692695635(7)$	$1.5160(6)$	$1.133(8)$	$-1.074(1)$
$\frac{1}{3}$	$\frac{1}{4}$	$0.617535937(8)$	$1.3218(4)$	$1.100(2)$	$-0.951(9)$
$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{2}$	$0.565397928(1)$	$1.1546(9)$	$1.071(0)$

FIG. 5. The scaling function of the interfacial tension is defined as $\quad \Sigma\left(\theta N_{x}^{1 / \nu} ; r_{21}, r_{31}\right)=A\left(r_{21}, r_{31}\right) \cdot\left[1+a_{1}\left(r_{21}, r_{31}\right) / N_{x}^{2}+\cdots\right]$ $+b\left(r_{21}, r_{31}\right) \cdot\left(\theta N_{x}^{1 / \nu}\right)$. (a) The $A\left(r_{21}, r_{31}\right)$ vs r_{31} curve for a given value of r_{21}, and (b) the $b\left(r_{21}, r_{31}\right)$ vs r_{31} curve for a given value of r_{21}, for triangular lattices. The data points at $r_{31}=0$ correspond to the case of the rectangular lattice.
is again due to the suppression of the fluctuation of the antiferromagnetic layer. In the following, we analyze the coupling-anisotropy and finite-size effects in the scaling functions of the interfacial tensions based on the analytical expressions of free energies obtained in the last section. Because the value of τ decreases in a symmetrical way from the critical point, we restrict our analysis to the ordered phase.

FIG. 6. The scaling function of the interfacial tension is defined as $\quad \Sigma\left(\theta N_{c}^{1 / \nu} ; r_{21}, r_{31}\right)=A\left(r_{21}, r_{31}\right) \cdot\left[1+a_{1}\left(r_{21}, r_{31}\right) / N_{x}^{2}+\cdots\right]$ $+b\left(r_{21}, r_{31}\right) \cdot\left(\theta N_{x}^{1 / \nu}\right)$. (a) The $A\left(r_{21}, r_{31}\right)$ vs r_{31} curve for a given value of r_{21}, and (b) the $b\left(r_{21}, r_{31}\right)$ vs r_{31} curve for a given value of r_{21}, for hexagonal lattices.

For a class of Ising cylinders discussed in the previous sections, we define the interfacial tension as

$$
\begin{align*}
\tau\left(\theta, r_{21}, r_{31} ; N_{x}\right)= & N_{x}\left[f_{a}\left(\theta, r_{21}, r_{31} ; N_{x}\right)\right. \\
& \left.-f_{p}\left(\theta, r_{21}, r_{31} ; N_{x}\right)\right] \tag{79}
\end{align*}
$$

where f_{a} is the free energy density per $k_{B} T$ for the circumference joined antiperiodically, f_{p} is for the circumference joined periodically, N_{x} is the number of sites along the circumference, and the coupling ratios r_{21} and r_{31} are defined as $r_{21}=J_{2} / J_{1}$ and $r_{31}=J_{3} / J_{1}$. Note that we choose the coupling constant J_{1} as the scale to measure the temperature and to define the coupling ratios, and N_{x} is L_{x} for a triangular lattice, $2 L_{x}$ for a hexagonal lattice. Then from Eq. (73) we have

$$
\begin{align*}
& \tau\left(\theta, r_{21}, r_{31} ; N_{x}\right) \\
& \quad=\frac{1}{2} \sum_{p=1}^{L_{x}} \ln \left[\frac{f_{1}\left(p+\frac{1}{2}\right)+\sqrt{f_{1}^{2}\left(p+\frac{1}{2}\right)-f_{2}^{2}\left(p+\frac{1}{2}\right)}}{f_{1}(p)+\sqrt{f_{1}^{2}(p)-f_{2}^{2}(p)}}\right] . \tag{80}
\end{align*}
$$

The numerical results of this equation for three types of lattices with isotropic couplings and $L_{x}=100$ are shown in Fig. 4.

From the usual scaling ansatz, we can write the scaling form of τ as

$$
\begin{equation*}
\tau\left(\theta, r_{21}, r_{31} ; N_{x}\right)=N_{x}^{-1} \Sigma\left(\theta N_{x}^{1 / \nu} ; r_{21}, r_{31}\right) \tag{81}
\end{equation*}
$$

where $\Sigma\left(z ; r_{21}, r_{31}\right)$ with $z=\theta N_{x}^{1 / \nu}$ is the scaling function. We then employ the form

$$
\begin{equation*}
\Sigma\left(z ; r_{21}, r_{31}\right)=a_{N_{x}}\left(r_{21}, r_{31}\right)+b\left(r_{21}, r_{31}\right) z \tag{82}
\end{equation*}
$$

to approximate the scaling function. There is a finite-size correction in $a_{N_{x}}$ due to the finite size N_{x}, and we define $A\left(r_{21}, r_{31}\right)$ as the value of $a_{N_{x}}\left(r_{21}, r_{31}\right)$ in the limit of large N_{x},

$$
\begin{equation*}
A\left(r_{21}, r_{31}\right) \equiv \lim _{N_{x} \gg} a_{N_{x}}\left(r_{21}, r_{31}\right) \tag{83}
\end{equation*}
$$

The value of A is referred to the amplitude of σ at the critical point. The finite-size dependence of the value of $a_{N_{x}}$ is determined by fitting to the form of

$$
\begin{equation*}
a_{N_{x}}\left(r_{21}, r_{31}\right)=A\left(r_{21}, r_{31}\right)\left[1+a_{1}\left(r_{21}, r_{31}\right) x^{2}+\cdots\right], \tag{84}
\end{equation*}
$$

with $x=1 / N_{x}$. The leading order of the finite-size effect is the order of $1 N_{x}^{2}$, and this reflects the fact that the finite-size correction is very small.

