Information Content of the Trajectory-Domain Models

Shu-Heng Chen* and Chueh-Yung Tsao

AI-ECON Research Center
Department of Economics
National Chengchi University
and
Department of Finance
National Central University

*Corresponding author. E-mail: chchen@nccu.edu.tw
Abstract

In this paper, we examine the information content in the trajectory-domain model proposed by Chen and He (2003). The data to be tested are three American stock indices, namely, the Dow Jones, Nasdaq, and S&P 500. We adopt two event study methods, the standardized-residual method (SRM) and the standardized cross-sectional method (SCSM), to test the abnormality of the aftermath return series. In addition, the GARCH-M plus MA(1) is regarded as the benchmark to be compared with. It is found that some patterns of the models do transmit informative signals, but the signals are not persistent. They emerge during a period and then vanish, and vice versa.

Keywords: financial modeling; self-organizing maps; event study methods; technical analysis

JEL Classification: C45; C51; G14
1 Introduction

Financial data mining is concerned with two general questions. The first is to define the financial patterns with appropriate data mining tools, and the second is to show whether or not the patterns derived are profitable or informative. In the literature, the first issue has largely been addressed in the context of time series models, be they linear or non-linear. However, more recently, financial data mining has started to look at the alternative — the feature-domain approach.

In time-domain models, e.g., ARIMA models, bilinear models, (G)ARCH models, etc., the extrapolation of past values into the immediate future is based on correlations among lagged observations and error terms. The feature-based models, however, select relevant prior observations based on the symbolic or geometric characteristics of the time series in question, rather than their location in time. Then, what will happen in the next time period will depend on the current feature. Examples of feature-domain models include self-organizing maps (SOMs), decision trees, k-nearest neighborhoods, etc. In a nutshell, feature-based models first identify or discover features, and then act accordingly by taking advantage of these features. In a sense, these modeling strategies may be regarded as constituting a change from the conventional global modeling strategies to local modeling strategies. The effectiveness of these modeling strategies is built upon the assumption that a global complex model can be effectively decomposed into many local simple models. To test the plausibility of this assumption, this paper attempts to examine whether or not the feature-domain models provide an effective representation of the financial time series data. In particular, we examine the feature-domain model proposed by Chen and He (2003).

Chen and He (2003) are the first to use SOMs to search for and identify price patterns. In their model, a geometric or trajectory pattern of the price series is considered to be a feature. Such a model is referred to as the trajectory-domain model. The motivation of Chen and He (2003) is based upon the observation that, in the financial market, chartists appear to have been good at engaging in pattern recognition for many decades, yet little
academic research has been devoted to a systematic study of these kinds of activities.

Chen and He applied a 6×6 two-dimensional SOM to time series data for the TAIEX (Taiwan Stock Index), and hence 36 charts were derived automatically. Of the 36 charts, many were familiar, depicting uptrends, downtrends, v-formations, rounding bottoms, rounding tops, double tops, and island reversal. Furthermore, many of these charts were able to transmit buying and selling signals. They also showed that trading strategies developed from these charts may have superior profitability performance.

As a follow-up in this line of research, Chen and Tsao (2003) applied the same architecture to three American stock indices, including the Dow Jones, Nasdaq, and S&P 500. In addition, they conducted a more rigorous statistical analysis of the discovered patterns. By using the one-sided studentized range test (Hayter, 1990), it was found that, from the appearance of some charts, the aftermath equity curves established were either monotonically increasing or decreasing. This feature is hard to capture using ordinary econometric methods. However, after excluding unconditional mean returns, such monotonicity disappears.

This paper provides a different approach to examine the SOM-discovered patterns, namely, the event study approach. We treat each pattern as an event. Every price trajectory classified on the basis of the same pattern is considered to be the same event. The event study approach is then applied to estimate the impact of a pattern (event) on the aftermath return behavior, and, based on that, to examine the information content in the SOM-discovered patterns.

The empirical findings of econometricians suggest a general notion that “one model cannot fit all.” Many studies on asset pricing argue over an issue of “whether beta is dead.” Moreover, it is found that, in the option pricing literature, the Black-Scholes formula seems to provide reasonably accurate values during 1976 to 1978. However, since 1986 there has been a very marked and rapid deterioration (Rubinstein, 1994). In this paper, it is interesting to see whether the informative patterns, if there are any, discovered by SOMs are consistently informative during the whole of the
time horizon. We separate the data into two parts to examine this issue.

The rest of this paper is organized as follows. Section 2 will firstly give a brief review of the Chen and He (2003) trajectory-domain model, and then describe the data and parameters considered. Section 3 contains a description of the event study approach and shows its relevance to our pattern analysis. The event study results are presented in Section 4. Section 5 concludes and gives several directions for future study.

2 The Trajectory-Domain Model

This section briefly reviews the Chen and He (2003) trajectory-domain model. This model can be characterized as consisting of two parts. The first is the sliding window device that expresses a price trajectory as a chart, and the second comprises the SOMs that are used to cluster charts. We will first introduce SOMs in Section 2.1, and then show the sliding window device and the data used in this paper in Section 2.2.

2.1 Self-Organizing Maps

In contrast to the artificial neural networks (ANNs) which are used for supervised learning, SOMs are another special class of artificial neural networks. The SOMs are used for unsupervised learning to achieve auto classification, data segmentation or vector quantification. Unlike the supervised ANNs, SOMs do not require the users to know in advance the exact objects that they are looking for. This convenience is particularly important when one can only effectively recognize some patterns by visual inspection rather than based on mathematical descriptions.

