Introduction to Digital Electronics
Properties of Digital Circuits.

- Logic Function.
- Quantization of Amplitudes.
- Regeneration.
- Directivity.
- Fan-in, Fan-out.
The Ideal Gate.

- Zero power dissipation.
- “Rail to rail” voltage swing.
- Abrupt logic transitions at $V_{DD}/2$.
- Zero propagation delay.
- Infinite fan-out.
Inverter VTC

- $V_{IL} =$ maximum input voltage interpreted as “0”
- $V_{IH} =$ minimum input voltage interpreted as “1”
- $V_{OH} =$ minimum logic “1” output voltage
- $V_{OL} =$ maximum logic “0” output voltage
Noise Margins.

- $V_{NMH} = V_{OH} - V_{IH}$
- $V_{NML} = V_{IL} - V_{OL}$
- “Noise” in digital circuits results from the coupling of voltages and currents
- Noise of amplitude less than the noise margin is attenuated
Switching Characteristics

- t_R = rise time
- t_F = fall time
- t_{PLH} = low-to-high propagation delay
- t_{PHL} = high-to-low propagation delay
Power-Delay Product (PDP)

- Power Dissipation. $P = (P_H + P_L)/2$
- Propagation Delay. $t_P = (t_{PLH} + t_{PHL})/2$
- Power-Delay Product. $PDP = P \cdot t_P$
- There is a tradeoff between speed and power dissipation. The lower the PDP, the better the tradeoff.
Levels of Integration

- SSI - Small-Scale Integration, 1-10 gates (7404 Hex Inverter)
- MSI - Medium-Scale (10-100 gates)
- LSI - Large-Scale (100-10k gates)
- VLSI - Very Large-Scale (10k-1M gates)
- ULSI - Ultra Large-Scale (>1M gates)
Bipolar Devices
Bipolar Logic Families.

- **Transistor-Transistor Logic (TTL).** Low-power Schottky versions are most popular.
- **Emitter-Coupled Logic (ECL).** Used in high-end supercomputers.
- **BiCMOS.** The best of both worlds?
- **Integrated Injection Logic (I^2L).** Still important commercially.
PN Junction Diode

The pn diode follows Schockley’s equation:

\[I_D = I_S \left(e^{V_D/\phi_T} - 1 \right) \]
Doping in the PN Diode

\[I \]

\[p \quad n \]

\[R \]

\[V \]

p-type: \(p_{po} = N_a \) and \(n_{po} = n_i^2/N_a \)

n-type: \(p_{no} = n_i^2/N_d \) and \(n_{no} = N_d \)
PN Diode: Equilibrium

- Space Charge Density
 - $-x_p < x < 0$: $\rho = -qN_a$
 - $0 < x < x_n$: $\rho = +qN_d$
 - elsewhere: $\rho = 0$

- Electric Field
 - $\frac{dE}{dx} = \rho/\varepsilon$

- Electric Potential
 - $\frac{dV}{dx} = -E$
PN Diode: Built-in Potential

Holes move by diffusion and drift:

\[J_p(\text{diff}) = -qD_p \frac{dp}{dx} \quad J_p(\text{drift}) = q\mu_p pE \]

In equilibrium,

\[J_p(\text{diff}) + J_p(\text{drift}) = 0 \]

Also, by the Einstein relationship,

\[\frac{D_p}{\mu_p} = \frac{kT}{q} = \phi_T = 0.026V \]
PN Diode: Built-in Potential

Thus the equilibrium condition is:

\[q \mu_p p E = q D_p \frac{dp}{dx} \quad \text{and} \quad Edx = \phi_T \frac{dp}{p} \]

In terms of potential, \(d\phi = -\phi_T d(\ln p) \)

Thus \(\phi_o = \phi_T \ln \left| \frac{N_a N_d}{n_i^2} \right| \)
PN Diode: Depletion Width

By charge neutrality, \(qN_ax_p = qN_dx_n \)