For isotropic couplings, the values of A, a_{1}, and b are $\pi / 4,0.411(3)$, and $-0.879(0)$ for a rectangular lattice, $0.6801(7), 0.001(0)$, and $-0.823(1)$ for a triangular lattice, and 1.3603(4), 0.011(2), and $-1.139(5)$ for a hexagonal lattice. For anisotropic couplings, the values of A, a_{1}, and b are listed in Table II for a rectangular lattice, in Table III for a triangular lattice, and in Table IV for a hexagonal lattice. The qualitative behaviors of A and b as functions of r_{31} for a
specified value of r_{21} are shown in Fig. 5 for a triangular lattice and in Fig. 6 for a hexagonal lattice. Note that in Fig. 5(a) the values for a triangular lattice at $r_{31}=0$ and the given r_{21} correspond to the values for a rectangular lattice at the given r_{21}.

VI. SUMMARY

We work in the framework of Plechko's Grassmann pathintegral factorization of the Boltzmann weights with the principle of mirror ordering of the arising Grassmann factors to obtain the analytic solutions for Ising cylinders of rectangular, triangular, and hexagonal lattices. To deal with the boundary conditions imposed on the joined circumferences of the cylinders, which are periodic or antiperiodic, we introduce three pairs of conjugate Grassmann variables on a lattice site. Then we use the analytic solutions to study the scaling functions of the interfacial tensions, and the results are summarized in the following way:
(i) The peaks of the interfacial tensions are located exactly at the critical point, and then their values decrease in a symmetrical way from the critical point.
(ii) The scaling functions of the interfacial tensions are expressed as $\Sigma\left(z ; r_{21}, r_{31}\right)=a_{N_{x}}\left(r_{21}+r_{31}\right)+b\left(r_{21}, r_{31}\right) z$ with $z=\theta N_{x}^{1 / \nu}, r_{21}=J_{2} / J_{1}$, and $r_{31}=J_{3} / J_{1}$. We determine the values of the parameters $a_{N_{x}}$ and b, for various coupling ratios on three types of lattices. Our results indicate that the finite-size correction to the values of $a_{N_{x}}$ is very small, and it is extremely small on triangular lattice.
(iii) If the finite-size correction is neglected, the interfacial tensions can be rearranged to the form of

$$
\begin{equation*}
\tau\left(\theta, r_{21}, r_{31} ; N_{x}\right)=b\left(r_{21}, r_{31}\right) \theta^{1 / \nu}\left[1+\frac{1}{N_{x} \theta^{1 / \nu}} \frac{A\left(r_{21}, r_{31}\right)}{b\left(r_{21}, r_{31}\right)}\right] . \tag{85}
\end{equation*}
$$

This form gives the scaling function

$$
\begin{equation*}
F(x)=1+\frac{B}{x} \tag{86}
\end{equation*}
$$

with $x=N_{x} \theta^{1 / \nu}$, used by Mon and Jasnow. ${ }^{3}$ For the isotropic couplings, the value of B is $-0.893(5)$ for a rectangular lattice, $-0.826(4)$ for a triangular lattice, and $-1.193(8)$ for a hexagonal lattice.

ACKNOWLEDGMENTS

The authors wish to thank V. N. Plechko for valuable discussions and a critical reading of the paper. This work was partially supported by the National Science Council of Republic of China (Taiwan) under Grant No. NSC 88-2112-M-033-002.
${ }^{1}$ H. Park and M. den Nijs, Phys. Rev. B 38, 565 (1988).
${ }^{2}$ V. Privman and M. E. Fisher, J. Stat. Phys. 33, 385 (1983).
${ }^{3}$ K. K. Mon and D. Jasnow, Phys. Rev. A 30, 670 (1984); 31, 4008 (1985).
${ }^{4}$ L. Onsager, Phys. Rev. 65, 117 (1944).

[^0]science, New York, 1964).
${ }^{9}$ V. N. Plechko, Theor. Math. Phys. 64, 748 (1985).
${ }^{10}$ V. N. Plechko, Physica A 152, 51 (1988).
${ }^{11}$ V. N. Plechko, Phys. Lett. A 157, 335 (1991).
${ }^{12}$ F. A. Berezin, The Method of Second Quantization (Academica,

New York, 1966).
${ }^{13}$ D. B. Abraham and N. M. Svrakic, Phys. Rev. Lett. 56, 1172 (1986).
${ }^{14}$ M. C. Wu, M. C. Huang, Y. P. Luo, and T. M. Liaw, J. Phys. A 32, 4897 (1999).

[^0]: ${ }^{5}$ B. Kaufman, Phys. Rev. 76, 1232 (1949).
 ${ }^{6}$ T. D. Shultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964).
 ${ }^{7}$ M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952).
 ${ }^{8}$ H. S. Green and C. A. Hurst, Order-Disorder Phenomena (Inter-