The SOMs adopt so-called competitive learning among all neurons. The output neurons that win the competition are called winner-takes-all neurons. In SOMs, the neurons are placed on the sites of an l-dimensional lattice. The value of l is usually 1 or 2. Through competitive learning, the neurons are tuned to represent a group of input vectors in an organized manner. The mapping from a continuous space to a discrete one or a two-dimensional space achieved by the SOMs reserves the spatial order.
Among a number of training algorithms for SOMs, Kohonen’s learning algorithm is the most popular (Kohonen, 1982; Haykin, 1994). Kohonen’s learning algorithm adopts a heuristic approach. Each neuron on the lattice has a weight vector of \(w \) components attached. The \(w \) represents the number of input variables in the input data sets. The winning neuron and its close neighbors in the lattice have their weight vectors adjusted towards the input pattern presented on each iteration. Unlike other clustering methods such as k-means clustering (Huang, 1997), Kohonen’s SOMs have the advantage that the final training outcome is insensitive to the initial settings of weights. Therefore, Kohonen’s SOMs have found a wide variety of applications in image processing, target detection, 3D dynamic modeling, the classification of pulse signals of the autonomic nervous system, speech processing, etc.

In the training process, for an input vector \(x \), the weights of the winning neuron and its close neighbors are updated according to (1),

\[
v_j(n + 1) = v_j(n) + \eta(n)\pi_j,i(x)(n)[x - v_j(n)],
\]

where \(v_j(n) \) is the weight vector of the \(j \)th neuron at the \(n \)th iteration, \(\pi_j,i(x)(n) \) is the *neighborhood function* (to be defined below) of node indices \(j \) and \(i(x) \),

\[
i(x) = \arg\min_j \| x - v_j \|, j = 1, 2, ..., d^2,
\]

and \(\eta(n) \) is the *learning rate* at iteration \(n \).

We take for the neighborhood function the *Gaussian* form,

\[
\pi_j,i(x) = \exp\left(-\frac{d^2_{j,i(x)}}{2\sigma^2(n)} \right),
\]

where \(d_{j,i(x)} \) is the distance between node units \(j \) and \(i(x) \) on the map grid, and \(\sigma(n) \) is some suitably chosen, monotonically decreasing function of iteration times \(n \). Here, the effective width \(\sigma \) decays with \(n \) linearly according to (4).

\[
\sigma(n) = \sigma_0 + \frac{(\sigma_1 - \sigma_0)}{N - 1}(n - 1),
\]

where \(\sigma_0 \) and \(\sigma_1 \) are constants \((\sigma_0 > \sigma_1) \) and \(N \) is the total number of epochs. The learning rate decays in a *power* manner:

\[
\eta(n) = \eta_0(0.005/\eta_0)^{(n-1)/N},
\]
where η_0 is constant.

The training takes a long time with almost all neurons initially having their weights updated. This training phase is called the *ordering phase*. During this phase, as the learning rate and effective width gradually decrease, the topological ordering of the weight vectors takes place. During this phase, the initial effective width assumes a large value and the weights of virtually all of the neurons are updated. Through competitive learning, the weight vectors gradually settle down to form a topological order. The weights then settle down gradually during the second phase of learning named the *convergence phase* where only the weights of the winning neuron and perhaps its nearest neighbors are updated according to the case presented.\(^1\)

2.2 Model Design

In this paper we present the results of the application of the SOM to financial time series data. The data sets to be segmented are the three empirical stock indices, which are the Dow Jones, Nasdaq, and S&P 500. The original data sets cover the daily closing prices from 1/1/80 to 7/10/02 and comprise 5688, 5682, and 5687 observations, respectively.

What we intend to do is to take a sliding window (Fig. 1) with different window width w moving from the first period to the last period of the whole data set indexed by t ($t = 1, \ldots, T$), so that all T observations will further subdivide into $T - w + 1$ subsamples, each with w observations of a time series. Each subsample represents a time series pattern. The SOM is then used to automatically divide all patterns into groups or clusters in such a way that members of the same group are similar (close) in the Euclidean metric space. The w observations in each subsample are normalized between 0 and 1. A two-dimensional 6×6 SOM is used to map the $T - w + 1$ records into 36 clusters.\(^2\) The 6×6 lattice of SOMs is presented in Fig. 2. Here,

\(^{1}\)For more descriptions of SOMs and discussions on their mathematical properties, see, for example, Kohonen (1997). For the applications of SOMs to economics and finance, see Deboeck and Kohonen (1998).

\(^{2}\)Chen and He (2003) and Chen and Tsao (2003) give some intuition as to why SOM is a suitable tool for geometric pattern recognition. In addition, the choice of a two-
we consider the hexagonal lattice.

In this paper, we consider six different w, their values being 10, 30, 60, 90, 120, and 150. Then the results may be compared with different window widths. The control parameters used to conduct this experiment are given in Table 1.

