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A two-wave-mixing microwave system under a delayed feedback control is proposed for chaotic commu-
nications in this study. Under the consideration of simple chaotic masking, Hilbert–Huang transform is
proved to be an efficient way to detect characteristics of information signals via the spectrum of intrinsic
mode functions. Based upon detrended fluctuation as well as multiscale entropy analyses on masking
efficiency in the present system, we may suggest that Hilbert–Huang transform would be an alternative
method to analyze complex dressed signals from nonlinear optoelectronic systems.
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1. Introduction

Secure communications using chaotic waveforms has been a
particular application of nonlinear dynamics appeared at the
beginning of 1990s [1,2]. For example, electronic circuits modeled
by nonlinear ordinary differential equations were used very often
for the generation of chaotic dynamics, however, the encryption
efficiency of these electronic setups is limited by the embedded
low-dimensional complexity. Ikeda-type delay dynamics [3,4] has
shown to be an outstanding candidate for chaos-based encryption
in modern high speed optical telecommunications [5–9]. It is
known that the unique feature of delay dynamics is to exhibit ex-
tremely complex chaotic behaviors, which can be quantified in
terms of Lyapunov spectrum of a given chaotic regime in a recon-
structed phase space of finite dimension, and finally a Lyapunov
dimension is derived. Dorizzi et al. had shown that the Lyapunov
dimension has linear dependence with the ratio T=s [10], where
s is a characteristic response time and T is the delay time. Larger
et al. experimentally demonstrated an Ikeda-type optoelectronics
intended for practical applications, where the Lyapunov dimension
can be up to 470 when T=s equals 60 [11]. Nevertheless, as it has
been shown that, for chaotic masking schemes, the hidden infor-
mation can be extracted using the methods of reconstruction of
time-delay systems from the time series [12,13].
ll rights reserved.
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Recently, it is known that fluctuations in complex systems carry
important information reflecting the mechanisms underlying con-
trol processes and interactions among different components at
multiple time scales. A major problem in the analysis of signals
from complex systems is related to nonstationarities, e.g., mean
and standard deviation vary with time. The presence of nonstation-
arities makes traditional approaches assuming stationary signals
not reliable. To resolve the difficulties related to nonstationary
behaviors, Hilbert–Huang transform (HHT), a new time–frequency
representation method of signal analysis, developed by Huang
et al. [14] is based on nonlinear chaotic theories and has been de-
signed to extract dynamic information from nonstationary signals
at different time scales. HHT comprises the empirical mode decom-
position (EMD) and Hilbert transform. The aim of EMD is to decom-
pose a signal into a set of intrinsic mode functions (IMFs), where
the characteristics of each IMF are such that they may be Hilbert
transformed. Then, through the Hilbert transform, the instanta-
neous frequency with meaningful feature of each IMF at any point
in time may be calculated. The decomposition is based on the local
time scale of the data and yields adaptive basis functions. Hence it
can be used for nonlinear and nonstationary signal analysis [15].
Based upon the advantages of HHT, it would be interesting to test
whether HHT could be used to extract information masked by cha-
otic communication systems.

To practically construct chaotic communication systems, we
propose a two-wave-mixing microwave system under a delayed
feedback control. These two laser beams will form a moving
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interference pattern and excite electron–hole pairs in semicon-
ductor microwave devices. According to linear stability analysis,
the moving interference pattern can tunably control the emitting
wavelength. When appropriate feedback parameters are consid-
ered, this nonlinear system can generate high-dimensional cha-
otic microwaves, therefore, could be applied to chaotic
masking. Besides, in this study, both detrended fluctuation anal-
ysis (DFA) [16] and multiscale entropy (MSE) [17,18] will be
used to analyze masking efficiency in our chaos-based encryp-
tion. Based upon simulation results, we might suggest that
EMD would be an efficient way for multiscale separation, and fi-
nally extract characteristics of information from the nonlinear
two-wave-mixing system.

The remainder of this paper is organized as follows. The two-
wave-mixing system as well as associated stability analysis will
be described in Section 2. Section 3 will briefly address DFA and
MSE for the test of masking efficiency in our communication sys-
tem. Sections 4 and 5 contain the central part of this study includ-
ing extraction of information via HHT and discussions,
respectively. Concluding remarks are given in Section 6.

