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ABSTRACT Empirical mode decomposition (EMD) is an extensively utilized tool in a time–frequency
analysis. However, disturbances, such as impulse noise, can result in a mode-splitting effect, in which one
physically meaningful component is split into two or more intrinsic mode functions (IMFs). In this paper,
we propose a novel method, minimum arclength EMD (MA-EMD), to robustly decompose time series data
with impulse-like noises. The idea is to apply a minimum arclength criterion to adjust the knot positions
of impulses during the sifting process in EMD. In this way, the impulse-like artifact is extracted with the
first IMF, and the mode splitting effect of the latter decomposition is alleviated. Furthermore, when the
first IMF contains the desired information, we separate the spikes and the first IMF by adding a pair of
masking signals. For using this masking-aided MA-EMD (MAMA-EMD) method, we also mathematically
derived the appropriate ranges of the frequency and the amplitude of the masking signal. The MAMA-EMD
is utilized to deal with the simulated Duffing wave and four real-world data, including electrical current,
vibration signals, the cyclic alternating pattern in sleep EEG (electroencephalography), and circadian of
core body temperature. The results show that the MA-EMD and MAMA-EMD have a sound improvement
when encountering impulse noises.

INDEX TERMS Adaptive filters, empirical mode decomposition, impulse noise, masking-EMD, mode
splitting; spike.

I. INTRODUCTION
The non-stationary signal can be encountered frequently in
various fields in nature, such as speech processing, marine
biologic sound analysis, and physiological rhythm [1]–[3].
One powerful and popular tool is empirical mode decompo-
sition (EMD) which decomposes a time series into several
intrinsic mode functions (IMFs). Due to the non-parametric
nature of EMD, these IMFs often preserves non-linear and
non-stationary properties which cannot be derived from con-
ventional linear approaches such as Fourier or wavelet trans-
form. Recent studies in its mathematical structure unmasked
its outstanding ability in dealing with nonlinear and non-
stationary signal [4], [5] and confirmed its computational
efficiency [6].

Albeit powerful, one common problem in signal process-
ing encumbering the decomposition in EMD is the spikes.

Spikes are extremely high/low values in very short periods
in time-domain but contain wide spectrums of frequency.
Therefore, when decomposed by EMD, the energy of a sin-
gle spike would be scattered in several IMFs with different
frequencies. Moreover, the effect of spikes would propagate
to nearby signal. Even though locality characteristic of EMD
permits its effect to decay exponentially [4], the relatively
strong magnitude of spike still results in perturbation of
the IMF. Fig. 1 shows an example ofDuffingwavewith spikes
decomposed by EMD. Compared to the IMFs from the same
Duffing wave without spikes, the ∼0.1 Hz signal is split into
IMF 1 and 2. This is called the mode-splitting effect.

Physically, a single spike may result from a single cause,
such as the collective neuronal activity in EEG (Electroen-
cephalography), or the electrical current surge caused by the
switch. Transforming the single spike in frequency domain
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FIGURE 1. Surrogated nonstationary Duffing signal contaminated by triangular spikes, and its decomposition by EMD and our proposed
MAMA-EMD, respectively. (a) Duffing wave. (b) The spike signal as a perturbation. (c) The spike-contaminated signal as the input for EMD and
MAMA-EMD. (d-f) The blue lines are results of EMD on (c), and the black lines are from EMD on pure Duffing wave in (a) as the ground truth.
(g-h) The red lines are MAMA-EMD on (c). The black lines in (h-j) are the same as the black lines in (d-f) but in different scales. Note that with
MAMA-EMD method, the triangles are extracted, and the mode-splitting effect in (d-e), in which the 0.1Hz component in the first IMF of black line
is split into IMF 1 and 2, is alleviated.

by Fourier or wavelet analysis results in many to infinite
harmonic terms, loses its parsimonious nature, and con-
taminates frequency components of the signals. For single
point spikes, median filter or its adaptive versions have been
widely used [7]–[9]. For spikes in the shape of triangles
where the median filter cannot be used, wavelet methods are
popular. It would require choosing the appropriate wavelet
functions similar to the spike shape, and decomposing the
signal into different scales. The spikes can then be detected
or removed in certain scales [10]–[12], and the new signal
is reconstructed from the modified coefficients. Even though
these methods can themselves be treated as a pre-process for
EMD [13], this frequency domain approach is inefficient and
ineffective, and may loses its nonlinear and nonstationary
property.