3 Event Study Approach

The event study approach is widely used in finance as a quantitative tool to examine the aftermath of an event. Early event studies are primarily concerned with the impact of firm-specific events, such as the dividends payout, on stock returns. The focus generally lies on how stock prices adjust to the release of relevant information around certain events or announcements. Binder (1998) and MacKinlay (1997) provide a nice survey of the literature on the firm-specific event studies. In the following subsections, the event study approaches are fine-tuned to match the needs of this study.
3.1 Event and Estimation Periods

In the design of the sliding window of the trajectory-domain model, there is a persistence of a pattern. For example, if at period t_2 pattern j is observed, it may continue to appear for the next $m_f - 1$ days. In this case, we count the appearance of pattern j only once but attach to it a duration of m_f days. The index word f is the appearance index of the pattern under such modification, $f = 1, 2, \ldots, F_j$. By drawing this fact into the event study approach, we regard time t_2 as the event date, and the event period is determined by the duration of the pattern in question. Since what interests us is whether there is anything abnormal after the pattern has been observed, we regard $[t_2 + 1, t_2 + m_f]$ as the event period. Fig. 3 depicts the time horizon of the event study approach.

Fig. 4 introduces an example. In this case, the length of the series (T) is 11 and the window width (w) is 3. Then there are a total of 9 ($T - w + 1 = 9$) charts for the trajectory-domain model. The number attached to each 3-period segment indicates the pattern recognized. At times 5, 6, 7, 9, and 10, the charts are recognized as Pattern 1. Then the first event period for the
Table 1: Parameter setup for the implementation of the 2-dimensional $d \times d$ SOM.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window width (w)</td>
<td>10, 30, 60, 90, 120, 150</td>
</tr>
<tr>
<td>Dimensionality of SOM (l)</td>
<td>2</td>
</tr>
<tr>
<td>Number of neurons ($d \times d$)</td>
<td>6 \times 6</td>
</tr>
<tr>
<td>Ordering phase initial radius (σ_0)</td>
<td>6.00</td>
</tr>
<tr>
<td>Ordering phase final radius (σ_1)</td>
<td>1.00</td>
</tr>
<tr>
<td>Ordering phase initial learning rate (η_0)</td>
<td>0.90</td>
</tr>
<tr>
<td>Ordering epoch (N)</td>
<td>1000</td>
</tr>
<tr>
<td>Convergence phase initial radius (σ_0)</td>
<td>1.00</td>
</tr>
<tr>
<td>Convergence phase final radius (σ_1)</td>
<td>0.10</td>
</tr>
<tr>
<td>Convergence phase initial learning rate (η_0)</td>
<td>0.10</td>
</tr>
<tr>
<td>Convergence epoch (N)</td>
<td>1000</td>
</tr>
</tbody>
</table>

Pattern 1 event is [6, 8] and the second is [10, 11]. If there are significant positive (or negative) returns during these two periods, the Pattern 1 reveals the signal of future rising (or falling) prices.

Some problems may arise under an analysis so constructed. Firstly, the length of the event period (m_f) is, of course, not constant, which contrasts with the general uses of the event study approach for constant event periods. However, it is deterministic after the SOMs have been trained. Then the test statistics of the event study approach can still be obtained using the central limit theorem. Secondly, from Section 2 we know that the learning process of the SOMs is iterative and that the whole of the sample is used to train the map. Then one chart that is classified into some specific pattern will depend on the charts both before and after that chart. Hence, this is an in-sample analysis, but, there is no in-sample problem, i.e. the evidence, if there is any, of the abnormal returns will not been overemphasized. Notice the unsupervised learning properties of SOMs. The purpose of the learning process is not to find the pattern that could induce any aftermath return behavior, i.e. the determinant of the pattern is independent of the abnormal

3For details, see Section 3.3.
returns. On the contrary, it just clusters the charts based on the similarities in the Euclidean space. Therefore, although the events (patterns) considered here are endogenous, the event studies can show us the impact of the events with the same reliability as any other exogenous events such as the tax policies of the markets or the macroeconomic circumstances.

Another essential element of the event study approach is to define the so-called abnormal return, such that it can correctly measure the impact of a specific event. To define what is abnormal, one has to define what is normal. Alternatively speaking, under the event study framework, the criterion used to distinguish the informative patterns from non-informative patterns is the abnormal return, which is mainly a statistic of the first-order moment. In the event study approach, the normal return comes from the prediction of the benchmark model. The difference between the actual return \(r_t \) and the predicted return \(E_b(r_t) \) is then called the abnormal return \(AR_t \), i.e.,

\[
AR_t = r_t - E_b(r_t).
\]

In practice, the benchmark model is estimated from estimation period \([t_1, t_2]\) (Fig. 3). The length of the estimation period \(m = t_2 - t_1 + 1 \) is arbitrarily
One of the usual benchmark models in firm-specific event studies is the market model. However, since the data we have considered are stock indices, the market models or other benchmark models in firm-specific event studies are not suitable. We must then search for another model that is usually used to capture the growth of stock indices. Conventionally, there are a couple of econometric models that can help us predict what the normal return for a stock index is. This paper considers GARCH-M plus MA(1) as the benchmark. Two questions arise from this choice. Why GARCH-M plus MA(1)? What are the consequences of misspecification? We will attempt to justify such a choice in the next subsection. In addition, once the benchmark model might be misspecified, the bootstrap method is regarded as a remedy to consolidate the test results. We detail this in Section 4.2.