2. Nonlinear two-wave-mixing system

Numerical/experimental studies on light-induced multiple
transient gratings in semi-insulating GaAs had been performed
[19,20]. One of interesting results is the spatial period of the light
interference pattern and the drift velocity of multiple high-field
profiles (domains) will determine the oscillating frequency of pho-
tocurrent in nanosecond duration. Therefore, tunable control of the
emitting wavelength by use of the wave-mixing technique can be
expected. In order to analytically explain this interesting finding, in
this study we consider two optical waves are incident on a biased
shallow-impurity-doped GaAs as shown in Fig. 1. Taking the light
energy just above the band gap of GaAs, 10-ns duration Nd:YAG la-
ser pulses, we can generate electron–hole pairs by optical excita-
tion. The intensity Iðx; tÞ of the mixing waves moving through the
n-GaAs is given by Iðx; tÞ ¼ I0½1þm cosðKxþXtÞ�, where X is the
frequency difference of the two optical waves, K ¼ 2p=K the inter-
ference wave number, K the grating period, m the modulation
depth of the interference grating, and I0 the average intensity.
The generation–recombination processes include complete ther-
mal ionization of donors, generation of electron–hole pairs by the
optical waves at rate g, and recombination of electron–hole pairs
with rate c. The dynamical equations include the Gauss law, the
continuity equations of electrons and holes, and the circuit
equation
Fig. 1. The proposed experimental setup consists of a pair of waveguides Wg, a
phase shifter whose fast and slow axes are at 45� to a pair of crossed polarizers P, a
detector De with a time response s � 10 ns, a delay line with retardation time
T � 1 ls, amplifiers g1 and g2, and a pair of acousto-optic scanners S to tune the
incident angle a of the laser beams.
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where n, p, N�D, L, V, and E are, respectively, the free electron density,
the free hole density, the effective donor concentration, the sample
length, the applied bias, and the electric field. Dn and Dp denote,
respectively, the diffusion coefficients of electron and hole; lp and
vðEÞ are the hole mobility and the electron drift velocity, respec-
tively. Due to the band structure of GaAs, we know that vðEÞ dis-
plays N-shaped negative differential mobility (NDM) [21].

We use a Fourier series to solve Eqs. (1)–(4) with complete basis
functions feilðKxþXtÞg, where jlj is a positive integer, chosen based on
the moving interference pattern of Iðx; tÞ. Therefore, the solutions
of Eqs. (1)–(4) be described as follows:
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where �m ¼ m=2, v0 ¼ vðE0Þ and v ðjÞ0 ¼
djvðEÞ

dEj jE¼E0
. Note that the hole

density pðx; tÞ in Eq. (7) can be expressed in terms of the electric
field Eðx; tÞ and electron density nðx; tÞ via the relation in Eq. (1).
Furthermore, Eqs. (5)–(8) converge when the modulation depth m
is much smaller than 1. Then we can generate the solutions of
Eqs. (1)–(4) in order.

The zero-order solutions (E0, n0, and p0) of Eqs. (1)–(4) are indepen-
dent of space and time, thus it is straightforward to determine E0¼V=L,

n0¼ N�Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�2D þ4gI0=c
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=2. For

simplicity, from now on we consider the case when the free electrons
are mostly from the donor impurities and the average intensity I0 is
very small so that n0�N�D. The first-order solutions (E1, n1, and p1)
can be obtained by substituting the expansions of Eqs. (5)–(8) into
Eqs. (1)–(4):
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The solutions E1 and n1 can be divided into E1;s þ E1;t and
n1;s þ n1;t , respectively. The indices s and t denote steady-state
and time-dependent solutions, respectively. The steady-state solu-
tions are

n1;s ¼ C� E1;s; ð11Þ
E1;s ¼ gI0 �W�1; ð12Þ

where C¼ e
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The E1;t and n1;t have time dependence � e�Kt , where
�K ¼ �cN�D � K2Dp þ iðKE0lp �XÞ or � e

�N�Dv ð1Þ0 � k2Dn � iðXþ Kv0Þ,
which are obtained from Eqs. (9) and (10). Hence the first-order
solution for the electric field can be expressed as

E1eiðKxþXtÞ ¼ E1;seiðKxþXtÞ þ c1e�ðcN�DþK2DpÞteiKðxþE0lptÞ

þ c2e�
e
�N
�
Dvð1Þ0 þK2Dnð ÞteiKðx�v0tÞ; ð13Þ

where c1 and c2 are constants. The first term on the right hand side
of Eq. (13) shows the space-charge field induced by the optical-
wave mixing, which has the same phase velocity as the moving
interference pattern. The second term has phase velocity lpE0, but
vanishes as t ! 1. The third term demonstrates the multiple
field-domain formation when � e