In EMD, the decomposition is through a sifting process,
in which the relative low-frequency fluctuations are sub-
tracted iteratively. This low-frequency baseline is determined
through averaging the upper and the lower envelops formed
through cubic spline interpolation of extrema points. These
extrema points determines the filtering property of baseline:
the extrema intervals determine frequency response of the
spline [4], [14], [15], and the amplitude of signal deter-
mines the magnitude of frequency response to its neighboring
points [4]. Undoubtedly, changing the extrema points changes
the baseline function and therefore the sifting results in EMD.
Different studies have been proposed to adjust the extrema
position by an offset 1ti [16]–[18] or increasing extrema
rate by adding assistant signals (e.g. masking EMD [19]
or EEMD [20]) for different purposes. Nevertheless, to the
authors’ knowledge, no method had been proposed to remove
effects of spike-like noises directly during the decomposition
process.

In this paper, we aim to develop a method that can effec-
tively extract spike morphology by adjusting the height of
extrema on the spike during sifting of EMD. We propose
a novel method, the minimum arclength EMD (MA-EMD)
method, to replace the spike point by minimizing the

arclength of the upper/lower envelop. Furthermore, the spike
extraction inMA-EMDcan also be aidedwithmasking EMD,
becoming the masking aided MA-EMD (MAMA-EMD),
where a pair of assistant signals is added in the decomposi-
tion. The proposed MAMA-EMD for spike extraction can be
treated as a noise filter to improve time-frequency analysis
or the later decomposition in EMD; the extracted spikes
themselves can also be a feature for physical/physiological
explanation.

The remaining part of this paper is organized as fol-
lows. Section II is a brief review of EMD, masking EMD
and spike detection algorithms. Then, the proposed min-
imum arclength EMD (MA-EMD) and masking aided
MA-EMD (MAMA-EMD) methods are presented in
Section III. The validation of our method and its capability to
maintain the nonlinearity in EMD are verified by two numer-
ical experiments in Section IV. In Section V, we apply the
MAMA-EMD on realistic experimental data to demonstrate
its effectiveness in extracting spike signal. The discussion and
conclusion are in the last section.

II. METHOD REVIEWS
A. THE EMD ALGORITHM
EMD is an adaptive data-driven algorithm aiming to decom-
pose a signal into several intrinsic mode functions (IMFs)
successively through a repeated sifting process. The sifting
process can be regarded as a high-pass filter that iteratively
removes low-frequency trends, which is determined by the
mean curve estimated by averaging the upper and lower
envelops. Given a signal x(t) (t > 0), we define k as the IMF
index and p the sifting step. Then, the notation xk,p represents
the kth proto-IMF at pth sifting step. The EMD algorithm is
given in Algorithm 1.

B. THE MASKING EMD
To solve the problem of mode mixing, Deering and
Kaiser [19] proposed to insert a single tone sinusoid w (t) =
amsin(2π fmt) during the decomposition. This sinusoid,
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Algorithm 1 EMD Algorithm

(1) Define x0,0x(t). Starting with k = 1 and p = 0. Set
x1,0 (t) = x (t) .

(2) Identify all the maximum {(ta, xa)} and minimum
{(tb, xb)} of xk,p (t) .

(3) Connect maximum (respectively minimum) points
with natural cubic spline to derive upper (lower)
envelope U (t) (and L(t), respectively).

(4) Obtain the local mean of the upper and lower
envelopes m (t) = (U (t)+ L(t)) /2.

(5) Subtract local mean from the temporal signal
xk,p+1 (t) = xk,p (t)− m(t).

(6) Repeat (2)-(5) nsp times, i.e. p = 0, · · · , nsp − 1.
Derive xk,nsp (t) .

(7) Assign the kth IMF as ck (t) = xk,nsp (t).
(8) Calculate residual xk+1,0 = x

k,0
(t)− ck (t).

(9) Increment k and repeat steps (2)-(8) to generate series
of IMFs and a residue until that the residue contains
no more than one extrema

whose frequency is relatively higher, is a ‘‘masking signal’’
and serves as an assisted disturbance to avoid extraction of
low frequency components during sifting. The algorithm is
summarized in Algorithm 2.

Algorithm 2 Masking EMD Algorithm
(1) For step k in EMD, generate masking signal w (t) =

amsin(2π fmt).
(2) Perform Steps (2)-(5) in Algorithm 1 on x+ (t) =

xk,p (t) + w(t). In other words, substitute x (t) by
x+ (t)) to obtain IMF c+k . Similarly, perform steps
(2)-(5) in Algorithm 1 on x− (t) = xk,p (t) − w(t)
and obtain c−k .

(3) The resultant IMF is defined as ck = (c+k + c
−

k )/2.