3.2 GARCH-M plus MA(1)

The ARCH process introduced by Engle (1982) is the one econometric tool that can capture the volatility clustering phenomenon in financial time series.
data. The basic idea of the ARCH model is to allow the conditional variance to change over time. Bollerslev (1986) proposes a GARCH model which on one hand allows for a more flexible conditional variance structure and on the other hand converts a high-order ARCH model into a more parsimonious GARCH representation that is much easier to identify and estimate, while in empirical applications of the ARCH model a relatively long lag in the conditional variance equation is often required. Bollerslev et al. (1992) found that the GARCH(1,1) is most identified in financial time series data. The GARCH(1,1) model can be written as

\[
\begin{align*}
rt &= c + \epsilon_t \\
\epsilon_t | \Omega_{t-1} &\sim N(0, \sigma_t^2) \\
\sigma_t^2 &= \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2.
\end{align*}
\] (6)

where \(\Omega_{t-1} \) is the information set available at time \(t - 1 \).

Based on the idea that the risk-averse investors require compensation for holding risky assets, the ARCH model is extended by Engle et al. (1987) to allow for the variance to be a determinant of the mean and is called ARCH-M. Thus as the risk of an asset changes over time, the risk premium changes accordingly, and also, the expected return. It is straightforward to expand ARCH-M into a GARCH-M model. Consider the GARCH(1,1)-M model

\[
\begin{align*}
rt &= c + \delta h(\sigma_t) + \epsilon_t \\
\epsilon_t | \Omega_{t-1} &\sim N(0, \sigma_t^2) \\
\sigma_t^2 &= \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2.
\end{align*}
\] (7)

The choice of \(h(\sigma_t) = \sigma_t \) (\(h(\sigma_t) = \sigma_t^2 \)) represents the assumption that the conditional expected return is proportionate to the conditional standard deviation (variance). In a study by French et al. (1987), it was found that the specification of \(h(\sigma_t) = \sigma_t \) fit the data slightly better than that of \(h(\sigma_t) = \sigma_t^2 \), but that the evidence for this was not strong. Engle et al. (1987) state that, empirically, \(h(\sigma_t) = \log \sigma_t \) is found to be a better choice.
In this paper, we consider both the specifications of σ_t and σ_t^2. That is

$$r_t = c + \delta \sigma_t + \epsilon_t$$

(or $$r_t = c + \delta \sigma_t^2 + \epsilon_t$$)

$$\epsilon_t | \Omega_{t-1} \sim N(0, \sigma_t^2)$$

$$\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2.$$

(8)

The final forecasting model is chosen from between them via the Akaike information criterion (AIC).

Spurious first-order autocorrelation can usually be found in an asset return for two possible reasons: nonsynchronous trading and the bid-ask spread. Most of the financial asset tradings, such as those involving individual stocks on the NYSE, do not occur in a synchronous manner. For daily stock returns, nonsynchronous trading can induce lag-1 cross-correlation between stock returns and, thus, lag-1 serial correlation in a portfolio return.4

Another financial issue that can cause spurious lag-1 correlation is related to the bid-ask spreads, which exist in the stock exchanges with market makers. The market makers are individuals who stand ready to buy or sell whenever the public wishes to sell or buy. They buy from the public at the bid price and sell at the ask price. The difference between these two prices is called the bid-ask spread. The realized price thus jumps between the bid and ask price, which introduces a negative lag-1 serial correlation in the return series (Roll, 1984). This occurs not only in relation to individual stocks, but also the effect of the bid-ask spread continues to exist in portfolio returns.

In order to capture the first-order autocorrelation induced by the bid-ask spread and nonsynchronous trading, an MA(1) term is included in the mean equation of (8). We obtain

$$r_t = c + \delta \sigma_t + \epsilon_t - \theta \epsilon_{t-1}$$

(or $$r_t = c + \delta \sigma_t^2 + \epsilon_t - \theta \epsilon_{t-1}$$)

$$\epsilon_t | \Omega_{t-1} \sim N(0, \sigma_t^2)$$

$$\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2.$$

(9)

French et al. (1987) applied Model (9) to the Standard and Poor’s composite portfolio to examine the relationship between stock returns and stock market

4See, for example, Campbell et al. (1997) for a more detailed discussion.
volatility. In this paper, we apply Model (9) to the Dow Jones, Nasdaq, and S&P 500 indices, but take it as a benchmark model in event study to examine the information content of the SOMs-discovered patterns.

3.3 Test Statistics

For pattern \(j \) \((j = 1, \ldots, 36)\), we are interested in the null hypothesis:

\[H_0: \text{There is no abnormal return after pattern } j \text{ has been observed.} \]

Due to the construction of the analysis in this paper described in Section 3.1, the null hypothesis was rewritten as:

\[H'_0: \text{There is no cumulative abnormal return after pattern } j \text{ has been observed.} \]

Two statistical tests have been frequently used to test for the significance of events in the event study approach. One is the standardized-residual method (SRM) proposed by Pattel (1976), and the other is the standardized cross-sectional method (SCSM). The former assumes that there is no event-induced variance, whereas the latter assumes that there is.

The standardized-residual method assumes that the variance structure of the return is the same in both the estimation and the event period. The test statistic is as follows:\(^5\)

\[
t_{SRM} = \frac{\sum_{f=1}^{F_j} \sum_{i=1}^{m_f} SAR_{f,t_2+i} / \sqrt{m_f}}{\sqrt{F_j (m-5) / (m-7)}} \xrightarrow{d} N(0, 1).
\]

where \(\{SAR_{f,t_2+i}\}_{i=1}^{m_f} \) is the set of standardized abnormal returns during the event period. \(^6\)

If during the event period the variance increases or decreases, the \(t_{SRM} \) term does not seem to be a good test statistic. It may reject the null too often or only seldom. Cowan and Sergeant (1996) point out that three

\(^5\)This test statistic is a little different from Pattel (1976) due to the fact that the event length here is not constant over each occurrence of an event. Appendix 1 details the derivation of the statistic.