�N�Dv ð1Þ0 þ K2Dn

� �
> 0 (note that

v ð1Þ0 < 0), the domain velocity is v0, and the distance between adja-
cent domains is K ¼ K=2p. Since n0 � N�D, the space-charge field can
be neglected. Therefore, the underlying physics in Eq. (13) is that
the external laser beams will create a periodic domain train with
wave number K, but the domain train still sustains the drift velocity
v0ð� 107 cm=sÞ, which is not influenced by the phase velocity X=K
of the interference pattern. Therefore, the interference pattern will
control the wavelength K of the microwave which is equal to
1
2 cKlv�1

0 cos�1 a, where c is the speed of light and Kl is the wave-
length of the laser beams.

Fig. 1 shows the two-wave-mixing nonlinear system can be tun-
ably controlled in wavelength K. The feedback loop consists of a
pair of waveguides Wg, a phase shifter whose fast and slow axes
are at 45� to a pair of crossed polarizers P, a detector De, i.e., pla-
nar-doped barrier diode, with a time response s � 10 ns, a delay
line with retardation time T � 1 ls, and a pair of acousto-optic
scanners S to tune the incident angle a of the laser beams. The
microwave radiation power Pm from n-GaAs can be expressed as
E2

rf v2
0R�1c�2K2 [22], where Erf and R correspond to the rf field and

resistance in the semiconductor, respectively. Pm is collected by a
Wg and modulated by a phase shifter. The phase shifter induces
the nonlinear power function Pm sin2ðpD=KÞ detected by De with
a gain g1, where D is the length of the phase shifter. The purpose
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Fig. 2. (a) Original signal oðtÞ, (b) coding signal nðtÞ, and (c) e
of De is to convert the nonlinear power into an electric current
iðtÞ. The current is then retarded by a delay line and enhanced by
an amplifier with a gain g2, then it drives S, tuning the incident an-
gle of the laser beams. If the variation of a is linearly proportional
to i with a ratio a, it is easy to get the relation between KðtÞ and
iðtÞ : KðtÞ ¼ K0 þ AiðtÞ, where A � aK0 tan a0 and K0 is the initial
wavelength due to the initial incident angle a0. Therefore, the cir-
cuit equation for this nonlinear system is

sdKðtÞ
dt
þKðtÞ ¼ K0 þ Ag1g2Pmðt � TÞ sin2 pD

Kðt � TÞ

� �
: ð14Þ

For convenience of analysis, we make Eq. (14) dimensionless
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T
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where KðtÞ=K0 ! KDðtÞ, t=T ! tD, and b ¼ aK2
0g1g2 tan a0E2

rf v2
0=Rc2.

There are two important parameters in Eq. (15), D=K0 and b. The
experimental process for tuning these two parameters can be
understood as follows. Selecting an arbitrary a0 to create initial
wavelength K0, then D=K0 is determined by a0, since D is fixed.
When t is larger than T, the feedback loop begins to work. We only
need to tune the gain of amplifier to effectively change the b value
in Eq. (15). Therefore, D=K0 and b in Eq. (15) correspond to a0 and g2

in the experiment, respectively.
3. Statistical tests for masking efficiency

We first generate a periodic square-wave train as the original
signal oðtÞ shown in Fig. 2(a), where the oscillating period is equal
to 400 (dimensionless). This time series is considered to carry a
meaningful information. To dress the square wave for secure com-
munications, a coding signal nðtÞ (i.e., KDðtÞ) generated by Eq. (15),
where D=K0 ¼ 1:4, b ¼ 0:725, and T=s ¼ 100 are considered, is
then added to the square wave to become an encoded signal
[23]. The coding signal is shown in Fig. 2(b), and the encoded signal
eðtÞ is shown in Fig. 2(c). The relation between oðtÞ, nðtÞ and eðtÞ is
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ncoded signal eðtÞ, where all variables are dimensionless.
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eðtÞ ¼ oðtÞ þ nðtÞ: ð16Þ