By the Poisson equation, \(E_o = \frac{qN_ax_p}{\varepsilon} = \frac{qN_dx_n}{\varepsilon} \)

Solving: \(W = \sqrt{\left(\frac{2\varepsilon\phi_o}{q}\right)\left(\frac{1}{N_a} + \frac{1}{N_d}\right)} \)
PN Diode: Forward Bias

![Diode Diagram]

In equilibrium, \(p_{no} = p_{po} \exp\left(-\frac{\phi_o}{\phi_T}\right) \)

with a bias \(V \), \(p_{n}(x_n) = p_{po} \exp\left|\frac{V - \phi_o}{\phi_T}\right| \)

This is the "Law of the Junction:"
PN Diode: Forward Bias

Forward bias results in injection of excess minority carriers, which give rise to a net DIFFUSION current.

\[
p_n(x) = p_{no} \exp\left(\frac{V}{\phi_T}\right) \exp\left(-\frac{(x - x_n)}{L_p}\right)
\]

\[
J_p(x_n) \approx -qD_p \frac{dp}{dx} = \left(\frac{qD_p p_{no}}{L_p}\right) \exp\left(\frac{V}{\phi_T}\right) = \left(\frac{qD_p n_i^2}{L_p N_d}\right) \exp\left(\frac{V}{\phi_T}\right)
\]
PN Diode: Forward Bias

If we include the electron contribution, and also the drift currents of electrons and holes, then

$$I = qA n_i^2 \left(\frac{D_p}{L_p N_d} + \frac{D_n}{L_n N_a} \right) \left[\exp \left| \frac{V}{\phi_T} \right| - 1 \right]$$

This is the diode equation, where the “reverse saturation current” is given by

$$I_S = qA n_i^2 \left(\frac{D_p}{L_p N_d} + \frac{D_n}{L_n N_a} \right)$$
PN Diode: Switching Transients

- PN diodes exhibit depletion capacitance, and
- PN diodes store excess minority carriers; this is also a capacitive effect.

For a p⁺-n diode, the “charge control equation” is

\[i(t) = \frac{Q_p}{\tau_F} + \frac{dQ_p}{dt} + C_T \frac{dV}{dt} \]

Minority carriers are stored on both sides of the diode. Storage of one type of carrier may dominate, in “one-sided” diodes.
PN Diode: Turn-on (fast!)

At $t = 0$, the source voltage is turned on abruptly.

$i(t)$ rises abruptly

Q_p builds up with time

$v(t)$ increases rapidly

$$v(t) = \phi_T \ln\left(\frac{p_n(x_n)}{p_{no}}\right)$$
PN Diode: Turn-off Transient

At $t = 0$, the source voltage polarity is switched from FB to RB.

For $t < 0$, $Q_p = I_F \tau_F$ \hspace{1cm} This is the initial condition.

For $0 < t < t_{SD}$, $Q_p(t) = \tau_F \left(|I_R| - (I_F + |I_R|) \exp(-t / \tau_F) \right)$

Solving for $Q_p(t=t_{SD})=0$, $t_{SD} = \tau_F \ln\left(1 + \frac{I_F}{|I_R|}\right)$

This is the “storage delay time.”
PN Diode: Turn-off Transient

- Stored minority carriers are removed during the “storage delay time:”
 \[
 t_{SD} = \tau_F \ln \left(1 + \frac{I_F}{|I_R|} \right)
 \]

- The depletion layer capacitance charges during the “fall time:”
 \[
 t_F \propto R C_D
 \]

- The sum of these delays is called the “reverse recovery time.”
PN Diode SPICE Model

The SPICE diode model includes Schockley’s equation, the series resistance, and both the depletion layer and diffusion capacitances.