C. THE SPIKE DETECTION
Mathematically, a signal with occasional artifacts can be
modeled as

x(t) = x̂(t)+ v(t) (1)

where x̂ (t) is the signal of interest, v(t) models the noise term
and x (t) is the observed signal.We suggest that the noise term
contains two components

v(t) = ω(t)+ z(t) ∗ i(t) (2)

where ω (t) represents the white Gaussian process and i(t)
is the random process generating impulsive artifact which is
convolved with a spike-like function z (t). Here, z (t) can be
of different shapes, such as a single-point spike or a triangular
spike.

Many types of impulse rejection filters have been designed
for different types of signals, such as wavelet for speech
signals [12] and Raman spectra [21], and median filters

for images [7], [8]. We adopt one of the simplest designs,
the median filter, as a tool for spike detection. Similar to other
impulse detection algorithms, our spike detector is based on
the prior assumption that the signal should be smooth. There-
fore, the extrema that differ too much from nearby extrema
is regarded as spike points. The maximum and minimum are
dealt with separately. For each maximum

{(
tai , xai

)}
, we first

find the set containing D nearby maximum values (D is an
even value) in a window centered about xai .

WD
i =

{
xad | i− D

/
2 ≤ d ≤ i+ D

/
2
}

(3)

The median and standard deviation of this set are

mDi = Med
{
xad | xad ∈ W

D
i

}
(4)

and

SDi = std
{
xad | xad ∈ W

D
i

}
(5)

respectively. Then, the extrema values larger than the median
by more than T standard deviation are classified as maximum
impulses, i.e. the set of maximum impulses, and is defined as

GM =
{(
tai , xai

)
| xai > mDi + S

D
i · T

}
(6)

Similarly, the set of minimum impulses is obtained as

GN =
{(
tbj , xbj

)
| xbj < mDj − S

D
j · T

}
, (7)

where mDi (m
D
j ) and S

D
i (S

D
j ) are the median and the standard

deviation of the minimum values within window WD
i (W

D
j )

centered at xbi (xbj ). Finally, we have the subsets G
M and GN

for the subsequent analysis.

III. MINIMUM ARCLENTH METHOD
A. THE MINIMUM ARCLENGTH
Our proposed method aims to find an optimal replacement
of the extrema value while maintaining the position of it as
a knot. In this way, the magnitude of impulse response of
the spike point to the rest of the point is decreased. On the
aspect of time domain, the estimated upper/lower envelop
would become smoother, and so does themean envelop,m (t).
Thus, after sifting, the morphology of the spikes is left in the
first IMF with the high frequency term. Here, we propose
to minimize the arclength of the resultant upper or lower
envelop. For brevity, we take the upper envelop as an exam-
ple to illustrate our method; the lower envelop is processed
similarly. An illustration of theminimum-arclengthmethod is
shown in Fig. 2. Given a spike point

(
tas , xas

)
∈ GM , we find

a minimizer
(
tas , x̂as

)
such that

x̂as = arg miny
{
F
(
U
(
t|ya = xa, a 6= as; yas = y

))}
(8)

where

(U (t | ·)) =
∫ tN

0

√
1+

(
dU (t | ·)

dt

)2

dt (9)

is the arclength ofU (t|·). Then, the modified spline is created
by the new series of maxima with impulse point replaced
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FIGURE 2. An illustration of our proposed method. The input signal
x(t) (black) is first processed to detect spike points

(
tas , xas

)
(o). Then,

the height of this point is adjusted to become a new knot
(
tas , x̂as

)
(∗)

that minimizes the arc length of the upper envelop. The new upper
envelope U

(
t
)

(blue) is calculated by the new knot and the other original
extrema. This creates a baseline m

(
t
)

(green) that is smooth and depicts
the relatively low frequency of the signal.

by
(
tas , x̂as

)
. Here, the arclength is calculated over all the

maxima points. However, this can be time consuming when
the signal is long. In our experience, minimizing the arclength
over 10 maxima points near the spike points is sufficient.

For all spike points in GM , each point is processed consec-
utively. For the case of multipoint spike, the spike detection
algorithm will mark two or more consecutive points on one
single spike. (Here, we regard the whole structure as one
single spike.) Minimizing the arclength point by point may
not achieve the optimal result. The solution to this problem
can be studied in future works.

The modified algorithm of EMD is shown asAlgorithm 3.
Comparing it to Algorithm 1, we added our protocol of
detecting spike points and replacing themonly in the first IMF
(i.e. when k = 1). The rest of the IMFs are processed in the
same way as EMD.