In this study, we use different ways to test masking efficiency,
of which the characteristics of eðtÞ should not have significant dif-
ferences with respect to that of the time series nðtÞ. These condi-
tions guarantee the encoding is suitable for secure
communications. To ensure the coding is good enough, applying
DFA [16] as well as MSE [17,18] on nðtÞ and eðtÞ give similar statis-
tical characteristics (Fig. 3). For DFA, the relation between fluctua-
tion FðlÞ and sampling length l in log–log scale is shown in Fig. 3(a),
in which the slope measured at large l regime is usually unreliable
for a limited data length. Therefore, the slight deviation between
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Fig. 3. (a) DFA analysis and (b) multiscale entropy m
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Fig. 4. EMD for the coding signal nðtÞ. The time series is de
two plots around log10l ¼ 2:5 does not suggest a significant differ-
ence between these two time series. As for MSE, Fig. 3(b) shows
similar profiles of the measure HðlÞ in different scale for the coding
signal nðtÞ and encoded signal eðtÞ [24]. Thus the effectiveness of
the encoding is then examined. Detailed descriptions about DFA
and MSE are shown in Appendix.
4. Hilbert–Huang transform

The aim of the EMD is to decompose the signal into a sum of
IMFs. An IMF represents a simple oscillatory mode as a counterpart
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composed into seven IMFs (c1; . . . ; c7) and a residue r7.
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to the simple harmonic function used in Fourier analysis. The
implementation is carried by sifting data to generate IMFs. The
IMFs introduced by the EMD are a set of well-behaved intrinsic
modes, and are symmetric with respect to the local mean and have
the same numbers of zero crossings and extremes. The resultant
IMFs obtained by EMD form a complete set, in which these IMFs
are orthogonal to each other. To create IMFs, the first thing is to
identify the local extremes in the data fxðtÞg. Then, all the local
maxima are connected by a cubic spline line UðtÞ while the same
procedure is applied for the local minima to produce the lower
envelope LðtÞ. Both envelopes will cover all of the original data.
The mean of upper envelope and the lower envelope, m1ðtÞ, given
by

m1 tð Þ ¼ U tð Þ þ L tð Þ
2

ð17Þ

is a running mean. Subtracting the running mean m1ðtÞ from the
original data xðtÞ, we get the first component h1ðtÞ,

h1 tð Þ ¼ x tð Þ �m1 tð Þ: ð18Þ

The resulting component h1ðtÞ is an IMF if it satisfies the follow-
ing conditions: (i) h1ðtÞ is free of riding waves. (ii) It displays sym-
metry of the upper and the lower envelopes with respect to zero.
0 500 1000 1500 20
-0.4
-0.2
0.0
0.2
0.4

0 500 1000 1500 20
-0.4
-0.2
0.0
0.2
0.4

0 500 1000 1500 20
-0.2

0.0

0.2

0 500 1000 1500 20
-0.2

0.0

0.2

0 500 1000 1500 20
-0.2

0.0

0.2

0 500 1000 1500 20
-0.1

0.0

0.1

0 500 1000 1500 20
-0.02

0.00

0.02

0 500 1000 1500 20-0.02

0.00

0.02

0 500 1000 1500 20
1.30

1.32

1.34

c1

c2

c3

c4

c5

c6

c7

c8

r8

Tim

Fig. 5. EMD for the encoded signal eðtÞ. The time series is decomposed into eight IMFs (c1

the references to colour in this figure legend, the reader is referred to the web version o
(iii) The number of zero crossings and extremes are the same, or
only differ by 1. If h1ðtÞ is not an IMF, the sifting process has to
be repeated as many times as is required to reduce the extracted
signal to an IMF. In the subsequent sifting process steps, h1ðtÞ is
treated as the datum to repeat steps mentioned above,

h11 tð Þ ¼ h1 tð Þ �m11 tð Þ: ð19Þ

Again, if the function h11ðtÞ does not yet satisfy criteria (i)–(iii),
the sifting process continues up to k times until some acceptable
tolerance is reached:

h1k tð Þ ¼ h1 k�1ð Þ tð Þ �m1k tð Þ: ð20Þ

If the resulting time series is the first IMF, it is designated as
c1 ¼ h1kðtÞ. The first IMF is then subtracted from the original data,
and the difference r1 given by

r1 tð Þ ¼ x tð Þ � c1 tð Þ; ð21Þ

is the first residue. The residue r1ðtÞ is taken as if it were the original
data and is applied again the sifting process stated above.