\(^6\)For a rigid definition of \(SAR_{f,t_2+i} \), see Appendix 1.
commonly used tests are potential solutions to the problem of event-induced variance: the generalized sign test proposed by Cowan (1992), Corrado’s rank test, and a standardized cross-sectional test proposed by Boehmer et al. (1991). The second test statistic used in this paper is the modified version of the standardized cross-sectional test in Boehmer et al. (1991) to allow for nonconstant event length. The test statistic is as follows:\(^7\)

\[
t_{SCSM} = \frac{t_{j,SCAR}}{S_{F_j}} \Rightarrow N(0,1).
\]

(11)

where \(SCAR\) and \(S_{F_j}\) are respectively the sample mean and sample standard deviation of the standardized cumulative abnormal return.\(^8\)

Before examining the magnitudes of \(t_{SRM,j}\) and \(t_{SCSM,j}\), \(j = 1, 2, \ldots, 36\), to judge which pattern is informative, we first emphasize that it would be desirable to conduct a joint test of the 36 patterns together rather than 36 tests for each individual pattern. It is clear that a joint test can give us a better control than the individual tests regarding the general conclusion: the SOM can discover informative patterns. Then the null hypothesis we are interested in is:

\(H_0^{SRM,SCSM}: The \ SOM \ cannot \ discover \ informative \ patterns.\)

On the other hand, from the statistical point of view, the result from the joint test is robust because it avoids the problem of the test size diminishing which happened when many tests were conducted together. So the two chi-square tests are considered before going through each pattern.\(^9\)

\[
\chi^2_K \equiv \sum_{j=1}^{36} t_{K,j}^2 \Rightarrow \chi^2_{36}, \ K = SRM, SCSM
\]

(12)

To sum up, the experiment design and analysis are depicted in the flowchart displayed in Fig. 5.

\(^7\)Here, we make two regular assumptions about the return series in order to apply the central limit theorem and the Slutsky theorem. Appendix 2 details the assumptions and the derivation of the statistic.

\(^8\)For rigid definitions of \(SCAR\) and \(S_{F_j}\), see Appendix 2.

\(^9\)If the intertemporal dependency of the return series is perfectly captured by the benchmark model, the \(\{t_{K,j}\}_{j=1}^{36}, K = SRM, SCSM\), is independent identical distributed \(iid\). Then the asymptotic distribution of the following statistics can be obtained.
4 Results

4.1 General Description

Before making a formal presentation of our test results, it would be useful to have a general picture of the patterns we discovered via the SOM. They are depicted in Figs. 6-8. Each figure stands for a different stock index, and each map in the figures stands for different window width. There are 36 patterns in the map, in which the relative position of the patterns match the hexagonal lattice. From these figures, it is worth noting that some patterns are very similar due to the exogenous setting of the size of the SOM.10 From these diagrams, it is also clear that the patterns that are neighbors to each other behave similarly. This is also what one can expect from a full-spanned SOM.11

The frequencies of each pattern are not uniformly distributed. Some

10There must be 36 clusters to form, no more and no less, regardless of how similar or dissimilar they are.

11The SOM algorithm does not guarantee the full-span of the web.
patterns were found to be more prevalent than others. This can be seen from the displays of Figs. 9-11. In these figures, the size of the black hexagons indicate the extent to which the charts were clustered. The larger the size is, the more widespread the pattern is throughout the whole time series. There is a general finding in terms of window width \((w)\) that a larger window width has a less uniformly distributed frequency for the patterns. However, as we shall see in the next subsection, most of these patterns are not informative from the perspective of the event study approach.

4.2 Event Studies

From Table 2, we first notice that the test results are sensitive to the test methods and the window widths. The null hypothesis is rejected more frequently in the SRM method. Moreover, the results among different indices are also different. Among all possible combinations, the one that looks particularly impressive is the Nasdaq, whose SOM-discovered patterns are significant in almost all window widths by using either the SRM or the SCSM. Why is the SOM so powerful for the Nasdaq index? Is that powerfulness real or spurious?

To answer this question, we have to first notice that the credibility of our tests may crucially depend upon the benchmark from which the abnormal

<table>
<thead>
<tr>
<th>(w)</th>
<th>SRM</th>
<th>SCSM</th>
<th>SRM</th>
<th>SCSM</th>
<th>SRM</th>
<th>SCSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(0.05)</td>
<td>(0.07)</td>
<td>(0.00)</td>
<td>(0.04)</td>
<td>*(0.12)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>(0.35)</td>
<td>(0.36)</td>
<td>*(0.26)</td>
<td>*(0.33)</td>
<td>*(0.46)</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>(0.22)</td>
<td>*(0.24)</td>
<td>(0.15)</td>
<td>*(0.11)</td>
<td>(0.05)</td>
<td>*(0.16)</td>
</tr>
<tr>
<td>90</td>
<td>(0.06)</td>
<td>*(0.73)</td>
<td>(0.07)</td>
<td>*(0.08)</td>
<td>*(0.37)</td>
<td>(0.84)</td>
</tr>
<tr>
<td>120</td>
<td>(0.04)</td>
<td>*(0.76)</td>
<td>(0.25)</td>
<td>*(0.76)</td>
<td>(0.10)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>150</td>
<td>(0.07)</td>
<td>*(0.90)</td>
<td>(0.30)</td>
<td>*(0.31)</td>
<td>*(0.34)</td>
<td>(0.79)</td>
</tr>
</tbody>
</table>