B. THE MASKING-AIDED MINIMUM ARCLENGTH EMD
The above method extracts spikes in the first IMF (IMF 1).
However, if IMF 1 contains information of interest, the spikes
should be removed to obtain a clear signal. The idea is
to insert a high frequency masking signal, the single sine
tone w (t), to the original signal to prevent lower frequency
components from being included in this IMF. Then, perform
sifting algorithm on x+ (t) = x (t)+w(t), the resultant mode
c+ contains only spikes and the single sine wave. We repeat
this algorithm on x− (t) = x (t) − w(t) and derive c−.
When averaging c+ and c−, the added masking signals were
compensated. Thus, we have the new ‘‘first IMF’’ (IMF 0)
that contains only spikes and some very-high-frequency com-
ponents (most of time noises), leaving the IMF 1 free of
spikes.

The rest of this section discusses how to find the appropri-
ate amplitude aM and frequency fM for the masking signal.
A numerical simulation in Section 4.1 is performed to vali-
date the effect of different aM and fM on separating a spike
signal from a single tone sinusoid.

The inserted sinusoid should create no extrema on the
spike, and allow EMD to separate itself from the origi-
nal signal. According to [14], given two sinusoid SL(t) =
aL cos (2π fL t) and SM (t) = aM cos (2π fM t), the necessary

Algorithm 3 Spike Extraction by EMD With Minimum
Arclength Method (MA-EMD) Algorithm

(1) Define x0,0x(t). Starting with k = 1 and p = 0. Set
x1,0(t) = x(t)

(2) Identify all the maximum {(ta, xa)} and minimum
{(tb, xb)} of xk,0 (t)

(3) If k = 1, find the subset of maximum impulses
GM =

{(
tai , xai

)}
, i= 1 . . .nspx , and also find the

subset of minimum impulses GN =
{(
taj , xaj

)}
,

j= 1 . . .nspn, where nspx and nspn are the total number
of points regarded as maximum impulses and mini-
mum impulses, respectively.

(4) Start with i = 1, find minimizer
(
tai , x̂ai

)
to minimize

the arclength of upper envelope U (t|xa).
(5) Replace

(
tai , xai

)
with

(
tai , x̂ai

)
, and form the new set

of maximum points
(
ta, x̂a

)
.

(6) Repeat (4) and (5) for i = 1 . . . nspx .
(7) For each j= 1 . . .nspn, find minimizers

(
tbj , x̂bj

)
to

minimize the arclength of lower envelope L(t|xb),
consecutively. Then, replace

(
tbj , xbj

)
with

(
tbj , x̂bj

)
.

Form the new set of minimum points
{(
tb, x̂b

)}
(8) Derive the new upper and lower envelope U (t|x̂a)

and L(t|x̂b), respectively, according to the new set of
maxima

{(
ta, x̂a

)}
and minima

{(
tb, x̂b

)}
.

Perform step (4)-(5) in Algorithm 1, which is to derive
the local mean m (t) and subtract it from the present signal
to form the temporal signal

x1,p+1 (t) = x1,p (t)− m(t)

(9) Repeat (3)-(8) for p = 0 · · · nsp − 1, and derive the
first IMF, c1(t).

(10) For k > 1, the steps are the same as steps (2)-(9) in
Algorithm 1 of EMD.

conditions to separate these two signals are

ar fr < 1 and fr <
2
3

(10)

where ar = aL/aM and fr = fL/fM .
Similarly, there should be no extrema on themorphology of

spike. For simplicity, we assume that the spike is a triangular-
shaped signal ascending within the time range [ta, tp] at a
slope st . In other words, the signal is T (t) = s(t − ta), when
t ∈ [ta, tp]. Finding the extrema point is equivalent to solving
the equation

d
dt

[T (t)+ SM ] = 0 (11)

In other words,
dSM
dt
+
dT
dt
= 2πaM fM cos (2π fM t)+ s = 0 (12)

No extrema points means that the above equation has no
solutions. Namely,

cos(2π fL t) =
−s

2πaM fM
(13)
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is not solvable. This leads to
s

2πaM fM
> 1 (14)

Thus,

2πaM f M< s. (15)

The derivation above is based on an ideal situation where
the signal to be separated is a pure sinusoid. In practice,
we aim to use this method to separate spikes from the first
IMF derived from EMD. Thus, the aL and fL can be the
peak-power frequency and power of the first IMF. Therefore,
to remove the effect of spike, we first detect the spikes and
then find a proper masking frequency by analyzing the slope
of the spike and the frequency of the first IMF from EMD to
meet both equations (10) and (15).

The algorithm of our proposed masking-aided minimum
arclength EMD (MAMA-EMD) is in Algorithm 4.

Algorithm 4 Spike Extraction by Masking Aided Minimum
Arclength EMD

(1) Perform steps (1) – (3) inAlgorithm 3 to detect spike
points when k = 1.