Following the above procedures, one continues the process to
find more intrinsic modes ci until the last one. The final residue will
be a constant or a monotonic function that represents the general
trend of the time series [14,15]. Finally, we have
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; . . . ; c8) and a residue r8. In particular, IMF c5 is depicted in red. (For interpretation of
f this article.)
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x tð Þ ¼
Xn

i¼1

ci tð Þ þ rn tð Þ; ð22Þ

ri tð Þ ¼ ri�1 tð Þ � ci tð Þ: ð23Þ

The decompositions of nðtÞ and eðtÞ are shown in Figs. 4 and 5.
The time series of nðtÞ is decomposed into seven IMFs and a resi-
due, while eðtÞ is decomposed into eight IMFs and a residue. Com-
paring two decompositions, it is apparent that the decomposition
of eðtÞ has an extra mode in its c5 IMF. Moreover, it is reasonable
to eliminate the trend obtained in the EMD. We then normalize
the amplitude of IMFs according to the following rules:

nci ¼
ci

rn
: ð24Þ

The normalized IMFs nci for the coding signal nðtÞ and encoded
signal eðtÞ are shown in Fig. 6.

The Hilbert transform can now be applied on nci. For the kth
mode, this can be done by first calculating the conjugate pair of
nckðtÞ, i.e.,

zk tð Þ ¼ 1
p P

Z 1

�1

nck t0ð Þ
t � t0

dt0; ð25Þ

where P indicates the Cauchy principal value. With this definition,
the two functions nckðtÞ and zkðtÞ forming a complex conjugate pair
define an analytic signal, and we have

nck tð Þ þ izk tð Þ ¼ Ak tð Þei/k tð Þ ð26Þ
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Fig. 6. Normalized IMFs of nðtÞ (blue line) and eðtÞ (red line). (For interpretation of the r
this article.)
with the amplitude AkðtÞ and the phase /kðtÞ defined by
Ak tð Þ ¼ nc2
k tð Þ þ z2

k tð Þ
	 
1=2

; ð27Þ

/k tð Þ ¼ tan�1 zk tð Þ
nck tð Þ

� �
: ð28Þ

In practice, we calculate the instantaneous phase according to
Eqs. (25) and (28). To plot Hilbert spectra, the frequency is defined
as the time derivative of phase in Eq. (28). The Hilbert spectra for
the normalized IMFs of nðtÞ and eðtÞ are shown in Fig. 7. The power
spectral density (PSD) as a function of frequency for nðtÞ and eðtÞ,
calculated from the Hilbert spectra of the normalized IMFs of nðtÞ
and eðtÞ (Fig. 7), is shown in Fig. 8. Note that there is a peak at
0.0025 (dimensionless) corresponding to the IMF c5 in the decom-
position of eðtÞ. The appearance of the peak may be considered as a
signature of the buried signal. Fig. 9 shows the comparison of oðtÞ,
IMF c5 and normalized IMF nc5 of eðtÞ. Except for the boundary ef-
fect, both c5 and nc5 exhibit the similar oscillating characteristics
as oðtÞ. Hence, the decomposition of eðtÞ to IMFs has successfully
captured the specific feature of the buried signal oðtÞ. As for the
problem of distorted waveforms appeared both in c5 and nc5, to
our knowledge the EMD method can not guarantee to recover
the original waveform. However, the variance of c5 is very close
to that of oðtÞ rather than those of other decomposed IMFs, where
the variance deviation between c5 and oðtÞ is roughly equal to 15%.
Thus, based upon results shown in above we may conclude that
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Fig. 7. Hilbert spectra for the normalized IMFs of (a) nðtÞ and (b) eðtÞ.
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Fig. 8. Power spectral density (PSD), calculated from the Hilbert spectra shown in
Fig. 7, for nðtÞ and eðtÞ. In order to clearly visualize the peak located at 0.0025, the
enlarged diagram is shown in the inset.
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Fig. 9. Illustrations of oðtÞ, IMF c5 and normalized IMF nc5 of eðtÞ.
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EMD is an efficient way to detect characteristics of the information
signal masked by the present two-wave-mixing microwave system
with high complexity.
5. Discussions

It is known that investigations on illuminated transport in semi-
conductors are very important for optoelectronics [25]. In this
study, tunable periodic domains can be established by use of the
two-wave-mixing technique, where the difference between the
high-to-low electric fields can be up to 100 kV/cm. Based upon
the Pockels effect (i.e., the linear electro-optic effect) [26], a change
in the refractive index is expected. And these alternating values for
the refractive index modulation produce a phase grating whose
diffraction pattern can be calculated/observed. Compared to the
similar study in semi-insulating semiconductors [27], our system
can generate a large change in the refractive index, hence which
would be useful in the development of optoelectronics. However,
in practical situations the period of oscillating photocurrent should
be smaller than the time duration of a laser pulse, i.e., 10 ns. There-
fore, the following inequality should be satisfied:
K
v0
6 10 ns: ð29Þ

According to this inequality, we can estimate L and K should be,
respectively, larger and smaller than 0.1 cm.