*, **, and *** denote 10%, 5%, and 1% significance levels, respectively, based on regular \(\chi^2\) tests. The numbers in the parentheses indicate the p-values obtained via the bootstrap method.
return is derived. One way to gauge the effect of the misspecification of the benchmark upon our test results was to use the bootstrap approach. By means of that approach, we shuffled the sequence of the patterns discovered by the SOM. Ideally, in so doing, the information revealed by the original patterns will all have gone. In other words, the “patterns” following the shuffling will no longer guide us to see the abnormal return.

The shuffling procedure was repeated 100 times. For the shuffled sequence \(b \), the event study was applied and then \(\left\{ (t_{SRM,j}^{(b)}, t_{SCSM,j}^{(b)}) \right\}_{j=1}^{36} \) was obtained and, also, \(\left(q_{SRM}^{2(b)}, q_{SCSM}^{2(b)} \right) \), \(b = 1, 2, \ldots, 100 \). The p-value was calculated via:

\[
p\text{-value} = \frac{\# \left(q_K^{2(b)} > q_K^{2} \right)}{100}, \quad K = SRM, SCSM. \tag{13}
\]

The numbers in the parentheses in Table 2 indicate the p-value obtained via the bootstrap approach. It is obvious that the bootstrap methods give more conservative results. If we take Nasdaq as an example, there are only two window widths \((w = 10, 90) \) indicating that the patterns discovered by the SOMs are informative under the 10% significance level, in terms of both event study methods.

Based on our results, there is some evidence that supports the relevance of the SOM to pattern discovery. Following the event-study tests, we found that some charts discovered by the SOM could in effect transmit signals of abnormal returns. For example, in terms of the bootstrap p-values of both test statistics, there were four maps disclosing informative signals under the 10% significance level. They were the maps with window width \(w = 10 \) for the Dow Jones and the Nasdaq, with \(w = 90 \) for the Nasdaq, and with \(w = 120 \) for the S&P 500. There are, however, two remarks to be made in relation to this finding. First, the evidence is not consistent for different window widths. Second, the evidence is also not consistent among different markets. The first remark is not entirely surprising considering that the real charts used by chartists also do not have a fixed window width.\footnote{An interesting issue left for the future is to extend the SOM to deal with window-size-free patterns.}
The second remark indicates that charts may be more informative in some markets. This is also familiar because many chartists believe that technical analysis may receive more support from certain specific markets. The next objective would then be to understand what factors may cause the emergence of informative charts.

To show how the informative patterns in the four informative maps would appear, Figs. 12-15 depict the charts which have aftermath abnormal returns. The thick lines in the figures demonstrate that the aftermath return of the pattern has positive abnormal behavior. The patterns with dotted lines indicate that there are negative abnormal returns. It is interesting to notice that most of the informative patterns reveal the signal of future falling prices. The portions of the periods which were found to have significant patterns are 14.44%, 25.37%, 16.18%, and 4.35% for the cases depicted in Fig. 12-15, respectively.

Although we do not presume that the patterns beforehand are some specific types of chart, on the contrary, the patterns themselves emerge from the data. Some of the informative patterns discovered by SOMs may roughly be given a name in the chartist’s eyes, such as uptrends (Patterns (5,2) in Fig. 13 and (2,4) in Fig. 14), a downtrend (Pattern (4,6) in Fig. 13), V-formations (Patterns (4,2) in Fig. 12 and (5,4) in Fig. 14), a rounding bottom (Pattern (1,5) in Fig. 13), a flat (Pattern (3,4) in Fig. 12), a wedge (Pattern (5,2) in Fig. 14), and single zigzags (Patterns (4,5) in Fig. 12 and (3,3) and (6,6) in Fig. 13).

4.3 Life of Informative Patterns

There is tremendous evidence indicating that the pattern has a life. It can emerge, and will die as well. With this background, it is questionable whether there are indeed any patterns which can signal abnormal returns and which are not found for 20 years. The second emphasis of this paper is to examine the life of patterns. A simple device for doing so is to divide the whole of the data set into two parts, and then check whether the patterns found to be significant in the previous section survived both sub-periods or just one of them. Table 3 shows the joint test results for the pattern’s life.
Table 3: Event Study: Joint Tests for the Patterns’ Life.