(2) Perform EMD to derive the first IMF. Analyze its
peak-power frequency fL and power aL .

(3) Analyze the slope of each spike, choose the smallest,
call it st

(4) Find the proper frequency aM and amplitude fM , such
that they meet both (10) and (15).

(5) Generate masking signal w (t) = aM sin(2π fM t)
(6) Perform steps (4)-(5) in Algorithm 3 on x+ (t) =

x (t) + w(t) to obtain IMF c+k , and similarly on
x− (t) = x (t)− w(t) and obtain c−k

(7) The resultant IMF is defined as ck = (c+k + c
−

k )/2.
(8) For k > 1, the steps are the same as Algorithm 3.

IV. SIMULATION VERIFICATION
A. SINGLE SINUSOID
To validate our derivation of appropriate masking signals,
we test the effect of different amplitude and frequency of
masking signal in MAMA-EMD in extracting a spike from
a single tone sinusoid. Without loss of generality, we set the
frequency of the single-tone sinusoidal signal to be 1, since
the filtering property of EMD is only related with the ratio of
two frequencies, fr , and amplitudes, ar , of the pure sinusoidal
signal and the added masking signal. The simulated signal
and its components are S (t) = SL (t)+ Sp (t), where

SL (t) = cos (2π t) (16)

and

Sp (t) =


200t − 380 if 2 < t < 2.05
−200t + 420 if 2.05 < t < 2.1
0 otherwise

(17)

Then, a masking signal w (t) = aM sin(2π fM t) is added to
assist separating SL (t) and Sp (t). Next, we vary the masking
amplitude aM from 0.01 to 100, and frequency fM from
0.95 to 20. The sampling frequency is 100Hz. Fig. 3 shows
the time-domain waveforms of S (t) and its two compo-
nents. The result of separation is evaluated by the mean
squared error (MSE) between the extracted IMF2 (sinusoidal)
and SL (t).

FIGURE 3. The simulated signal and its decomposed IMFs. (a) The signal
S(t) is a combination of the triangular spike Sp(t) (c, black line) and pure
sinusoid SL(t) (d, black line). (b) A demonstration of summation of the
signal and added masking sig (black solid line). The upper envelope (blue
line) is connected by the adjusted extrema. The baseline (green line) is
the average of the upper and lower (dashed blue line) envelop. (c) The
triangular spike Sp(t) (black line) and the first IMF from MAMA-EMD (red
line). (d) The pure sinusoid SL(t) (black line) and the second IMF from
MAMA-EMD (red line).

Fig. 4 demonstrates the MSE of IMF2 versus fM and aM .
As expected, the proper frequency and amplitude of masking
signals is bounded by equations (10) and (15). At the left hand
side of the curve of 2πaM f M = s, the spike is not separable
from the w (t). Meanwhile, at the right hand side of the curve,
ar fr = 1 and fr < 2/3, the masking signal is not separable
from SL (t).

B. DUFFING WAVE
We use nonstationary Duffing wave with artificially added
spikes to demonstrate that the proposed method extracts,
maintains the non-linear and non-stationary properties of
EMD and suppresses the mode-splitting effect. Duffing wave
can be understood by the motion of a pendulum with non-
linear stiffness. The Duffing equation has the form

ẍ (t) = x − x3 + 0.1cos(
2π
25

) (18)

with initial conditions x (0) = ẋ (0) = 0. Here, x is the
displacement, and ẍ is the acceleration. We add three spike
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FIGURE 4. The MSE of IMF2 extracted by MAMA-EMD for different
fM and aM. The ground truth is a pure sinusoidal signal.

signals with slope 5, -8 and 10, and height 1.5, -1.3 and 2.9,
respectively, and get spike-contaminated signals. The original
Duffing wave, the spike signal as an artifact, and the spike-
contaminated signal is shown in Fig. 1(a-c).

The IMFs from EMD by decomposing the Duffing wave
serve as the ground truth of the decomposition. Three IMFs
were derived from the decomposition (Fig. 1). The first IMF
corresponds to the intrinsic frequency around 0.1 Hz which
shows strong intra-wave frequency modulation structure;
IMF 2 corresponds to a uniform intermediate frequency com-
ponent representing the forcing function. The sub-harmonic
term is the evidence for the non-linearity of the system.
Moreover, its amplitude is very small, which means any error
will destroy thewaveform of the sub-harmonicmotion; IMF 3
represents a very low-intensity sub-harmonics.