It should be noted that delay-induced bistability also can be
found in this optoelectronic device. In order to analytically under-
stand this phenomena, the following extreme case is introduced. If
we consider s=T tends to zero and take the adiabatic approxima-
tion, Eq. (15) will become a nonlinear difference equation
KDðtDÞ ¼ 1þ bK2
DðtD � 1Þ sin2 pD

K0

1
KDðtD � 1Þ

� �
: ð30Þ

Therefore, the steady-state solutions can be easily derived via
Eq. (30) as well as KDðtDÞ ¼ KDðtD � 1Þ, and multiple roots are pos-
sible to exist. Compared to the well-known optical bistability [3,4],
our optoelectronic device provides an alternative way to investi-
gate bistable phenomena.

Concerning the possible usefulness of EMD applied to chaotic
communications, it shall be noted that there are some limitations
in real situations. In extracting the message they have linked the
message to a particular IMF for the encoded signal because this
has no analog IMF for the original signal alone. However, in many
signal transmission processes the original signal will not be sent,
therefore, it would be impossible to extract message by use of di-
rectly comparing IMFs. In addition, the IMF analysis technique
needs prior knowledge of the hidden information, which will re-
duce the possible applications in secure communications. The
present study is not intended to develop a breaking method for
chaotic communications, but provides an alternative method to
analyze complex dressed signals.
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6. Conclusion

We have introduced an EMD scheme to extract information
masked by a two-wave-mixing microwave system, in which both
DFA and MSE are used to test the statistical difference in between
the coding signal nðtÞ and the encoded signal eðtÞ. According to
decomposed IMFs, temporal as well as statistical characteristics
of the buried signal can be extracted. Therefore, our study suggests
that HHT would be an alternative method to analyze complex
dressed signals from nonlinear optoelectronic systems.
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Appendix

DFA approach

The method is described briefly in the following. The time ser-
ies xðiÞ to be analyzed is first integrated and denoted as yðiÞ, where
i ¼ 1; . . . ;N and N is the length of the series. Next, the integrated
time series is divided into boxes of equal length, l. In each box of
length l, a least squares line (or polynomial curves) is fitted to
the data to represent the trend in that box. Next, the integrated
time series is detrended by subtracting the local trend in each
box. The root-mean-square fluctuation of this integrated and detr-
ended time series is calculated and denoted as the 1st order fluctu-
ation function FðlÞ. This computation is repeated over all box sizes
to characterize the relationship between FðlÞ and l. Typically, FðlÞ
will increase with the box size l. A linear relationship in a log–
log plot indicates the presence of a monofractal spectrum:

FðlÞ / lc ð31Þ

In general, it is not always to exhibit a power-law scaling for
analyzed data. On the contrary, exponent c could be different in
different box size l. It would be helpful to understand the statistical
meaning of the exponent c through the following explanations. For
stationary data with scale-invariant temporal organization, the
Fourier power spectrum is proportional to f�b, where the scaling
exponent b is related to c with that way, b ¼ 2c� 1. Thus time ser-
ies with the 1=f characteristic (i.e., b ¼ 1), sometimes named posi-
tive correlations, is characterized by exponent c being equal to 1.
As for Gaussian white noise of the flat band, b ¼ 0 and, therefore,
c ¼ 0:5. When b is smaller than 0, i.e., c 6 0:5, it indicates negative
correlations are predominant in the original data.

MSE approach

The MSE analysis is to measure the entropy of a signal xðtÞ in
different scale. Briefly, this analysis constructs consecutive
coarse-grained time series by averaging a successively increasing
number of data points in nonoverlapping windows. For scale 1,
the coarse-grained time series is the original time series. For
scale 2, the time series is made up of the average of consecutive
pairs of data points, so that its length is the length of the origi-
nal time series divided by the scale factor l, and so on. Then, en-
tropy H is calculated for each of the coarse-grained time series
in the following:

H lð Þ ¼ �
X
ylðtÞ

Pr ylðtÞð Þ log Pr ylðtÞð Þ½ �; ð32Þ

ylðtÞ ¼
1
l

Xl�1

j¼0

xðt þ jÞ; 1 6 j 6 L=l: ð33Þ

where PrðylðtÞÞ denotes the probability of the value ylðtÞ.
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