\[I_D' = IS \left[\exp \left(\frac{V_D'}{N\Phi_T} \right) - 1 \right] \]

\[V_D = V_D' + I_D R_S \]

\[C_D = TT \frac{IS}{N\Phi_T} \exp \left(\frac{V_D'}{N\Phi_T} \right) + \frac{CJO}{\left(1 - \frac{V_D'}{VJ} \right)^M} \]
PN Diode SPICE Parameters

<table>
<thead>
<tr>
<th>symbol</th>
<th>SPICE name</th>
<th>description</th>
<th>units</th>
<th>default</th>
<th>typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_S</td>
<td>IS</td>
<td>saturation current</td>
<td>A</td>
<td>1E-14</td>
<td>1E-14</td>
</tr>
<tr>
<td>R_S</td>
<td>RS</td>
<td>series resistance</td>
<td>Ω</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>N</td>
<td>TT</td>
<td>emission coefficient</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>τ_F</td>
<td>CJO</td>
<td>transit time</td>
<td>s</td>
<td>0</td>
<td>0.1N</td>
</tr>
<tr>
<td>ϕ_o</td>
<td>VJ</td>
<td>zero-bias capacitance</td>
<td>F</td>
<td>0</td>
<td>2P</td>
</tr>
<tr>
<td>m</td>
<td>M</td>
<td>grading coefficient</td>
<td>V</td>
<td>1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Units:
- A: Amperes
- Ω: Ohms
- s: Seconds
- F: Farads
- V: Volts
- 0.5: Dimensionless
The MS diode is a majority carrier device. There are no minority carrier storage effects (fast switching).

The MS diode follows the diode equation but with a lower turn-on voltage.

The SPICE model is the same as for the PN diode, except for the absence of minority carrier storage.
Integrated Circuit Diodes

- **Integrated PN Diode**
 - PN junction
 - ohmic contact
 - SiO₂
 - p+ p substrate
 - n- epitaxial layer
 - n+ pn+ n- epitaxial layer

- **Integrated MS Diode**
 - MS junction
 - ohmic contact
 - SiO₂
 - Pt₅Si₂
 - p+ p substrate
 - n- epitaxial layer
 - n+
Bipolar Junction Transistors

The BJT comprises two interacting PN junctions.

- The forward-biased EB junction injects electrons into the base.
- The base is so narrow that most of the injected electrons can diffuse to the reverse-biased CB junction, where they are collected.
- Some of the injected electrons recombine with holes, so a small base current is required to maintain charge neutrality in the base.
BJT Terminal Currents

Using the diode equation, we obtain the “Ebers-Moll” Equations:

\[I_E = I_{ES} \left[\exp \left(\frac{V_{BE}}{\phi_T} \right) - 1 \right] - \alpha_R I_{CS} \left[\exp \left(\frac{V_{BC}}{\phi_T} \right) - 1 \right] \]

\[I_C = \alpha_F I_{ES} \left[\exp \left(\frac{V_{BE}}{\phi_T} \right) - 1 \right] - I_{CS} \left[\exp \left(\frac{V_{BC}}{\phi_T} \right) - 1 \right] \]

From KCL,

\[I_E = I_{DE} - \alpha_R I_{DC} \]

\[I_C = \alpha_F I_{DE} - I_{DC} \]
BJT Terminal Currents

\[I_E = I_{ES} \left[\exp\left(\frac{V_{BE}}{\phi_T} \right) - 1 \right] - \alpha_R I_{CS} \left[\exp\left(\frac{V_{BC}}{\phi_T} \right) - 1 \right] \]

\[I_C = \alpha_F I_{ES} \left[\exp\left(\frac{V_{BE}}{\phi_T} \right) - 1 \right] - I_{CS} \left[\exp\left(\frac{V_{BC}}{\phi_T} \right) - 1 \right] \]

Reciprocity Theorem:

\[I_{ES} \alpha_F = I_{CS} \alpha_R = I_S \]

\[I_S = \text{transport saturation current} \]

\[\beta_F = \frac{\alpha_F}{1 - \alpha_F} \]

\[\beta_R = \frac{\alpha_R}{1 - \alpha_R} \]
BJT Modes of Operation

- **Cutoff.** $V_{BE} < 0; V_{BC} < 0.$
 All currents are essentially zero.