<table>
<thead>
<tr>
<th></th>
<th>Dow Jones</th>
<th>Nasdaq</th>
<th>S&P 500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SRM</td>
<td>SCSM</td>
<td>SRM</td>
</tr>
<tr>
<td>10</td>
<td>***(0.05)</td>
<td>**(0.10)</td>
<td>***(0.07)</td>
</tr>
<tr>
<td></td>
<td>**(0.20)</td>
<td>(0.38)</td>
<td>***(0.09)</td>
</tr>
<tr>
<td></td>
<td>(0.58)</td>
<td>(0.74)</td>
<td>***(0.09)</td>
</tr>
<tr>
<td>30</td>
<td>***(0.35)</td>
<td>(0.40)</td>
<td>***(0.39)</td>
</tr>
<tr>
<td></td>
<td>**(0.37)</td>
<td>(0.56)</td>
<td>***(0.42)</td>
</tr>
<tr>
<td></td>
<td>(0.65)</td>
<td>(0.76)</td>
<td>***(0.54)</td>
</tr>
<tr>
<td>60</td>
<td>***(0.22)</td>
<td>*(0.24)</td>
<td>***(0.16)</td>
</tr>
<tr>
<td></td>
<td>*(0.40)</td>
<td>***(0.00)</td>
<td>***(0.47)</td>
</tr>
<tr>
<td></td>
<td>(0.33)</td>
<td>(0.83)</td>
<td>***(0.02)</td>
</tr>
<tr>
<td>90</td>
<td>***(0.06)</td>
<td>(0.73)</td>
<td>***(0.08)</td>
</tr>
<tr>
<td></td>
<td>***(0.05)</td>
<td>(0.50)</td>
<td>***(0.10)</td>
</tr>
<tr>
<td></td>
<td>***(0.10)</td>
<td>*(0.50)</td>
<td>***(0.05)</td>
</tr>
<tr>
<td>120</td>
<td>***(0.04)</td>
<td>(0.76)</td>
<td>***(0.25)</td>
</tr>
<tr>
<td></td>
<td>***(0.03)</td>
<td>(0.47)</td>
<td>***(0.36)</td>
</tr>
<tr>
<td></td>
<td>(0.53)</td>
<td>(0.72)</td>
<td>***(0.06)</td>
</tr>
<tr>
<td>150</td>
<td>***(0.07)</td>
<td>(0.90)</td>
<td>***(0.33)</td>
</tr>
<tr>
<td></td>
<td>***(0.03)</td>
<td>(0.38)</td>
<td>***(0.14)</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.76)</td>
<td>***(0.03)</td>
</tr>
</tbody>
</table>

*, **, and *** denote 10%, 5%, and 1% significance levels, respectively, based on regular \(\chi^2 \) tests. The numbers in the parentheses indicate the p-values obtained via the bootstrap method.

There are six panels in Table 3, each of which stands for a different window width. In each panel, the first row represents the test results using all of the data, which is the same as in Table 2. The second and the third rows are the results using the first and the second halves of the data, respectively. In terms of the bootstrap p-values of both test statistics under the 10% significance level, there is one case (the Nasdaq with \(w = 10 \)) in which the patterns are informative in both subsamples and, of course, in the whole sample, there are three cases (the Dow Jones with \(w = 10 \), the Nasdaq with \(w = 90 \), and the S&P 500 with \(w = 120 \)) in which the informative signals...
are not significant in both periods but are in the sample as the whole, and there are two cases (the Nasdaq with $w = 60$ and the S&P 500 with $w = 60$) in which the informative signals only appear in one of the two periods.

Furthermore, to examine individual patterns, there is evidence that most patterns that are found to be significant could in effect have only successfully transmitted profitable signals in one of the two periods. For example, in the case of the Nasdaq with $w = 10$, there are only 3 among 13 informative patterns where the informative signal is significant in both periods. This is a highly interesting result, that shows that most of the charts which were informative in the first period died in the second period. However, the chartists did not die, because in the next period there were new charts appearing and waiting to be found. This finding lends support to the recent simulation study of agent-based artificial financial markets. The finding is further strengthened by the evidence that some non-informative patterns were actually found to be significant in one of the sub-periods. Taking the Nasdaq with $w = 10$ as an example again, there are 7 patterns that were judged to be informative in one of the periods but not in the whole sample. This implies that a number of patterns which were not found significant was because they could no longer transmit the profitable signal in the second period. In other words, they died in the second period.

5 Conclusions

According to the chartists’ view, a chart is an event. On what scenario the market in the future will depend on has already been recognized today. Thus, it is straightforward to apply the event study approach to the analysis of the information content of the trajectory-domain model, which is proposed by Chen and He (2003) based on the motivation of chart analysis. In this paper there is some evidence to support the relevance of the trajectory-domain model to informative pattern discovery. Some patterns discovered by the SOM can in effect transmit signals of abnormal returns. However, the signals are not persistent. They tend to emerge during a period and then vanish, and vice versa.
There are several directions in which this study could be extended, including:

- **Multivariate model.**
 Constructing multivariate models might be a direct extension of the study. The variables with the same attributes might be adopted, e.g., two markets’ prices, or with different attributes, e.g., price and volume.

- **Profitability.**
 The purpose of this paper is not to test whether the trajectory-domain models can help us to make money. However, profitability might be an interesting alternative issue to examine. Then the results of the empirical analysis could be compared with theoretical financial issues, such as the efficient markets hypothesis.

- **The effect of model parameters.**
 For example, what is the effect of the size of the SOM? Should the multi-dimensional SOM make it easier to find patterns, if there are any?

- **The effect of the event study setting.**
 For example, how is the event period discerned? Would the length of the event play a role in its significance?
Appendix 1

Consider the f-th appearance of pattern j,
\[AR_{f,t_2+i} = r_{t_2+i} - \hat{r}_{t_2+i}, \quad i = 1, 2, ..., m_f, \]
where \hat{r}_{t_2+i} is the estimated predicted return from the benchmark model.