The decomposition results by EMD on the perturbed sig-
nal is shown in Fig. 1(d-f). Under the influence of spikes,
the IMFs are disturbed, resulting in a mode-splitting effect,
where the original 0.1 Hz signal is distributed in both IMF
1 and 2. Hilbert spectrum also shows the frequency shift from
0.1 Hz to three times larger in IMF 1 (Fig. 5a). The 0.1Hz
during this period (80-100 sec) is split into IMF 2.

Then, we decompose the perturbed signal by the proposed
method. Since the input signal itself is smooth and without
noise, we use MAMA-EMD where a high frequency sine
wave is added in the first step to increase extrema points,
so that the baseline, i.e. the signals except spike, can be
depicted during sifting. The masking signal here has a fre-
quency fM = 200 and an amplitude aM = 3.5. The result of
our decomposition is depicted in Fig. 1 (g-j). In comparison
to EMD, ourMAMA-EMDmethod extracted the spike signal
in the first mode, which is labeled as IMF 0 to avoid confusing
with the original IMF 1. Afterwards, the later IMFs can be
successfully recovered from the decomposition. Compared to
the ground truth, our method only differs from the ground
truth around both edges. The MAMA-EMD derived IMFs
clearly depict the intra-wave frequency modulation in Hilbert
spectrum (Fig. 5b.).

FIGURE 5. Hilbert spectrum showing the frequency overlapping caused
by spikes. (a) IMF 2-4 by EMD. (b) IMF 1-3 by MAMA-EMD.

FIGURE 6. Current data. (a) The time domain signal. (b) Frequency
spectrum. The arrow indicates the harmonic at 40Hz. The spikes cannot
be removed by a 15 Hz low-pass filter (c).

V. APPLICATIONS
A. ELECTRICAL CURRENT
Electrical current surge is a common problem in automatic
control system. Conventional method of processing this sig-
nal is to use a linear low-pass filter, which does not remove
the spikes effectively. Here, we demonstrate the performance
of our proposed MAMA-EMD in solving this problem com-
paring to a Fourier-based low pass filter and traditional EMD.

The data were phase currents measured from three-phase
AC servomotor (YBL-9D, Ye Li Electric & Machinery
Co., LTD) at 300rpm. The current values were transferred to
voltage values by the current sensors. After filtered byRC low
pass filter, the analogue voltage was converted to digital data
by the microcontroller (STM32F103). A 3.3V 12-bit 1KS/s
analog-to-digital converter was used.

The time domain signal and the Fourier spectrum are
shown in Fig. 6(a,b). The spikes on the signals were cause
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by MOSFET switch on the three-phase inverter of the motor
drive, and the frequency of switching was 10 KHz. The
instantaneously switching would cause the current surges,
resulting in the spikes on the signals. Furthermore, the micro-
controller and the peripheral circuits would also generate
high frequency noise. The phase current cycle represents the
rotation of the engine. The harmonic (∼40 Hz) in the Fourier
spectrum showed that the signal is not pure sinusoidal.

First, the signal is filtered by a low-pass FIR filter with pass
band equals to 15Hz. Fig. 6(c) shows the results of filtering.
Since a spike has a very wide band in Fourier spectrum,
the designed filter can only decrease the height of spikes.

FIGURE 7. Intrinsic mode functions (IMFs) derived from EMD (a) and
MAMA-EMD (b). In (b), the first panel showed the original signal (black
line) and the points detected as spikes (red circles). Panel 2-6
demonstrate the decomposition by our propose method. The first IMF
contains the spikes and some high-frequency noise. The last panel shows
IMF 5 that depicts the low frequency wave.

The decomposition result derived by EMD is shown
in Fig. 7(a), where only the first 6 IMFs are given. The spikes
even in the non-spike region disturb EMD, resulting in the
mode splitting problem during the 0.2-0.4 second.

Then, the data is processed by our proposedMAMA-EMD.
The spikes were first detected by the median filter described
in Section 2.2 with window size 20 and threshold 1.5. The
extrema detected as spikes are shown in Fig. 7(b, panel
1). Then, the first mode is derived from adding a masking
signal with frequency fM = 200 and amplitude aM =

3.5. It can be observed that, our MAMA-EMD extracted
the spikes and some high-frequency noise in the first IMF
Fig. 7b, panel 2). The rest of the signal contains no spikes
can be further processed by traditional linear filters or EMD.
Here, we demonstrate the IMF 1-5 of decomposition results
by EMD. In summary, it shows that our algorithm is capable
of removing the spikes, and improves the decomposition of
the rest modes.

B. ROTOR TEST RIG
Vibration signals from rolling element bearing is adopted
to verify our proposed method on realistic data. The faulty

mechanical components often result in impulses-like vibra-
tion signals. These spikes, although including useful infor-
mation, may cause mode mixing effects when decomposed
by EMD. In fact, moderate de-noising before decomposition
or filtering has been proposed to improve the fault detection
algorithm [10], [13]. In the example demonstrated in this
section, we show that our method can extract spikes in the
first IMF and improve the accuracy of later analysis.