- **Forward Active.** $V_{BE} > 0; V_{BC} < 0.$
 $V_{BEA} = 0.7V; I_C = \beta_F I_B.$

- **Reverse Active.** $V_{BE} < 0; V_{BC} > 0.$
 $V_{BCA} = 0.7V; I_E = \beta_R I_B.$

- **Saturation.** $V_{BE} > 0; V_{BC} > 0.$
 $V_{BES} = 0.8V; V_{CES} = 0.2V.$
Integrated NPN Transistors

- Junction-isolated transistor
 - 74xx series TTL
 - 10k ECL

- Oxide-isolated transistor
 - 74Fxx TTL
 - 74ALSxx TTL
 - 100k ECL
Integrated PNP Transistors

Other Bipolar Transistors

- Multi-emitter NPN (used in many versions of TTL)
- Schottky-clamped NPN’s (used in Schottky TTL)
- “merged” transistors (used in I^2L)
SPICE BJT Model

SPICE uses the Gummel-Poon model:

- I_{CB} and I_{BE} are Schockley-type current sources including adjustable emission coefficients.
- C_{BC} and C_{BE} include depletion layer and diffusion components.
- C_{CS} is the collector-substrate parasitic capacitance.
- RC, RB, and RE are parasitic resistances.
SPICE BJT Model

• The DC equations used by SPICE are Schockley-type equations, with adjustable emission coefficients and beta values used to model the Kirk Effect and the Sah-Noyce-Schockley Effect.

• The Early Effect is modeled using VAF.

\[
I_C = IS \left[\exp \left(\frac{V_{BE}}{NF\phi_T} \right) - \exp \left(\frac{V_{BC}}{NR\phi_T} \right) \right] \left(1 - \frac{V_{BC}}{VAF} \right) \\
- \frac{IS}{BR} \left[\exp \left(\frac{V_{BC}}{NR\phi_T} \right) - 1 \right]
\]

\[
I_B = \frac{IS}{BF} \left[\exp \left(\frac{V_{BE}}{NF\phi_T} \right) - 1 \right] + \frac{IS}{BR} \left[\exp \left(\frac{V_{BC}}{NR\phi_T} \right) - 1 \right]
\]

\[
I_E = I_B + I_C
\]
SPICE BJT Model

The AC equations used by SPICE include the base-emitter, base-collector, and collector-substrate capacitances.

\[C_{BE} = TF \frac{IS}{NE\phi_T} \exp\left(\frac{V_{BE}}{NE\phi_T}\right) + \frac{CJE}{MJE} \left(1 - \frac{V_{BE}}{VJE}\right) \]

\[C_{BC} = TR \frac{IS}{NC\phi_T} \exp\left(\frac{V_{BC}}{NC\phi_T}\right) + \frac{CJC}{MJC} \left(1 - \frac{V_{BC}}{VJC}\right) \]

\[C_{CS} = \frac{CJS}{MJS} \left(1 - \frac{V_{CS}}{VJS}\right) \]
BJT SPICE DC Parameters