Supposing there is no event-induced variance and H_0 is true, then
\[SAR_{f,t_2+i} \equiv \frac{AR_{f,t_2+i}}{SE_{f,t_2+i}} \sim t(m - 5), \]
where SE_{f,t_2+i} is the estimated predicted error. The average standardized cumulative abnormal return can be obtained as
\[\overline{SCAR_f} \equiv \sum_{i=1}^{m_f} SAR_{f,t_2+i} \sim D\left(0, \frac{m - 5}{(m - 7)m_f}\right), \]
where $D(a,b)$ denotes some distribution with mean a and variance b. Normalizing $\overline{SCAR_f}$ we have
\[K_f = \frac{\overline{SCAR_f}}{\sqrt{\frac{m - 5}{(m - 7)m_f}}} \sim D'(0, 1), \quad j = 1, 2, ..., F_j. \]

Applying the central limit theorem we obtain
\[\sqrt{F_j} K \overset{d}{\to} N(0, 1). \]
i.e.
\[\sqrt{\sum_{f=1}^{F_j} \sum_{i=1}^{m_f} SAR_{f,t_2+i} / \sqrt{m_f}} / \sqrt{F_j (m - 5)/(m - 7)} \overset{d}{\to} N(0, 1). \]

Appendix 2

We now consider the case in which there is an event-induced variance, then
\[SAR_{f,t_2+i} \equiv \frac{AR_{f,t_2+i}}{SE_{f,t_2+i}} \sim D'(0, \sigma_{t_2+i}^2), \quad i = 1, 2, ..., m_f, \]
Thus the standardized cumulative abnormal return will be
\[SCAR_f \equiv \sum_{i=1}^{m_f} SAR_{f,t_2+i} \sim D'(0, \sigma_f^2), \]
where

$$\sigma^2_f = \sum_{i=1}^{m_f} \sigma^2_{i2+i}.$$

Let

$$\hat{\sigma}^2_{F_j} = \frac{\sum_{f=1}^{F_j} \sigma^2_f / F_j}{},$$

and

$$S^2_{F_j} = \frac{\sum_{f=1}^{F_j} (SCAR_f - \overline{SCAR})^2}{F_j - 1}.$$

We make the first assumption here: suppose \(\lim_{F_j \to \infty} \max(\sigma_f) / (F_j \sigma_f) = 0\) and \(\hat{\sigma}^2 = \lim_{F_j \to \infty} \hat{\sigma}^2_{F_j}\) exists. Then by applying the central limit theorem (Lindberg-Feller) we get

$$\frac{\sqrt{F_j \overline{SCAR}}}{\hat{\sigma}} d \to N(0,1).$$

(14)

What is left is to show \(S^2_{F_j} \sim \sigma^2\), then by using Slutsky theorem

$$\frac{\sqrt{F_j \overline{SCAR}}}{S_{F_j}} d \to N(0,1).$$

(15)

Two things need to be verified: \(S^2_{F_j}\) is asymptotically unbiased and the variance of \(S^2_{F_j}\) converges to zero.

1.

$$E(S^2_{F_j}) = E \left[\frac{\sum_{f=1}^{F_j} (SCAR_f - \overline{SCAR})^2}{F_j - 1} \right]$$

$$= \frac{1}{F_j - 1} \left[\sum_{f=1}^{F_j} E(SCAR^2_f) - F_j E(\overline{SCAR}^2) \right]$$

$$= \frac{1}{F_j - 1} \left[\sum_{f=1}^{F_j} \sigma^2_f - \frac{\sum_{f=1}^{F_j} \sigma^2_f}{F_j} \right]$$

$$= \frac{\sum_{f=1}^{F_j} \sigma^2_f}{F_j} \to \sigma^2$$

23
2.

\[\text{var}(S_{F_{j}}^{2}) = \text{var} \left[\frac{\sum_{f=1}^{F_{j}} (SCAR_{f} - \bar{SCAR})^{2}}{F_{j} - 1} \right] \]

Then

\[\lim_{F_{j} \to \infty} \frac{\sum_{f=1}^{F_{j}} E(SCR_{f}^{2})}{F_{j}} < \infty \] \hspace{1cm} (16)

is a sufficient condition for \(\text{var}(S_{F_{j}}^{2}) \to 0 \) as \(F_{j} \to \infty \). Here, we make the second assumption that Eq. (16) holds.

References

Huang, Z. (1997), A fast clustering algorithm to cluster very large categorical data sets in data mining, *First Asia Pacific Conference on Knowledge Discovery and Data Mining*, Singapore, World Scientific, February.

Figure 6: 6×6 Patterns Discovered by SOMs (Dow Jones).
Figure 7: 6×6 Patterns Discovered by SOMs (Nasdaq).
Figure 8: 6×6 Patterns Discovered by SOMs (S&P 500).
Figure 9: 6×6 Pattern Hits Clustered by SOMs (Dow Jones).
Figure 10: 6×6 Pattern Hits Clustered by SOMs (Nasdaq).
Figure 11: 6×6 Pattern Hits Clustered by SOMs (S&P 500).
Figure 12: The Informative Patterns for Dow Jones ($w = 10$).

Figure 13: The Informative Patterns for Nasdaq ($w = 10$).
Figure 14: The Informative Patterns for Nasdaq ($w = 90$).

Figure 15: The Informative Patterns for S&P 500 ($w = 120$).