The experimental data are provided by Center on Intel-
ligent Maintenance Systems (IMS), University of Cincin-
nati [22]. In this run-to-failure test, four Rexnord ZA-2115
double roll bearings were installed on one shaft. Each bear-
ing was equipped with two PCB 353B33 High Sensitivity
Quarts ICP R©Accelerometers (x and y axis). Vibration data
was collected for 1 second every 20 minutes for 164 hours
with a sampling rate of 20 kHz, and the length of each
data is 20480 points. The rotation speed is kept constant at
2000 rpm (rotation frequency fr = 33.3 Hz), and a radial
load of 6000 lb. was applied onto the shaft and bearings
by a spring mechanism. At the end of the test-to-failure
experiment, an inner race defect occurred on bearing 3. The
inner race fault frequency fi is 296.9 Hz.

FIGURE 8. A vibration signal from bearing 3 with inner race defect.
Maxima spikes are denoted as red circles; minima spikes are blue stars.
(a) The raw data. (b) and (c) are partial zoom-in of the signal.

Fig. 8(a) shows the time-domain waveform of the vibration
signal. Note that our spike detection is defined on differences
to extreme values of nearby extrema, not the absolute value
of the spike point, and thus some of those seemingly large
values are not detected as spike if its nearby extrema is also
large (Fig. 8b and c). This provides an advantage to maintain
the resonance excited by the impact of default.

The decomposition results derived by EMD and
MAMA-EMD are shown in Fig. 9, where only the first
5 IMFs are presented. We performed envelop spectrum on
IMF2 and 3. The envelop spectrum is the Fourier transform
of the envelope of the signal. From the envelope spectrum
derived from IMFs of both methods (Fig. 10), the inner race
fault frequency (fi = 296.9) and its modulation with rotation
frequency (296.9± 33) can be found from IMF 2. However,
our proposed method has a lower noise level and clearer
peaks in both IMF 3, and clear peaks on the rotation-related
frequencies 2f r and 4f r .
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FIGURE 9. Intrinsic mode functions (IMFs) derived from EMD (a) and
MAMA-EMD (b).

FIGURE 10. Envelope spectra of components derived from EMD (a-b) and
MAMA-EMD (c-d). (a) and (c) are components from IMF 2; (b) and (d) are
components from IMF 3.

C. CYCLIC ALTERNATION PATTERN (CAP) SUBTYPE
CLASSIFICATION IN SLEEP EEG
Neuronal signal often presents different shapes of spikes.
In this section, we showed that the extracted spikes can be
used as a feature preserving its physiological significance.
The cyclic alternating pattern (CAP) is a periodic EEG
(Electroencephalography) activity, which is characterized by
sequences of transient electrocortical events that are distinct
from background EEG activity. The CAP may signify sleep
instability, sleep disturbance, or both [23]. CAP is com-
posed of transitions between Phase A, identified by high-
voltage slow waves, and the low-voltage irregular activity
of at least 2 seconds (Phase B) (Fig. 11). Phase A activity
can be classified into three subtypes based on the recipro-
cal proportion of high-voltage slow waves (EEG synchrony)
and low-amplitude fast rhythms (EEG desynchrony) through-
out the entire phase A duration. According to the stan-
dard, the proportion of EEG desynchrony occupies <20%,
20-50% and >50% of the entire phase A duration in subtype
A1, A2 and A3, respectively ([24]. Subtype A1 marks the
brain’s attempt to preserve sleep; subtypes A2 and A3 often
coincide with a frank EEG arousal. Specifically, 85% of sub-
types A3 and 62%of subtypesA2meet theAASM (American
Academy of Sleep Medicine) criteria for arousals.

Here, we regard the high-voltage slow waves as spikes.
By separating them from the background EEG, we can define
the relative proportion of time between EEG synchrony and

FIGURE 11. An example of CAP cycles in 4 EEG channels (Fp2-F4, F4-C4,
C4-P4 and P4-O2). A CAP cycle is defined as a sequence of 2 alternating
EEG patterns called phase A (indicated by red line) and phase B. Phase A
is composed of high-amplitude EEG bursts which stand out from the
background rhythm (phase B) in all the EEG channels.