<table>
<thead>
<tr>
<th>symbol</th>
<th>SPICE name</th>
<th>description</th>
<th>units</th>
<th>default</th>
<th>typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_A</td>
<td>IS</td>
<td>junction saturation current</td>
<td>A</td>
<td>1E-16</td>
<td>1E-16</td>
</tr>
<tr>
<td></td>
<td>VAF</td>
<td>forward Early voltage</td>
<td>V</td>
<td>∞</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>IKF</td>
<td>high corner for β_F falloff</td>
<td>A</td>
<td>∞</td>
<td>10E-3</td>
</tr>
<tr>
<td></td>
<td>ISE</td>
<td>BE saturation current</td>
<td>A</td>
<td>0</td>
<td>1E-13</td>
</tr>
<tr>
<td></td>
<td>NE</td>
<td>BE emission coefficient</td>
<td>V</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>VAR</td>
<td>reverse Early voltage</td>
<td>Ω</td>
<td>∞</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>IKR</td>
<td>high corner for β_R falloff</td>
<td>A</td>
<td>∞</td>
<td>1E-3</td>
</tr>
<tr>
<td></td>
<td>ISC</td>
<td>BC saturation current</td>
<td>A</td>
<td>0</td>
<td>1E-13</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>BC emission coefficient</td>
<td>Ω</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>R_B</td>
<td>RB</td>
<td>base series resistance</td>
<td>Ω</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>RBM</td>
<td>min RB at high current</td>
<td>Ω</td>
<td>RB</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>IRB</td>
<td>$I @ RB$ halfway to RBM</td>
<td>A</td>
<td>∞</td>
<td>0.1</td>
</tr>
<tr>
<td>R_E</td>
<td>RE</td>
<td>emitter series resistance</td>
<td>Ω</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>R_C</td>
<td>RC</td>
<td>collector series resistance</td>
<td>Ω</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>
BJT SPICE AC Parameters

<table>
<thead>
<tr>
<th>symbol</th>
<th>SPICE name</th>
<th>description</th>
<th>units</th>
<th>default</th>
<th>typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{BE0}</td>
<td>CJE</td>
<td>zero-bias EB capacitance</td>
<td>F</td>
<td>0</td>
<td>2P</td>
</tr>
<tr>
<td>ϕ_{BE}</td>
<td>VJE</td>
<td>BE built-in potential</td>
<td>V</td>
<td>0.75</td>
<td>0.85</td>
</tr>
<tr>
<td>m_E</td>
<td>MJE</td>
<td>BE grading coefficient</td>
<td></td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>τ_F</td>
<td>TF</td>
<td>forward transit time</td>
<td>s</td>
<td>0</td>
<td>1N</td>
</tr>
<tr>
<td>C_{BC0}</td>
<td>XTF</td>
<td>TF bias dependence coefficient</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ϕ_{BC}</td>
<td>VTF</td>
<td>TF dependency on V_{BC}</td>
<td>V</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>m_C</td>
<td>ITF</td>
<td>TF dependence on I_C</td>
<td>A</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>τ_R</td>
<td>PTF</td>
<td>excess phase at $1/(2\pi TF)$</td>
<td>deg</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>C_{CS0}</td>
<td>CJC</td>
<td>zero-bias CB capacitance</td>
<td>F</td>
<td>0</td>
<td>2P</td>
</tr>
<tr>
<td>ϕ_{CS}</td>
<td>VJC</td>
<td>BC built-in potential</td>
<td>V</td>
<td>0.75</td>
<td>0.8</td>
</tr>
<tr>
<td>m_S</td>
<td>MJC</td>
<td>BC grading coefficient</td>
<td></td>
<td>0.33</td>
<td>0.5</td>
</tr>
<tr>
<td>τ_R</td>
<td>XCJC</td>
<td>fraction of C_{BC} conn. to RB</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C_{CS0}</td>
<td>TR</td>
<td>reverse transit time</td>
<td>s</td>
<td>0</td>
<td>10N</td>
</tr>
<tr>
<td>ϕ_{CS}</td>
<td>CJS</td>
<td>CS zero-bias capacitance</td>
<td>F</td>
<td>0</td>
<td>2P</td>
</tr>
<tr>
<td>m_S</td>
<td>VJS</td>
<td>CS built-in potential</td>
<td>V</td>
<td>0.75</td>
<td>0.8</td>
</tr>
<tr>
<td>m_S</td>
<td>MJS</td>
<td>CS grading coefficient</td>
<td></td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>FC</td>
<td></td>
<td>FB depletion capacitance coeff.</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>