FIGURE 12. An example of CAP cycles. A CAP cycle is defined as a
sequence of 2 alternating EEG patterns called phase A (indicated by red
line) and phase B. Phase A is composed of high-amplitude EEG bursts
which stand out from the background rhythm (phase B). Decomposition
of the three different phase A subtypes, including subtype A1 (a-e),
A2 (f-j) and A3 (k-o). The red horizontal lines indicate occurrences of A
phase. The original signals (a,f,k) are first decomposed by masking EMD
to remove the first 4 IMFs (b,g,i). The residual signals (c,h,m), derived by
subtracting IMF1-4 from the original signal, are then processed by
MAMA-EMD to extract the high-amplitude spikes (d,i,n). We then set up a
threshold (±4uV, blue lines in d,i,n) to identify whether the extracted
spikes are above/under this threshold. The proportion of time that the
spikes are above/under this threshold (indicated by blue areas in e,j,o) is
distinguishable among different phase A subtypes. The blue arrow in
IMF 1 of (l) indicates EEG arousal, which is often observed in subtype A3.

desynchrony and distinguish different phase A subtypes. The
EEG is first processed by masking EMD to remove the first
4 IMFs which contain high frequency information (Fig. 12).
The residual signal is then processed by MAMA-EMD to
extract spikes. This extracted signal, called IMF 4sp, which
contains spikes is used to calculate proportion of EEG syn-
chrony, defined as the proportion of time IMF 4sp is above
or below a threshold (±4uV). We test our algorithm on the
CAP Sleep Database [24], [25] (https://physionet.org/pn6/
capslpdb/#ref02). This database includes polysomnography
recordings, and the sleep microstructure is labeled by a team
of trained neurologists. We use EEG recordings of the bipolar
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FIGURE 13. Proportion of time that the extracted spikes in a phase A
exceed the threshold.

FIGURE 14. A 7-day recording of core body temperature. Red circles
indicate extrema detected as spikes.

FIGURE 15. Recoding of core body temperature decomposed by
EMD (a) and MAMA-EMD (b). The red arrow indicates the spike
morphology that have been extracted by our method.

derivation C3-A2 from one of the normal subjects (n9) as an
example. A total of 317 phase-A segments were analyzed.

Fig. 13 summarizes the result of our thresholding method
on the three subtypes. The proportions of time with EEG syn-
chrony are significantly different among the three subtypes
(P < 0.05).

Fig. 12 demonstrates the results of our decomposition
and thresholding method on different phase A subtypes.
As expected, the proportion of time that the extracted spike is
above or under the threshold is the largest in subtype A1, and
the least in subtype A3. In addition, the EEG arousal, which is
characterized by an abrupt frequency shift to 16Hz or higher,
can be identified in the first IMF (Fig. 12(l)).

D. CORE BODY TEMPERATURE
In this section, we apply our MAMA-EMD on the long-
term core body temperature to demonstrate the capability to
extract the irregular shapes of spikes, and improve the later
decomposition of EMD. The data is from rectal temperature
recorded every 6 minutes for 7 days. The circadian rhythm
can be observed (Fig. 14). The triangular spikes in each
24-hr cycle is from showering, where the body temperature
increases 0.2-0.3◦C (20-30% of daily circadian changes in

normal core body temperature) between two consecutive
samples, and decreases in around 15 minutes. We aim to
extract the daily rhythm in this data. The spikes, although
naturally produced by subject’s behavior, interfere decompo-
sition of IMFs (Fig. 15a). The circadian rhythm with cycle
length 24 hours is split into IMFs 5 and 6, which shows the
mode-splitting effect.When applying ourMAMA-EMDwith
masking frequency= 0.8 and amplitude= 0.05, the morphol-
ogy of spikes is extracted in the first IMF (Fig. 15 b), and
alleviate the mode-splitting problem.

VI. CONCLUSION
A novel method has been proposed to sparsely decompose
the spike noise in time-domain by a modified EMD. Aided
with a masking signal with proper frequency and amplitude,
we isolate the spikes in the first IMF, and improve the perfor-
mance of decomposition the later IMFs. We also provided a
mathematical induction and numerical experiment to find the
proper amplitude and frequency of masking signal. Four real-
world examples, the electrical current of an engine, vibration
signals from rolling element bearing, cyclic alternating pat-
tern in sleep EEG, and circadian of core body temperature are
dealt with to demonstrate the wide application of our method.
Served as a preprocedure for denoising in EMD or a tool for
spike extraction, this method can also be applied to a wide
variety of signals, where non-stationary information is to be
extracted from spike contaminated data.

DATA ACCESSIBILITY
The source code of our MA-EMD and MAMA-EMD can be
downloaded from the website of ‘‘Laboratory of Integrated
Biomedical Signal Applications’’ in National Central Univer-
sity (http://in.ncu.edu.tw/∼mzlo/drLo.html).
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